

Özgür L. Özçep

# Logic, Logic, and Logic

Lecture 2: FOL 15 April 2021

Informationssysteme CS4130 (Summer 2021)

# Recap: Role of Logic in CS

## Literature Hint: Introductions to Logic

#### Logic for CS

Lit: M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, 2000.

Lit: M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 2. edition, 2001.

Lit: U. Schöning. Logik für Informatiker. Spektrum Akademischer Verlag, 5. edition, 2000.

Lit: M. Fitting. First-Order Logic and Automated Theorem Proving. Graduate texts in computer science. Springer, 1996.

#### Mathematical Logic

Lit: H.Ebbinghaus, J.Flum,and W.Thomas. Einführung in die mathematische Logik. Hochschul-Taschenbuch. Spektrum Akademischer Verlag, 2007.

Lit: D. J. Monk. Mathematical Logic. Springer, 1976.

Lit: R. Cori and D. Lascar. Mathematical Logic: Propositional calculus, Boolean algebras, predicate calculus. Mathematical Logic: A Course with Exercises. Oxford University Press, 2000.

# Recap: First-Order Logic

# FOL Structures and Interpretations

- Structures:  $\mathfrak{A} = (A, R_1^{\mathfrak{A}}, \dots, R_n^{\mathfrak{A}}, f_1^{\mathfrak{A}}, \dots, f_m^{\mathfrak{A}}, c_1^{\mathfrak{A}}, \dots, c_l^{\mathfrak{A}})$
- ► Usually: Universe A assumed to be non-empty Example: Graphs 𝔅 = (V, E<sup>𝔅</sup>)
- Interpretations *I* = (𝔄, ν)
   Adds assignments ν for free variables.



- Terms (Example: c, f(c, x))
- Atomic formulae (Example: c = d, E(a, d))
- Formulae: (Example:  $\exists y \exists z \ E(x, y) \land E(x, z) \land E(y, z)$ )

## FOL Semantics

# Semantics (Satisfaction/truth/modeling ⊨) … ⊥ ⊨ ∃x φ iff: There is d ∈ A s.t. ⊥<sub>[x/d]</sub> ⊨ φ

Example

 $(\mathfrak{G}, x \mapsto a) \models \exists y \exists z \ E(x, y) \land E(x, z) \land E(y, z)$ Alternative notation:

 $\mathfrak{G} \models (\exists y \; \exists z \; E(x,y) \land E(x,z) \land E(y,z))(x/a)$ 

#### Definition (Derived Semantic Notions)

- Entailment:  $\Phi \models \psi$  (" $\Phi$  entails  $\psi$ ") iff for all interpretations  $\mathcal{I}$ : if  $\mathcal{I} \models \Phi$ , then  $\mathcal{I} \models \psi$
- $\psi$  is satisfiable iff there is an interpretation  $\mathcal{I}$  s.t.  $\mathcal{I} \models \psi$ •  $\Phi$  is satisfiable iff there is an interpretation  $\mathcal{I}$  s.t. for all
  - $\psi \in \Phi$ :  $\mathcal{I} \models \psi$
- $Mod(\Phi) = \{\mathcal{I} \mid \mathcal{I} \text{ satisfies all } \psi \in \Phi\}$
- $\psi$  is valid iff for all interpretations  $\mathcal{I}: \mathcal{I} \models \psi$ .
- ↓ ψ is contradictory (unsatisfiable) iff for all interpretations I: Not I ⊨ ψ

#### END of recap

# FOL: Calculi and Algorithmic Problems

# Plan for Today

- We investigate corresponding algorithmic problems for FOL
- ▶ Because, e.g., the definition of entailment does not say anything on how to compute that  $\psi$  is entailed by  $\Phi$
- Moreover, it does not say how much resources (place, time) are needed
- Example algorithmic problems
  - Given a structure  $\mathfrak{A}$  and formula  $\phi$ : Decide whether  $\mathfrak{A} \models \phi$
  - Given a formula decide whether φ is satisfiable (valid, contradictory, resp.)
  - Given  $\Phi$ ,  $\psi$  decide whether  $\Phi \vDash \psi$ .

# Plan for Today

- We investigate corresponding algorithmic problems for FOL
- ▶ Because, e.g., the definition of entailment does not say anything on how to compute that  $\psi$  is entailed by  $\Phi$
- Moreover, it does not say how much resources (place, time) are needed
- Example algorithmic problems
  - Given a structure  $\mathfrak{A}$  and formula  $\phi$ : Decide whether  $\mathfrak{A} \models \phi$
  - Given a formula decide whether φ is satisfiable (valid, contradictory, resp.)
  - Given  $\Phi, \psi$  decide whether  $\Phi \vDash \psi$ .

