
Özgür L. Özçep

Data Integration

Lecture 5
7 May 2020

Informationssysteme CS4130
(Summer 2020)

References
I Textbook on data integration (in German)

Lit: U. Leser and F. Naumann. Informationsintegration: Architekturen und

Methoden zur Integration verteilter und heterogener Datenquellen.

Dpunkt-Verl., Heidelberg, 2007.

I Another newer textbook
Lit: A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

Slides https://research.cs.wisc.edu/dibook/

I 2015 Course by L. Libkin on Data integration and Exchange
http://homepages.inf.ed.ac.uk/libkin/teach/
dataintegr15/

I PODS 2002 tutorial by Lenzerini on data integration
http://www.dis.uniroma1.it/~lenzerin/homepagine/
talks/TutorialPODS02.pdf

2 / 48

https://research.cs.wisc.edu/dibook/
http://homepages.inf.ed.ac.uk/libkin/teach/dataintegr15/
http://homepages.inf.ed.ac.uk/libkin/teach/dataintegr15/
http://www.dis.uniroma1.it/~lenzerin/homepagine/talks/TutorialPODS02.pdf
http://www.dis.uniroma1.it/~lenzerin/homepagine/talks/TutorialPODS02.pdf

Data Integration: Motivation

Data Integration (DI): Main Setting

σ1 DB source schema σ1

σ2 DB source schema σ2

σ = σ1 ∪ σ2

τ query Q

target schema τmapping
rules Mστ

1. Mode: Materialization/QA by Extract-Transform-Load (ETL)

(not in the focus here in this lecture)

materialized

τ DB

2. mode: Federation/QA by rewriting

(considered in this lecture)

virtual

τ DB

4 / 48

Data Integration (DI): Challenges

σ1 DB source schema σ1

σ2 DB source schema σ2

τ query Q

target schema τmapping
rules Mστ

virtual

τ DB

Solution: Is there a τ DB
fitting the rules?

Semantics of QA: What answers are intended?
certain answers

Rewriting algorithms: How to calculate answers?

Types and semantics of mappings

5 / 48

Short notice on method 1

I Usually built bottom-up (from sources) to global schema

I Used in data warehousing

I Still the most used approach in industry

I But usually: transformation ad hoc (not even w.r.t. declarative
mappings)

I No well-founded theory in industry
I In contrast: Data exchange (see next two lectures)

6 / 48

Formalization and Basic Notions

Formalization

Definition (Lenzerini 2002)

A vector (τ, σ,Mστ ,Mτ) consisting of
I a global (alias target) schema τ
I a source (alias local) schema σ
I Mστ = { source-to-target rules }
I Mτ = { target constraints }

is called a data integration system DI

I Lenzerini calls Mστ a mapping.
I Source schema σ is the union of the local schemas

Logically: consider a single σ-DB consisting of disjoint unions
of local σi DBs

I Some federation aspects dealt under theme complex: view
rewriting

8 / 48

Convention
For ease of exposition, we will neglect target dependencies Mτ , i.e.
let Mτ = {} in this lecture. Will deal with them in next lecture.
(Makes definitions easier and lets us focus on rewriting aspects)

9 / 48

Source-Target-Dependencies Mστ

I Source-Target-Dependencies may be arbitrary FOL formula
I Usually they have a simple form (decidability!)

Definition
A source-to-target tuple-generating dependencies (st-tgds) is a FOL
formula of the form

∀~x~y(φσ(~x , ~y) −→ ∃~z ψτ (~x , ~z))

where
I φσ is a conjunction of atoms over source schema σ
I ψτ is a conjunction of atoms over target schema τ

I So in particular, antecedens and succedens conjunctive queries
(CQ)

I CQs “well-behaved”

10 / 48

Reminder: Conjunctive Queries (CQs)

I Class of sufficiently expressive and feasible FOL queries of form

ans(~x) = ∃~y
(
α1(~x1, ~y1) ∧ · · · ∧ αn(~xn, ~yn)

