Özgür L. Öz̧ep

Data Integration

Lecture 5
7 May 2020

Informationssysteme CS4130
(Summer 2020)

References

- Textbook on data integration (in German)

Lit: U. Leser and F. Naumann. Informationsintegration: Architekturen und Methoden zur Integration verteilter und heterogener Datenquellen.
Dpunkt-Verl., Heidelberg, 2007.

- Another newer textbook

Lit: A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.
Slides https://research.cs.wisc.edu/dibook/

- 2015 Course by L. Libkin on Data integration and Exchange http://homepages.inf.ed.ac.uk/libkin/teach/ dataintegr15/
- PODS 2002 tutorial by Lenzerini on data integration http://www.dis.uniroma1.it/~lenzerin/homepagine/ talks/TutorialPODS02.pdf

Data Integration: Motivation

Data Integration (DI): Main Setting

Data Integration (DI): Challenges

Short notice on method 1

- Usually built bottom-up (from sources) to global schema
- Used in data warehousing
- Still the most used approach in industry
- But usually: transformation ad hoc (not even w.r.t. declarative mappings)
- No well-founded theory in industry
- In contrast: Data exchange (see next two lectures)

Formalization and Basic Notions

Formalization

Definition (Lenzerini 2002)

A vector $\left(\tau, \sigma, M_{\sigma \tau}, M_{\tau}\right)$ consisting of

- a global (alias target) schema τ
- a source (alias local) schema σ
- $M_{\sigma \tau}=\{$ source-to-target rules $\}$
- $M_{\tau}=\{$ target constraints $\}$
is called a data integration system $\mathcal{D I}$
- Lenzerini calls $M_{\sigma \tau}$ a mapping.
- Source schema σ is the union of the local schemas

Logically: consider a single σ-DB consisting of disjoint unions of local σ_{i} DBs

- Some federation aspects dealt under theme complex: view rewriting

Convention

For ease of exposition, we will neglect target dependencies M_{τ}, i.e. let $M_{\tau}=\{ \}$ in this lecture. Will deal with them in next lecture. (Makes definitions easier and lets us focus on rewriting aspects)

Source-Target-Dependencies $M_{\sigma \tau}$

- Source-Target-Dependencies may be arbitrary FOL formula
- Usually they have a simple form (decidability!)

Definition

A source-to-target tuple-generating dependencies (st-tgds) is a FOL formula of the form

$$
\forall \vec{x} \vec{y}\left(\phi_{\sigma}(\vec{x}, \vec{y}) \longrightarrow \exists \vec{z} \psi_{\tau}(\vec{x}, \vec{z})\right)
$$

where

- ϕ_{σ} is a conjunction of atoms over source schema σ
- ψ_{τ} is a conjunction of atoms over target schema τ
- So in particular, antecedens and succedens conjunctive queries (CQ)
- CQs "well-behaved"

Reminder: Conjunctive Queries (CQs)

- Class of sufficiently expressive and feasible FOL queries of form

$$
\operatorname{ans}(\vec{x})=\exists \vec{y}\left(\alpha_{1}\left(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}\right) \wedge \cdots \wedge \alpha_{n}\left(\overrightarrow{x_{n}}, \overrightarrow{y_{n}}\right)\right)
$$

where

- $\alpha_{i}\left(\vec{x}_{i}, \vec{y}_{i}\right)$ are atomic FOL formula and
- $\overrightarrow{x_{i}}$ variable vectors among \vec{x} and $\overrightarrow{y_{i}}$ variables among \vec{y}
- Corresponds to SELECT-PROJECT-JOIN Fragment of SQL

Example (Conjunctive Query from Flight Domain)

$\operatorname{ans}($ src, dest, airl, dep $)=\exists f n o \exists \operatorname{arr}($ Routes $(f n o$, src, dest $) \wedge \operatorname{Info}($ fno, dep, arr, airl) $)$

Reminder: Conjunctive Queries (CQs)

Theorem

- Answering CQs is NP-complete w.r.t. combined complexity (Chandra,Merlin 1977)
- Subsumption test for CQs is NP complete
- Answering CQs is in $A C^{0}$ (and thus in P) w.r.t. data complexity

Lit: A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, STOC'77, pages 77-90, New York, NY, USA, 1977. ACM.

Wake-Up Question

Are st-tgds Datalog rules?

- No, as Datalog rules do not allow existentials in the head of the query
- But there is the extended logic called Datalog ${ }^{+/-}$
- Has been investigated in last years also in context of ontology-based data access (see net lectures)
- Provides many interesting sub-fragments

Lit: A. Calì, G. Gottlob, and T. Lukasiewicz. Datalog+/-: A unified approach to ontologies and integrity constraints. In Proceedings of the 12th International Conference on Database Theory, pages 14-30. ACM Press, 2009.