Problems are related by reduction (at least for FOL)

#### Wake-Up Exercise

Show:  $\Phi \vDash \psi$  iff  $\Phi \cup \{\neg \psi\}$  is unsatisfiable

#### Remember:

- Entailment: Φ ⊨ ψ ("Φ entails ψ") iff for all interpretations I: if I ⊨ Φ, then I ⊨ ψ
- ψ is unsatisfiable (or contradictory) iff for all interpretations *I*: Not *I* ⊨ ψ

# Challenges of FOL Algorithmic Problems

- First challenge: Domain of structure may be infinite
- But this is not the main problem (as we will see in lecture on finite model theory)
- Second challenge: Number of possible structures is infinite
- ▶ We want to tame the infinite by "syntactifying" the problem

# A First Step Towards Algorithmization: Proof Calculi

- How to approach entailment problem  $\Phi \vDash \psi$ ?
- Idea: Break down entailment into smaller entailment steps
  - "Smaller" entailment steps (which are "obvious")
  - Realized by applying finite number of rules *R*
  - $\blacktriangleright$  Apply rules to  $\Phi$  and intermediate results to yield  $\psi$

# A First Step Towards Algorithmization: Proof Calculi

- How to approach entailment problem  $\Phi \vDash \psi$ ?
- Idea: Break down entailment into smaller entailment steps
  - "Smaller" entailment steps (which are "obvious")
  - Realized by applying finite number of rules  $\mathcal R$
  - Apply rules to  $\Phi$  and intermediate results to yield  $\psi$

#### General derivation procedure

- ▶ Input:  $\Phi, \psi$
- Output:  $\Phi \models \psi$
- $\blacktriangleright DS_0 = Encode(\Phi, \psi)$
- ► Find derivation DS<sub>0</sub>,..., DS<sub>n</sub> where DS<sub>i</sub> results from applying a rule from R to finite set of DS<sub>j</sub> with j < i.</p>
- Decode( $DS_n$ ) into answer to  $\Phi \vDash \psi$

# A First Step Towards Algorithmization: Proof Calculi

- How to approach entailment problem  $\Phi \vDash \psi$ ?
- Idea: Break down entailment into smaller entailment steps
  - "Smaller" entailment steps (which are "obvious")
  - Realized by applying finite number of rules  $\mathcal R$
  - Apply rules to  $\Phi$  and intermediate results to yield  $\psi$

#### General derivation procedure

- ▶ Input:  $\Phi, \psi$
- Output:  $\Phi \models \psi$
- $\blacktriangleright DS_0 = Encode(\Phi, \psi)$
- ► Find derivation DS<sub>0</sub>,..., DS<sub>n</sub> where DS<sub>i</sub> results from applying a rule from R to finite set of DS<sub>j</sub> with j < i.</p>
- Decode( $DS_n$ ) into answer to  $\Phi \vDash \psi$
- Differences among calculi regarding: types of rules in *R*; used data structures *DS*; proof methodology

# Well Known Calculi

| Calculus             | Rule types                                                | Data structures                             | Methodology                        |
|----------------------|-----------------------------------------------------------|---------------------------------------------|------------------------------------|
| Hilbert              | axioms<br>2 rules                                         | formulae                                    | direct<br>(premises to conclusion) |
| Natural<br>deduction | l(ntroduction) and E(limination)<br>rules per constructor | formulae                                    | direct                             |
| Gentzen style        | axioms +<br>I and E rules per constructor                 | Entailments                                 | direct                             |
| Tableaux             | "and", "or" rules                                         | formula in a tree                           | refutation proofs<br>based on DNF  |
| Resolution           | resolution rule                                           | quantifier free formula<br>in CNF in a tree | refutation proofs<br>based on CNF  |

 Refutation calculus, i.e., calculus for showing unsatisfiability of a formula

 Refutation calculus, i.e., calculus for showing unsatisfiability of a formula

#### Steps

- Data structures: formulas in clausal-normal form (Corresponds to CNF (conjunctive normal form) in propositional logic)
- One rule: use satisfiability-preserving resolution rule to reduce formulae
- Iteratively apply until empty clause (means: contradiction) is derived

 Refutation calculus, i.e., calculus for showing unsatisfiability of a formula

#### Steps

- Data structures: formulas in clausal-normal form (Corresponds to CNF (conjunctive normal form) in propositional logic)
- One rule: use satisfiability-preserving resolution rule to reduce formulae
- Iteratively apply until empty clause (means: contradiction) is derived
- There are mature and efficient resolution provers (with many ingenious optimizations)
- Efficient (but nonetheless complete) resolution procedure SLD part of Prolog