)
where
I αi (~xi , ~yi) are atomic FOL formula and
I ~xi variable vectors among ~x and ~yi variables among ~y

I Corresponds to SELECT-PROJECT-JOIN Fragment of SQL

Example (Conjunctive Query from Flight Domain)

ans(src, dest, airl , dep) = ∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

11 / 48

Reminder: Conjunctive Queries (CQs)

Theorem

I Answering CQs is NP-complete w.r.t. combined complexity
(Chandra,Merlin 1977)

I Subsumption test for CQs is NP complete
I Answering CQs is in AC0 (and thus in P) w.r.t. data complexity

Lit: A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In: Proceedings of the Ninth Annual ACM Symposium on

Theory of Computing, STOC’77, pages 77–90, New York, NY, USA, 1977. ACM.

12 / 48

Wake-Up Question

Are st-tgds Datalog rules?

I No, as Datalog rules do not allow existentials in the head of
the query

I But there is the extended logic called Datalog+/−
I Has been investigated in last years also in context of

ontology-based data access (see net lectures)
I Provides many interesting sub-fragments

Lit: A. Calì, G. Gottlob, and T. Lukasiewicz. Datalog+/-: A unified approach to

ontologies and integrity constraints. In Proceedings of the 12th International

Conference on Database Theory, pages 14–30. ACM Press, 2009.

13 / 48

Prominent Tuple Generating Dependencies

I Theorems of Euclids
“Elements” expressible as
tuple generating
dependencies

Lit: J. Avigad, E. Dean, J. Mumma: “A Formal System for Euclid’s Elements”, The

Review of Symbolic Logic, 2009

14 / 48

Semantics for Data Integration Systems: Solutions

Definition
Given: A data integration system DI with mapping rules Mστ and
a σ-instance S

A τ -instance T is called a solution for S under DI iff
(S,T) satisfies all rules in Mστ , for short: (S,T) |= Mστ .

I (S,T) |= Mστ iff S ∪ T |= Mστ where
I S ∪ T is the union of the instances S,T: Structure containing

all relations from S and T with domain the union of domains
of S and T

I well defined because schemata are disjoint

I SolDI(S): Set of solutions for S under DI

15 / 48

Certain answering

I There may be more than one solution.
I What then is the semantics for query answering?

Definition (Certain answers (informally))

certDI(Q,S) = intersection of answers over all possible solutions

Definition (Certain answers (formally))

certDI(Q,S) =
⋂

T∈SolDI(S)Q(T)

I General approach for dealing with incomplete information
I Certain answers on incomplete DBs (see DE lecture)
I Certain answers in inconsistent DBs (see Database Repairs

lecture)
I Certain answers in OBDA
I Partial (full meet) revision (See belief revision lecture)

16 / 48

Types of Integration: LAV and GAV

Various Approaches for Virtual Data Integration

Form of rules in Mστ leads to different approaches
I Source-centric/local-as-view (LAV): sources “defined” in terms

of global schema

I Global-schema-centric/global-as-view (GAV): global schema
defined in terms of sources

I Mixed approach: GLAV

I Peer-to-peer/P2P: mapping without global schema
Focus of this lecture

18 / 48

Example (Movie Scenario)

I τ : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

I σ1: r1(Title,Year ,Director) european directors since 1960
I σ1: r2(Title,Critique) critiques since 1990

I Q: Title and critique of movies since 1998

∃D.movie(T , 1998,D) ∧ review(T ,R)

19 / 48

GAV Approach

Definition
A GAV-DI has rules in Mστ for all relations Rτ ∈ τ of the form
(called GAV rules):
I ∀~x~y(φσ(~x , ~y) −→ ∃~z Rτ (~x , ~z)) (sound)
I ∀~x~y(φσ(~x , ~y)←→ ∃~z Rτ (~x , ~z)) (exact)

I Given a source database, Mστ provides direct information
about which data satisfy the elements of the global schema.