Prominent Tuple Generating Dependencies

- Theorems of Euclids "Elements" expressible as tuple generating dependencies

Imprinted at London by Ioln Dase:
Lit: J. Avigad, E. Dean, J. Mumma: "A Formal System for Euclid's Elements", The Review of Symbolic Logic, 2009

Semantics for Data Integration Systems: Solutions

Definition

Given: A data integration system $\mathcal{D I}$ with mapping rules $M_{\sigma \tau}$ and a σ-instance \mathfrak{S}

A τ-instance \mathfrak{T} is called a solution for \mathfrak{S} under $\mathcal{D} \mathcal{I}$ iff $(\mathfrak{S}, \mathfrak{T})$ satisfies all rules in $M_{\sigma \tau}$, for short: $(\mathfrak{S}, \mathfrak{T}) \models M_{\sigma \tau}$.

- $(\mathfrak{S}, \mathfrak{T}) \models M_{\sigma \tau}$ iff $\mathfrak{S} \cup \mathfrak{T} \models M_{\sigma \tau}$ where
- $\mathfrak{S} \cup \mathfrak{T}$ is the union of the instances $\mathfrak{S}, \mathfrak{T}$: Structure containing all relations from \mathfrak{S} and \mathfrak{T} with domain the union of domains of \mathfrak{S} and \mathfrak{T}
- well defined because schemata are disjoint
- $\operatorname{Sol}_{\mathcal{D I}}(\mathfrak{S})$: Set of solutions for \mathfrak{S} under $\mathcal{D I}$

Certain answering

- There may be more than one solution.
- What then is the semantics for query answering?

Definition (Certain answers (informally))

$\operatorname{cert}_{\mathcal{D} \mathcal{I}}(Q, \mathfrak{S})=$ intersection of answers over all possible solutions

Definition (Certain answers (formally))

$$
\operatorname{cert}_{\mathcal{D I}}(Q, \mathfrak{S})=\bigcap_{\mathfrak{T} \in \operatorname{Sol}_{\mathcal{D I}}(\mathfrak{S})} Q(\mathfrak{T})
$$

- General approach for dealing with incomplete information
- Certain answers on incomplete DBs (see DE lecture)
- Certain answers in inconsistent DBs (see Database Repairs lecture)
- Certain answers in OBDA
- Partial (full meet) revision (See belief revision lecture)

Types of Integration: LAV and GAV

Various Approaches for Virtual Data Integration

Form of rules in $M_{\sigma \tau}$ leads to different approaches

- Source-centric/local-as-view (LAV): sources "defined" in terms of global schema
- Global-schema-centric/global-as-view (GAV): global schema defined in terms of sources
- Mixed approach: GLAV
- Peer-to-peer/P2P: mapping without global schema

Focus of this lecture

Example (Movie Scenario)

- $\quad \tau$: movie(Title, Year, Director) european(Director) review(Title, Critique)
- $\sigma_{1}: r_{1}$ (Title, Year, Director) european directors since 1960
- $\sigma_{1}: r_{2}$ (Title, Critique) critiques since 1990
- Q: Title and critique of movies since 1998

$$
\exists D . \operatorname{movie}(T, 1998, D) \wedge \operatorname{review}(T, R)
$$

GAV Approach

Definition

A GAV-DI has rules in $M_{\sigma \tau}$ for all relations $R_{\tau} \in \tau$ of the form (called GAV rules):

- $\forall \vec{x} \vec{y}\left(\phi_{\sigma}(\vec{x}, \vec{y}) \longrightarrow \exists \vec{z} R_{\tau}(\vec{x}, \vec{z})\right)$
- $\forall \vec{x} \vec{y}\left(\phi_{\sigma}(\vec{x}, \vec{y}) \longleftrightarrow \exists \vec{z} R_{\tau}(\vec{x}, \vec{z})\right)$
- Given a source database, $M_{\sigma \tau}$ provides direct information about which data satisfy the elements of the global schema.
- Relations in τ are views, and queries are expressed over the views.
- Simple evaluation by unfolding and running query over the data satisfying the global relations (as if single DB)

Example (GAV example)

- $\quad \tau$: movie(Title, Year, Director)

```
european(Director)
review (Title, Critique)
```

- $\quad \sigma_{1}: r_{1}$ (Title, Year, Director) european directors since 1960
- $\sigma_{2}: r_{2}$ (Title, Critique) critiques since 1990
- Q: $\exists D \operatorname{movie}(T, 1998, D) \wedge \operatorname{review}(T, R)$
- GAV rules

$$
\begin{aligned}
r_{1}(T, Y, D) & \rightarrow \operatorname{movie}(T, Y, D) \\
r_{1}(T, Y, D) & \rightarrow \operatorname{european}(D) \\
r_{2}(T, R) & \rightarrow \operatorname{review}(T, R)
\end{aligned}
$$

- Lhss are views over the source
- Note: In second rule only attribute D projected $\forall X, \forall Y A(X, Y) \rightarrow B(X) \equiv \forall X(\exists Y A(X, Y) \rightarrow B(X)$.