# Prenex Normal Form

- Idea of normalization
  - Transform formulas into a (syntactically) simpler form
  - preserving as much of the semantics as possible

# Prenex Normal Form

- Idea of normalization
  - Transform formulas into a (syntactically) simpler form
    - preserving as much of the semantics as possible

#### Definition

A formula of the form  $Q_1x_1, \ldots, Q_nx_n\psi$ , where  $Q_i \in \{\forall, \exists\}$  and

- $\blacktriangleright~\psi$  , the so-called the matrix, does not contain quantifiers
- no variable occurs free and bounded
- every quantifier bounds a different variable

is said to be in prenex normal form (PNF)

# Prenex Normal Form

- Idea of normalization
  - Transform formulas into a (syntactically) simpler form
  - preserving as much of the semantics as possible

#### Definition

A formula of the form  $Q_1 x_1, \ldots, Q_n x_n \psi$ , where  $Q_i \in \{\forall, \exists\}$  and

- $\blacktriangleright$   $\psi$ , the so-called the matrix, does not contain quantifiers
- no variable occurs free and bounded
- every quantifier bounds a different variable

is said to be in prenex normal form (PNF)

- Here: Simplicity ensured by un-nesting quantifiers (the main reason for un-feasibility)
- ► Here "preserve semantic" means: Ensure equivalence =

 $\phi\equiv\psi \text{ iff }\phi\models\psi \text{ and }\psi\models\phi$ 

#### Theorem

Every FOL formula has an equivalent formula in PNF

#### Theorem

Every FOL formula has an equivalent formula in PNF

Propositional Equivalences

- $\blacktriangleright \ \neg \neg \phi \equiv \phi$
- $\blacktriangleright \neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- $\blacktriangleright \ \phi \to \psi \equiv \neg \phi \lor \psi$
- $\blacktriangleright \ \phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$
- $\blacktriangleright \phi \land (\psi \lor \chi) \equiv (\phi \land \psi) \lor (\phi \land \chi)$

#### Theorem

Every FOL formula has an equivalent formula in PNF

#### Propositional Equivalences

- $\blacktriangleright \neg \neg \phi \equiv \phi$
- $\blacktriangleright \neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- $\blacktriangleright \ \phi \to \psi \equiv \neg \phi \lor \psi$
- $\blacktriangleright \ \phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$
- $\blacktriangleright \quad \phi \land (\psi \lor \chi) \equiv (\phi \land \psi) \lor (\phi \land \chi)$

#### Quantifier-specific equivalences

- $\blacktriangleright \quad \forall x\phi \equiv \neg \exists x \neg \phi$
- $\phi \equiv \exists x \phi$  (where x not free in  $\phi$ )
- $(\exists x \phi \land \psi) \equiv \exists x (\phi \land \psi)$ (where x not free in  $\psi$ )
- $(\exists x \phi \lor \psi) \equiv \exists x (\phi \lor \psi)$ (x not free in  $\psi$ )
- $\blacktriangleright \exists x \phi \lor \exists x \psi \equiv \exists x (\phi \lor \psi)$
- $\blacktriangleright \exists x \exists y \phi \equiv \exists y \exists x \phi$

- $\phi \equiv \forall x \phi$  (where x not free in  $\phi$ )
- $\blacktriangleright \quad (\forall x \phi \land \psi) \equiv \forall x (\phi \land \psi)$ 
  - (where x not free in  $\psi$ )
- $(\forall x \phi \lor \psi) \equiv \forall x (\phi \lor \psi)$ (x not free in  $\psi$ )
- $\forall x\phi \land \forall x\psi \equiv \forall x(\phi \land \psi)$
- $\blacktriangleright \quad \forall x \forall y \phi \equiv \forall y \forall x \phi$

#### Theorem

Every FOL formula has an equivalent formula in PNF

#### Propositional Equivalences

- $\blacktriangleright \neg \neg \phi \equiv \phi$
- $\blacktriangleright \neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- $\blacktriangleright \phi \to \psi \equiv \neg \phi \lor \psi$
- $\blacktriangleright \ \phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$
- $\blacktriangleright \quad \phi \land (\psi \lor \chi) \equiv (\phi \land \psi) \lor (\phi \land \chi)$