I Relations in τ are views, and queries are expressed over the
views.

I Simple evaluation by unfolding and running query over the
data satisfying the global relations (as if single DB)

20 / 48

Example (GAV example)

I τ : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

I σ1: r1(Title,Year ,Director) european directors since 1960
I σ2: r2(Title,Critique) critiques since 1990
I Q: ∃D.movie(T , 1998,D) ∧ review(T ,R)

I GAV rules

r1(T ,Y ,D) → movie(T ,Y ,D)

r1(T ,Y ,D) → european(D)

r2(T ,R) → review(T ,R)

I Lhss are views over the source
I Note: In second rule only attribute D projected
∀X ,∀YA(X ,Y)→ B(X) ≡ ∀X (∃YA(X ,Y)→ B(X).

21 / 48

Example (GAV example (continued))

I τ : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

I σ1: r1(Title,Year ,Director) european directors since 1960
I σ2: r2(Title,Critique) critiques since 1990
I Q: ∃D.movie(T , 1998,D) ∧ review(T ,R)

I GAV rules

r1(T ,Y ,D) → movie(T ,Y ,D)

r1(T ,Y ,D) → european(D)

r2(T ,R) → review(T ,R)

I Q unfolded into

∃D.r1(T , 1998,D) ∧ r2(T ,R)

22 / 48

LAV Approach

Definition
A LAV-DI has rules in Mστ for all relations Rσ ∈ σ of the form
I ∀~x~y(Rσ(~x , ~y) −→ ∃~z ψτ (~x , ~z)) (sound)
I ∀~x~y(Rσ(~x , ~y)←→ ∃~z ψτ (~x , ~z)) (exact)

I Mapping Mστ and the source database S do not provide
direct information about which data satisfy the global schema.

I Sources are views, and we have to answer queries on the basis
of the available data in the views. =⇒ view rewriting

23 / 48

Example (LAV example)

I τ : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

I σ1: r1(Title,Year ,Director) european directors since 1960
I σ2: r2(Title,Critique) critiques since 1990
I Q: ∃D.movie(T , 1998,D) ∧ review(T ,R)

I LAV rules

r1(T ,Y ,D) → movie(T ,Y ,D) ∧ european(D) ∧ Y ≥ 1960
r2(T ,R) → movie(T ,Y ,D) ∧ review(T ,R) ∧ Y ≥ 1990

I Q has to be rewritten in order to re-express target atoms with
source atoms

Qrew (T ,R) : ∃D.r2(T ,R) ∧ r1(T , 1998,D)

24 / 48

GAV-LAV Comparison

I GAV
I Quality depends on how well sources represented in target

schema by mapping
I Have to reconsider global schema when sources changed/added
I Unfolding-based query processing

I LAV
I Quality depends on how well sources represented
I High modularity and extensibility (reconsider only the

definition the source relation which may have changed)
I Query processing needs reasoning (rewriting)

25 / 48

The Full Picture of Different Integration Scenarios

I Parameters

I MT: Mapping Type
(GAV or LAV)

I E: Exactness
(sound or complete)

I TC: Target-Constraints?
(yes or no)

I τ Query language
(not mentioned)

I Outcomes

I INCM: Incomplete
answers (yes, no)

I INCN: Inconsistency of
target DBs (yes, no)

TC MT E INCM INCN
no GAV exact no no
no GAV sound yesa/no no
no LAV sound yes no
no LAV exact yes yes
yes GAV exact no yes
yes GAV sound yes yes
yes LAV sound yes yes
yes LAV exact yes yes

aFor τ queries without negation

26 / 48

View Rewriting

View Rewriting

I We saw that QA under LAV requires rewriting
I But even under GAV may be needed if sources only accessible

via views
I General field of rewriting w.r.t. views
I Relevant problem in

I Data warehousing
I Query optimization
I Physical independence
I Accessibility restriction/privacy aspects

I Problem: Generally (for arbitrary FOL queries) not decidable
whether (exact/sound) rewriting possible
=⇒ Consider CQs

28 / 48

Why undecidable?