#### Quantifier-specific equivalences

- $\blacktriangleright \quad \forall x\phi \equiv \neg \exists x \neg \phi$
- $\phi \equiv \exists x \phi$  (where x not free in  $\phi$ )
- $(\exists x \phi \land \psi) \equiv \exists x (\phi \land \psi)$ (where x not free in  $\psi$ )
- $(\exists x \phi \lor \psi) \equiv \exists x (\phi \lor \psi)$ (x not free in  $\psi$ )
- $\blacktriangleright \exists x \phi \lor \exists x \psi \equiv \exists x (\phi \lor \psi)$
- $\blacktriangleright \exists x \exists y \phi \equiv \exists y \exists x \phi$

Equivalence under bounded substitutions

- $\blacktriangleright \exists x \phi \equiv \exists y (\phi[x/y])$
- where φ[x/y] is result of substituting every free x with y in φ

- $\phi \equiv \forall x \phi$  (where x not free in  $\phi$ )
- $\blacktriangleright \quad (\forall x \phi \land \psi) \equiv \forall x (\phi \land \psi)$ 
  - (where x not free in  $\psi$ )
- $(\forall x \phi \lor \psi) \equiv \forall x (\phi \lor \psi)$ (x not free in  $\psi$ )
- $\forall x\phi \land \forall x\psi \equiv \forall x(\phi \land \psi)$
- $\forall x \forall y \phi \equiv \forall y \forall x \phi$

# Substituting with Equivalent Formula

#### Theorem

Assume  $\phi \equiv \psi$  and  $\chi$  contains  $\phi$  as subformula. If  $\chi'$  results from substituting  $\phi$  with  $\psi$ , then  $\chi \equiv \chi'$ .

Proof: By structural induction.

# Satisfiably Equivalent

 Formulae in PNF are going to be transformed to formula in clausal normal form

Resulting formula are satisfiably equivalent

 $\phi \equiv_{sat} \psi$  iff:  $Mod(\phi) \neq \emptyset$  iff  $Mod(\psi) \neq \emptyset$ 

One cannot guarantee equivalence

Elimination of Exists Quantifiers: Skolemization

• Input a PNF formula  $\phi : \forall_1 x_1, \dots \forall_n x_n \exists y \psi$ 

Output φ': ∀<sub>1</sub>x<sub>1</sub>,...∀<sub>n</sub>x<sub>n</sub>ψ[y/f(x<sub>1</sub>,...,x<sub>n</sub>)] where f a fresh n-ary function symbol φ' results from skolemization out of φ, f called Skolem function (or Skolem constant if n = 0)

► Can be iteratively applied (starting with left-most ∃) until all ∃ are eliminated. Result is said to be in Skolem form and to be the skolemization of the original formula

#### Theorem

A formula and its skolemization are satisfiably equivalent.

Given formula

 $\phi = \forall x \forall y (P(x, y) \to Q(x)) \to \exists x (\forall y \neg Q(y) \to \exists y \neg P(y, x))$ 

transform it to Skolem form

 $\forall x \forall y (P(x, y) \to Q(x)) \to \exists x (\forall y \neg Q(y) \to \exists y \neg P(y, x))$ =  $\forall x \forall y (\neg P(x, y) \lor Q(x)) \rightarrow \exists x (\neg \forall y \neg Q(y) \lor \exists y \neg P(y, x))$  $\neg \forall x \forall y (\neg P(x, y) \lor Q(x)) \lor \exists x (\neg \forall y \neg Q(y) \lor \exists y \neg P(y, x))$ =  $\exists x \exists y \neg (\neg P(x, y) \lor Q(x)) \lor \exists x (\exists y \neg \neg Q(y) \lor \exists y \neg P(y, x))$ = =  $\exists x \exists y (\neg \neg P(x, y) \land \neg Q(x)) \lor \exists x (\exists y \neg \neg Q(y) \lor \exists y \neg P(y, x))$ =  $\exists x \exists y (P(x, y) \land \neg Q(x)) \lor \exists x (\exists y Q(y) \lor \exists y \neg P(y, x))$  $\exists x_1 \exists y_1 (P(x_1, y_1) \land \neg Q(x_1)) \lor \exists x_2 (\exists y_2 Q(y_2) \lor \exists y_3 \neg P(y_3, x_2))$ = =  $\exists x_1 \exists y_1 (P(x_1, y_1) \land \neg Q(x_1)) \lor \exists x_2 \exists y_2 (Q(y_2) \lor \exists y_3 \neg P(y_3, x_2))$  $\exists x_1 \exists y_1 (P(x_1, y_1) \land \neg Q(x_1)) \lor \exists x_2 \exists y_2 \exists y_3 (Q(y_2) \lor \neg P(y_3, x_2))$ =  $\exists x_2 \exists y_2 \exists y_3 (\exists x_1 \exists y_1 (P(x_1, y_1) \land \neg Q(x_1)) \lor (Q(y_2) \lor \neg P(y_3, x_2)))$ =  $\exists x_2 \exists y_2 \exists y_3 \exists x_1 \exists y_1 ((P(x_1, y_1) \land \neg Q(x_1)) \lor (Q(y_2) \lor \neg P(y_3, x_2)))$ =  $((P(d, e) \land \neg Q(d)) \lor (Q(b) \lor \neg P(c, a)))$  $\equiv_{sat}$ 

# Clausal Normal Form

#### Definition

 $\psi$  is in clausal normal form (CLNF) iff it is in Skolem form, contains no free variables, and its matrix is in CNF

# Clausal Normal Form

#### Definition

 $\psi$  is in clausal normal form (CLNF) iff it is in Skolem form, contains no free variables, and its matrix is in CNF

#### Definition

A quantifier-free formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses

- Clause: Disjunction of literals
- Literal: atomic FOL formula or negated atomic FOL formula

Example CNF: 
$$\underbrace{(R(a,x) \lor \neg P(x))}_{clause} \land \underbrace{(\neg P(b) \lor Q(y))}_{clause}$$

# Clausal Normal Form

#### Definition

 $\psi$  is in clausal normal form (CLNF) iff it is in Skolem form, contains no free variables, and its matrix is in CNF

#### Definition

A quantifier-free formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses

- Clause: Disjunction of literals
- Literal: atomic FOL formula or negated atomic FOL formula

Example CNF: 
$$(R(a, x) \lor \neg P(x)) \land (\neg P(b) \lor Q(y))$$
  
*clause*
Theorem

For every  $\psi$  there exists a satisfiably equivalent  $\psi'$  in CLNF

## Resolution Idea

Observation used for resolution:

 $(\alpha \lor \phi) \land (\neg \alpha \lor \psi) \land \chi \equiv_{sat} (\phi \lor \psi) \land \chi$ 

where

{α, ¬α} is a pair of complementary literals
 φ, ψ, χ arbitrary formulae

 Apply this equivalence iteratively on the matrix of formula in CLNF until empty clause (i.e. contradiction) is derived

## Resolution Idea

Observation used for resolution:

 $(\alpha \lor \phi) \land (\neg \alpha \lor \psi) \land \chi \equiv_{sat} (\phi \lor \psi) \land \chi$ 

where

{α, ¬α} is a pair of complementary literals
 φ, ψ, χ arbitrary formulae

 Apply this equivalence iteratively on the matrix of formula in CLNF until empty clause (i.e. contradiction) is derived

- More convenient set notation for clauses
  - Clause  $L_1 \vee \cdots \vee L_n$  written as set  $\{L_1, \ldots, L_n\}$

►  $\overline{L}_i$  is complement of  $\underline{L}_i$ E.g.:  $\overline{R(a)} = \neg R(a), \ \overline{\neg R(a)} = R(a)$ 

# Lazy Proof Strategy by Unification

- ► Want to identify literals as complementary using unification
- Substitution  $\sigma$ : function from variables to terms
- $\sigma$  unifies literals  $L_1, L_2$  iff  $L_1 \sigma = L_2 \sigma$
- Example

• 
$$L_1 = P(x, y), L_2 = P(g(z), a)$$
  
•  $\sigma_1 = [x/g(z), y/a]$ 

# Lazy Proof Strategy by Unification

- Want to identify literals as complementary using unification
- Substitution  $\sigma$ : function from variables to terms
- $\sigma$  unifies literals  $L_1, L_2$  iff  $L_1 \sigma = L_2 \sigma$
- Example
  - $L_1 = P(x, y), L_2 = P(g(z), a)$ •  $\sigma_1 = [x/g(z), y/a]$

Laziness: Find a most general unifier (mgu)

- $\sigma_1$  more general than  $\sigma_2 = [x/g(a), y/a, z/a]$ .
- $\sigma$  is an mgu iff for all unifiers  $\sigma'$  there is substitution  $\sigma''$  such that  $\sigma' = \sigma \circ \sigma''$ .