I Let Q be arbitrary FOL query
I Consider exact LAV
I τ is primed copy of σ
I Mστ identify relations in σ with primed copies in τ
I No views at all given.
I Answering in this setting means answering independently of

data in source.
I Can only happen if DQ

1 = DQ
2 for all τ -DBs D1,D2

I But one knows that deciding DQ
1 = DQ

2 for arbitrary FOL is
undecidable

29 / 48

Definition (Query rewriting w.r.t views (intuition))

I Given: Query Q,
View definitions V1, . . . ,Vn

I a rewriting Qrew is a query that refers to the views only (and
possibly interpreted relations)
An equivalent rewriting additionally fulfils Q ≡ Qrew .

30 / 48

Definition (Query rewriting w.r.t views (formal))

I Schema σ of relations with arities ni
I Queries V1, . . . ,Vk over schema τ with arities ni

Assume those views are CQs
I Input query Q over τ

I Query Qrew over σ is an equivalent rewriting of Q iff for all
τ -DBs:

DQ = Qrew (V1(D) . . .Vn(D))

I Query Qrew over σ is a maximally contained rewriting of Q iff
for all τ -DBs
I DQ ⊇ Qrew (V1(D) . . .Vn(D)) and
I Qrew is maximal in this property, i.e.

if DQ ⊇ Q ′
rew (V1(D) . . .Vn(D)) then Q ′

rew ⊆ Qrew .

31 / 48

Example (Equivalent rewriting 1)

I DB: {Movie(ID, title, year , genre),Director(ID, director),
Actor(ID, actor)}

I Q(T ,Y ,D) : Movie(I ,T ,Y ,G) ∧ Y ≥ 1950 ∧ G = comedy∧
Director(I ,D) ∧ Actor(I ,D)

I V1(T ,Y ,D) : Movie(I ,T ,Y ,G) ∧ Y ≥ 1940 ∧ G = comedy∧
Director(I ,D) ∧ Actor(I ,D)

I Because V1 ⊇ Q we get equivalent rewriting

Qrew : V1(T ,Y ,D) ∧ Y ≥ 1950

32 / 48

Example (Equivalent Rewriting 2)

I DB: {Movie(ID, title, year , genre),Director(ID, director),
Actor(ID, actor)}

I Q(T ,Y ,D) : Movie(I ,T ,Y ,G) ∧ Y ≥ 1950 ∧ G = comedy∧
Director(I ,D) ∧ Actor(I ,D)

I V2(I ,T ,Y) : Movie(I ,T ,Y ,G) ∧ Y ≥ 1950 ∧ G = comedy

I V3(I ,D) : Director(I ,D) ∧ Actor(I ,D)

I No subsumption relation for views but nonetheless equivalent
rewriting

Qrew : V2(I ,T ,Y) ∧ V3(I ,D)

33 / 48

Example (Maximally Contained Rewriting)

I DB: {Movie(ID, title, year , genre),Director(ID, director),
Actor(ID, actor)}

I Q(T ,Y ,D) : Movie(I ,T ,Y ,G) ∧ Y ≥ 1950 ∧ G = comedy∧
Director(I ,D) ∧ Actor(I ,D)

I V4(I ,T ,Y) : Movie(I ,T ,Y ,G) ∧ Y ≥ 1960 ∧ G = comedy

I V3(I ,D) : Director(I ,D) ∧ Actor(I ,D)

I Only maximally-contained rewriting possible

Qrew : V4(I ,T ,Y) ∧ V3(I ,D)

34 / 48

Naive query rewriting algorithm

I Input
I Conjunctive queries V1, . . . ,Vn over τ
I Query Q over τ

I Output: equivalent or maximally contained Qrew

I Procedure
I Guess Q ′ over views
I Unfold Q ′ in terms of views
I Check if one unfolding contained in Q