# Lazy Proof Strategy by Unification

- Want to identify literals as complementary using unification
- Substitution  $\sigma$ : function from variables to terms
- $\sigma$  unifies literals  $L_1, L_2$  iff  $L_1 \sigma = L_2 \sigma$
- Example
  - $L_1 = P(x, y), L_2 = P(g(z), a)$ •  $\sigma_1 = [x/g(z), y/a]$
- Laziness: Find a most general unifier (mgu)
  - $\sigma_1$  more general than  $\sigma_2 = [x/g(a), y/a, z/a]$ .
  - $\sigma$  is an mgu iff for all unifiers  $\sigma'$  there is substitution  $\sigma''$  such that  $\sigma' = \sigma \circ \sigma''$ .

## Theorem (Robinson)

Every unifyable finite set of literals has a mgu.

# Resolution Step

## Definition

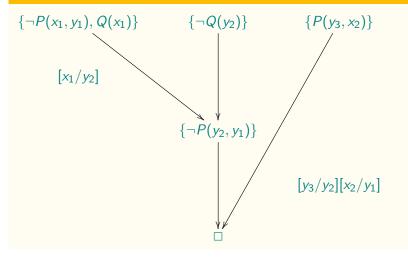
Given clauses  $Cl_1$ ,  $Cl_2$ , the clause RCl is a resolvent of  $Cl_1$ ,  $Cl_2$  iff

- 1. There are variable renamings  $\sigma_1, \sigma_2$  s.t.  $Cl_1\sigma_1$  and  $Cl_2\sigma_2$  contain different variables.
- 2. There is a literal  $L_1 \in Cl_1\sigma_1$  and  $L'_1 \in Cl_2\sigma_2$  s.t.  $\{L_1, \overline{L'}_1\}$  unifiable with mgu  $\sigma$
- 3.  $RCI = (CL_1\sigma_1 \setminus \{L_1\} \cup CL_2\sigma_2 \setminus \{L'_1\})\sigma$

A convenient graphical notation

 $Cl_1$ Ch

### Example (Resolution)



# Correctness and Completeness

## Definition

### A calculus C is

- correct w.r.t. entailment iff: Whenever  $\Phi \vdash_C \psi$ , then  $\Phi \vDash \psi$
- complete w.r.t. entailment iff: Whenever  $\Phi \vDash \psi$ , then  $\Phi \vdash_C \psi$
- Correctness means: you can prove entailments only that really hold
- Completeness means: Whenever an entailment holds then there is also a proof for it. (Proved by ingenious Gödel)

### Theorem

All aforementioned calculi are correct and complete

# **Resolution** Theorem

- Let  $\psi$  be a clause set
- $Res(\psi) = \psi \cup \{RCI \mid RCI \text{ is a resolvent of clauses in } \psi\}$
- $\blacktriangleright R^{i+1}(\psi) = Res(Res^{i}(\psi))$
- $Res^*(\psi) = \bigcup Res^i(\psi)$

### Theorem

Every  $\phi$  in CLNF with matrix  $\psi$  is unsatisfiable iff  $\Box \in \text{Res}^*(\psi)$ (or equivalently: if there is a derivation graph ending in  $\Box$ .)

- This shows correctness and completeness w.r.t. unsatisfiability testing
- But entailment can be reduced to it (remember wake-up question).
- Possible proof based on Herbrand models

# Optional Slide: Completeness and Correctness for Resolution

Herbrand structures blur syntax-semantic distinctions.

- Given  $\psi$  in Skolem form.
- Herbrand terms HT(ψ): all possible closed terms from function symbols (and constants) in ψ
- Herbrand structure  $HS(\psi)$ 
  - **b** Domain:  $HT(\psi)$
  - ► Interpretation of function symbols:  $f^{HS(\psi)}(t_1,...,t_n) = f(t_1,...,t_n)$
  - Relation symbols arbitrarily

### Theorem

## A formula is satisfiable iff it (its CLNF) has a Herbrand model

Construction of Herband model: Interpret relation symbols R as R<sup>HS(ψ)</sup>(t<sub>1</sub>,...,t<sub>n</sub>) if I(t<sub>1</sub>),...,I(t<sub>n</sub>) ∈ R<sup>I</sup> for satisfying I.

# Optional Slide: Herbrand Expansion

- Given  $\psi$  in Skolem form  $\forall x_1, \ldots, \forall x_n \phi$
- $HE(\psi)$ : All "groundings" of the matrix with Herbrand terms

 $\{\psi[x_1/t_1,\ldots,x_n/t_n] \mid t_i \in HS(\psi)\}$ 

## Theorem (Herbrand)

Skolem formula  $\psi$  is satisfiable iff a finite subset of  $HE(\psi)$  is satisfiable

## Proof idea

- $\blacktriangleright$  Show that  $\psi$  is satisfiable iff it has a Herbrand model
- Show that  $\psi$  has a Herbrand model iff  $HE(\psi)$  is satisfiable
- Use compactness of propositional logic (discussed later)

# But wait ....

- ► We have shown completeness of calculi
- Doesn't this mean that we have a decision procedure for entailment (unsatisfiability)?