I If one unfolding U equivalent with Q, then Qrew = U

I Otherwise Qrew =
∨
Unfoldings(Q ′)

I Need to test equivalence: Feasible for CQs
I Need to constrain search space: 1) theoretical bound, 2) prune

search space (Bucket, MiniCon, inverse rules)

35 / 48

Theoretical Bound

Theorem

I If there is an equivalent rewriting (maximally contained
rewriting, resp.) of Q,
then there is one with at most n subgoals where n is number
of atoms in Q (all CQs in disjunction have less than n atoms,
resp.)

I Finding rewriting is NP-complete

36 / 48

Bucket Algorithm: Idea

1. Create a bucket for each subgoal g in query Q

Bucket contains view atoms contributing to g

2. Create rewritings from the cartesian product of buckets.

37 / 48

An Example Run

Example

I Q(ID,Dir): Movie(ID, title, year , genre) ∧ Revenues(ID, amount)∧
Director(ID, dir) ∧ amount ≥ 100M

I V1(I ,Y) : Movie(I ,T ,Y ,G) ∧ Revenues(I ,A) ∧ I ≥ 5000 ∧ A ≥ 200M
I V2(I ,A) : Movie(I ,T ,Y ,G) ∧ Revenues(I ,A)

I V3(I ,A) : Revenues(I ,A) ∧ A ≤ 50M
I V4(I ,D,Y): Movie(I ,T ,Y ,G) ∧ Director(I ,D) ∧ I ≤ 3000

I Atoms that can contribute to Movie(ID, title, year , genre)

V1(ID, year),V2(ID,A
′),V4(ID,D

′, year)

I Similarly for Revenues(ID, amount) and Director(ID, dir)

38 / 48

Example (First Candidate rewriting)

Movie(ID, title, year , genre) Revenues(ID, amount) Director(ID, dir)

V1(ID, year) V1(ID,Y ′) V4(ID,Dir ,Y ′)
V2(ID,A′) V2(ID, amount)
V4(ID,D′, year)

Consider first triple as potential rewriting
I first atom redundant,
I second and third exclusive (so can neglect rewriting Q ′1)
I Q ′1(ID, dir) = V1(ID, year) ∧V1(ID, y

′) ∧ V4(ID, dir , y
′)

39 / 48

Example (Second candidate rewriting)

Movie(ID, title, year , genre) Revenues(ID, amount) Director(ID, dir)

V1(ID, year) V1(ID,Y ′) V4(ID,Dir ,Y ′)
V2(ID,A′) V2(ID, amount)
V4(ID,D′, year)

I Q ′
2(ID, dir) = V2(ID,A

′)

becomes redundant︷ ︸︸ ︷
V2(ID,A

′)
∧V2(ID, amount) ∧ V4(ID, dir , y

′)

I Q ′′
2 (ID, dir) = V2(ID, amount) ∧ V4(ID, dir , y

′) ∧ amount ≥ 100M;

40 / 48

Step 1: Create Buckets Procedure
Input : CQ Q(~X) = R1(~X), . . . , Rn(~Xn), c1, . . . , cl ; set V of CQ views
Output: list of buckets
forall i ∈ [n] do

Bucketi := ∅
end
forall i ∈ [n] do

foreach V ∈ V do
//Let V be of form V (~Y) = S1(~Y1), . . . , Sm(~Ym), d1, . . . , dk
forall j ∈ [m] do

if Ri = Sj then
// Let ψ be the mapping defined on the vars(V) as: Let y be the bth variable
in ~Yi and x be the bth variable in ~Xi

if x ∈ ~X and y /∈ ~Y then
ψ undefined, j + +

else if y ∈ ~Y then
ψ(y) = x

else
ψ(y) is a new variable not in Q or V

endif
Q′ := R1(~X1), . . . , Rn(~Xn), c1, . . . , cn,
S1(ψ(~Y1)), . . . , Sm(ψ(~Ym)), ψ(d1), . . . ψ(dk)

if Q′ is satisfiable then
Add ψ(V) to Bucketi

endif
endif

end
end

end
return Bucket1, . . . , Bucketn

41 / 48

Step 2: Creating rewritings (exact or max. contained)

Consider each Q ′ ∈ Bucket1 × · · · × Bucketn
I For equivalent rewriting

I If Q ≡ Q ′ or can add interpreted atoms C s.t. Q ∧ C ≡ Q ′

then Qrew := Q is a potential rewriting
I For maximally contained rewriting construct UCQ Qrew

rewriting considering each conjunctive rewriting Q ′

I If Q ′ ⊆ Q, then Qrew := Qrew ∨ Q ′

I If there is an interpreted atom C that can be added to Q ′ s.t.
Q ′ ∧ C ⊆ Q then Qrew := Qrew ∨ (Q ′ ∧ C)

I If Q ′ 6⊆ Q but there is homomorphism ψ on head variables of
Q ′ s.t. ψ(Q ′) ⊆ Q, then Qrew := Qrew ∨ ψ(Q ′)

42 / 48

Other Algorithms

I Bucket algorithms do not consider interaction of goals

Q(title, year , dir) = Movie(ID, title, year , genre),

Director(ID, dir),Actor(ID, dir)

V5(D,A) = Director(I ,D),Actor(I ,A)

I Variable I not in head of V5 hence V5 not usable in rewriting
=⇒ mitigated in MiniCon

I Logical approach with inverse rules
I See Lit: A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. 2012.

Chapter 2, p. 51 ff

43 / 48

Further Topics

Finding (logical) mappings I: Hierarchical approach
Topic on its own, here only some hints
I Find value correspondences by schema matching methods
I On top of them build logical mapping rules

Example

I τ : movie(Title,Year ,Director), european(Director),
review(Title,Critique)

I σ : r1(MTitle,Year ,Director), r2(MTitle,Critique)

I Value correspondence: r1.MTitle −→ movie.Title etc.
(found by, say, string-matching)

I Possible LAV-rule:
r1(T ,Year ,Director) −→ movie(T ,Year ,Director)

Lit: U. Leser and F. Naumann. Informationsintegration: Architekturen und Methoden

zur Integration verteilter und heterogener Datenquellen. Chapter 5

45 / 48

Finding (Logical) Mappings II: Direct-Supervised

Learn directly logical mappings in supervised fashion
I Present pairs of sources DBs and potential target DB solutions
I See, e.g., Lit: G. Gottlob and P. Senellart. Schema mapping discovery from

data instances. J. ACM, 57(2), Feb. 2010.

I Systemically studied using computational learning theory for
GAV mappings in
Lit: B. T. Cate, V. Dalmau, and P. G. Kolaitis. Learning schema mappings.

ACM Trans. Database Syst., 38(4):28:1–28:31, Dec. 2013.

46 / 48

View Rewriting Advanced

I Consider view rewriting as application of
Craig’s interpolation theorem

I Benthem 2008: “last significant property
of FOL that has come to light”
Lit: J. van Benthem. The many faces of interpolation.

Synthese, 164(3):451–460, 2008.

I Benedikt et al. generalize this w.r.t.
accesibility methods (privacy)

Lit: M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura. Generating Plans from

Proofs: The interpolation-based Approach to Query Reformulation. Synthesis Lectures

on Data Management, 2016.

47 / 48

Next Lecture: Data Exchange

I Main difference: requires materialization

I Usually considered without views (no access restrictions)

I Will consider in that lecture also target constraints

I Will consider mapping management

48 / 48

	Data Integration: Motivation
	Formalization and Basic Notions
	Types of Integration: LAV and GAV
	View Rewriting
	Further Topics