# But wait....

- We have shown completeness of calculi
- Doesn't this mean that we have a decision procedure for entailment (unsatisfiability)?

► NO!

## Theorem

Deciding validity (unsatisfiability, entailment) is un-decidable

 But semi-decidability holds: if formula is valid you will eventually find a derivation; if formula not valid you won't know

# **Turing Machines**

- One of the first precise computation models are Turing machines (TMs)
- Specifies precisely what it means to solve a problem algorithmically
  - Starting from a finite input (encoding)
  - give after a (finite number) of discrete steps
  - an encoding of the desired output

# **Turing Machines**

- One of the first precise computation models are Turing machines (TMs)
- Specifies precisely what it means to solve a problem algorithmically
  - Starting from a finite input (encoding)
  - give after a (finite number) of discrete steps
  - an encoding of the desired output
- Other alternative computation models: recursive functions, lambda calculus, register machines
- These computation models have been shown to be equivalent

### Church Turing Thesis

What is intuitively computable is computable by a Turing machine

# **Turing Machines**

- One of the first precise computation models are Turing machines (TMs)
- Specifies precisely what it means to solve a problem algorithmically
  - Starting from a finite input (encoding)
  - give after a (finite number) of discrete steps
  - an encoding of the desired output
- Other alternative computation models: recursive functions, lambda calculus, register machines
- These computation models have been shown to be equivalent

### Church Turing Thesis

What is intuitively computable is computable by a Turing machine

VIDEO: A Lego<sup>TM</sup> Turing machine https://www.youtube.com/watch?v=FTSAiF9AHN4

# Semi-decidability

### Theorem

FOL entailment is semi-decidable, i.e., there is a TM s.t.

- If  $\Phi$  and  $\psi$  are inputs with  $\Phi \vDash \psi$ , then TM stops with yes
- otherwise it stops with no or it does not stop.

### Proof sketch:

- ► Given a calculus C with derivation relation ⊢<sub>C</sub> complete and correct for entailment
- ► The possible inferences starting from Φ make up a tree (with finite set of children for every node)
  - The root (level 0) is  $Encode(\Phi, \psi)$
  - The finitely many children at level n + 1 are those D<sub>i</sub> that are generated from children at level up to n
  - ▶ Do a breadth first search until  $Encode(\Phi \vDash \psi)$  appears

# Why is FOL so Important?

# Why is FOL so Successful (w.r.t.) CS

- Theoretical Answer: FOL is most expressive logic w.r.t. relevant properties (Lindström Theorems)
   today
- Practical Answer: Has proven useful for query answering on SQL DBs and much more
   mext lectures

# Compactness in Topology

"Ah, Kompaktheit, eine wundervolle Eigenschaft" (Jaenich 2008, S.24)

Compactness notion stems from mathematical field topology

Topologies 𝔅 = (X, 𝒪)
Domain X and open sets 𝒪 ⊆ Pot(X) with
Every union of open sets is open
Every finite intersection is open
X and Ø are open

## • Open covering of X Family of open sets $\{U_i\}_{i \in I}$ with $U_i \in \mathcal{O}$ and $\bigcup_{i \in I} U_i = X$

Lit: K. Jänich. Topologie. Springer, 8th edition, 2008.

# Compactness in Topology

## Definition

 $(X, \mathcal{O})$  is compact iff every open covering of X has a finite sub-covering.

- How compactness is used to infer global properties from local properties
  - Let *P* be a property such that if open U, V have it, then also  $U \cup V$  has it.
  - ► Then: If for every point a ∈ X there is an open U<sub>a</sub> having P, then X has P.

## Wake-Up Exercise

Prove the correctness of this type of reasoning from local to global within compact spaces!

## Wake-Up Exercise

Prove the correctness of this type of reasoning from local to global within compact spaces!

#### Proof

- Assume that if open U, V have P, then also  $U \cup V$  has it. (\*)
- Assume further that for all a there is  $U_a$  having P.
- $\{U_a\}_{a \in X}$  is a covering of X.
- Because of compactness there is a finite covering  $U_{a_1} \cup \cdots \cup U_{a_n} = X$ .
- Because of (\*) it follows that U<sub>a1</sub>,..., U<sub>an</sub> has P, i.e., X has P.

## Definition ((Logical) Compactness)

A logic  $\mathcal{L}$  has the compactness property if the following holds: For all sets  $\Phi$  of formulae in  $\mathcal{L}$ : If every finite subset of  $\Phi$  has a model, then  $\Phi$  has a model.

### Definition ((Logical) Compactness)

A logic  $\mathcal{L}$  has the compactness property if the following holds: For all sets  $\Phi$  of formulae in  $\mathcal{L}$ : If every finite subset of  $\Phi$  has a model, then  $\Phi$  has a model.

Equivalent definition:

If  $\Phi \vDash \psi$ , then already  $\Phi_0 \vDash \psi$  for a finite  $\Phi_0$ 

 Intuitively: Infiniteness adds not additional expressive power for FOL

## Definition ((Logical) Compactness)

A logic  $\mathcal{L}$  has the compactness property if the following holds: For all sets  $\Phi$  of formulae in  $\mathcal{L}$ : If every finite subset of  $\Phi$  has a model, then  $\Phi$  has a model.

Equivalent definition:

If  $\Phi \vDash \psi$ , then already  $\Phi_0 \vDash \psi$  for a finite  $\Phi_0$ 

 Intuitively: Infiniteness adds not additional expressive power for FOL

## Theorem

FOL has the compactness property.

- Logical compactness derived from topological notion
- FOL compactness is a corollary of Tychonoff's Theorem ("Any product of compact topological spaces is compact")

# Application: Reachability is not FOL Expressible

## Query $Q_{reach}$ : List all cities reachable from Hamburg!

 $\begin{aligned} Q_{reach}(x) &= Flight(Hamburg, x) \lor \\ &\exists x_1 Flight(Hamburg, x_1) \land Flight(x_1, x) \lor \\ &\exists x_1, x_2 Flight(Hamburg, x_2) \land Flight(x_2, x_1) \land Flight(x_1, x) \lor \ldots \end{aligned}$ 

## Theorem

Reachability is not expressible in FOL.

## Proof

- ► For contradiction assume there is FOL φ<sub>reach</sub>(x, y) expressing reachability over edges E
- Consider FOL formulae  $\phi_n$ : "There is an *n*-path from *c* to *c*"
- Let  $\Psi = \{\neg \phi_i \mid i \in \mathbb{N}\} \cup \{\phi_{reach}(c, c')\}$
- $\blacktriangleright$   $\Psi$  is unsatisfiable, but every finite subset is satisfiable  $\emph{t}$

# Application: Infinitesimal Probabilities

- Over continuous domains "low-dimensional" events have probability 0
- Conditional probability P(B|A) undefined for P(A) = 0
- But P( point on east hemisphere | point on equator) should be 1/2 (and not undefined)

 $\implies$  Need infinitesimal positive probability weights

- Consider  $T = Th(\mathbb{R}) \cup \{a < \Omega \mid a \text{ is name of a real number}\}$
- Every finite subset of T satisfiable; with compactness T is satisfiable

## ► $1/\Omega$ infinitesimal element

Lit: J. Weisberg. Varieties of bayesianism. In D. M. Gabbay, S. Hartmann, and J. Woods, editors, Inductive Logic, volume 10 of Handbook of the History of Logic, pages 477–551. North-Holland, 2011.

Lit: A. Robinson. Non-standard Analysis. Princeton Landmarks in Mathematics. Princeton University Press, 1996.

# FOL has the Löwenheim-Skolem-Property

## Theorem (Downward Löwenheim-Skolem-Property)

Every satisfiable, countable set of FOL sentences (theory) has a countable model.

- Intuitively: If you can talk with countably many sentences about structures, then there is a countable model verifying this fact.
- Can be shown by Herbrand expansions
- Leads to Skolem's paradox
  - You can formalize mathematics within countable FOL theory, namely, Zermelo-Fränkel Set Theory (ZFC)
  - $ZFC \models$  "there are uncountable sets".

# Why FOL is so Important: Lindström Theorems

## Theorem (First Lindström Theorem)

There is no (regular) logic that is more expressive than FOL and fulfills compactness and Löwenheim-Skolem Property

- Meta theorem
- Intuitively: FOL is the most expressive (regular) logic fulfilling compactness and the Löwenheim-Skolem Property

## Regularity of logic

- Contains boolean operators
- Allows relativizing formula to domains
- Allows substituting constants and function symbols by relation symbols

# Limits of FOL

Positive: FOL can be used for effective query answering on <u>one</u> model (in data complexity)!

### Negative

- Entailment problem, satisfiability etc. not decidable
   Calls for restriction to feasible fragments
- Expressivity not sufficient (no recursion)
  - $\implies$  Calls for extensions (and restrictions)