Example (GAV example (continued))

- $\quad \tau$: movie(Title, Year, Director)

```
european(Director)
review (Title, Critique)
```

- $\quad \sigma_{1}: r_{1}$ (Title, Year, Director) european directors since 1960
- $\sigma_{2}: r_{2}$ (Title, Critique) critiques since 1990
- Q: $\exists D \operatorname{movie}(T, 1998, D) \wedge \operatorname{review}(T, R)$
- GAV rules

$$
\begin{aligned}
r_{1}(T, Y, D) & \rightarrow \operatorname{movie}(T, Y, D) \\
r_{1}(T, Y, D) & \rightarrow \operatorname{european}(D) \\
r_{2}(T, R) & \rightarrow \operatorname{review}(T, R)
\end{aligned}
$$

- Q unfolded into

$$
\exists D \cdot r_{1}(T, 1998, D) \wedge r_{2}(T, R)
$$

LAV Approach

Definition

A LAV-DI has rules in $M_{\sigma \tau}$ for all relations $R_{\sigma} \in \sigma$ of the form

- $\forall \vec{x} \vec{y}\left(R_{\sigma}(\vec{x}, \vec{y}) \longrightarrow \exists \vec{z} \psi_{\tau}(\vec{x}, \vec{z})\right)$
- $\forall \vec{x} \vec{y}\left(R_{\sigma}(\vec{x}, \vec{y}) \longleftrightarrow \exists \vec{z} \psi_{\tau}(\vec{x}, \vec{z})\right)$
- Mapping $M_{\sigma \tau}$ and the source database \mathfrak{S} do not provide direct information about which data satisfy the global schema.
- Sources are views, and we have to answer queries on the basis of the available data in the views. \Longrightarrow view rewriting

Example (LAV example)

- $\quad \tau$: movie(Title, Year, Director) european(Director) review(Title, Critique)
- $\sigma_{1}: r_{1}$ (Title, Year, Director) european directors since 1960
- $\sigma_{2}: r_{2}$ (Title, Critique) critiques since 1990
- Q: $\exists \operatorname{D.movie}(T, 1998, D) \wedge \operatorname{review}(T, R)$
- LAV rules

$$
\begin{aligned}
r_{1}(T, Y, D) & \rightarrow \operatorname{movie}(T, Y, D) \wedge \operatorname{european}(D) \wedge Y \geq 1960 \\
r_{2}(T, R) & \rightarrow \operatorname{movie}(T, Y, D) \wedge \operatorname{review}(T, R) \wedge Y \geq 1990
\end{aligned}
$$

- Q has to be rewritten in order to re-express target atoms with source atoms

$$
Q_{\text {rew }}(T, R): \exists D \cdot r_{2}(T, R) \wedge r_{1}(T, 1998, D)
$$

GAV-LAV Comparison

- GAV
- Quality depends on how well sources represented in target schema by mapping
- Have to reconsider global schema when sources changed/added
- Unfolding-based query processing
- LAV
- Quality depends on how well sources represented
- High modularity and extensibility (reconsider only the definition the source relation which may have changed)
- Query processing needs reasoning (rewriting)

The Full Picture of Different Integration Scenarios

- Parameters
- MT: Mapping Type (GAV or LAV)
- E: Exactness
(sound or complete)
- TC: Target-Constraints? (yes or no)
- τ Query language (not mentioned)
- Outcomes
- INCM: Incomplete answers (yes, no)

TC	MT	E	INCM	INCN
no	GAV	exact	no	no
no	GAV	sound	yes $^{a} /$ no	no
no	LAV	sound	yes	no
no	LAV	exact	yes	yes
yes	GAV	exact	no	yes
yes	GAV	sound	yes	yes
yes	LAV	sound	yes	yes
yes	LAV	exact	yes	yes

${ }^{a}$ For τ queries without negation

- INCN: Inconsistency of target DBs (yes, no)

View Rewriting

View Rewriting

- We saw that QA under LAV requires rewriting
- But even under GAV may be needed if sources only accessible via views
- General field of rewriting w.r.t. views
- Relevant problem in
- Data warehousing
- Query optimization
- Physical independence
- Accessibility restriction/privacy aspects
- Problem: Generally (for arbitrary FOL queries) not decidable whether (exact/sound) rewriting possible \Longrightarrow Consider CQs

Why undecidable?

- Let Q be arbitrary FOL query
- Consider exact LAV
- τ is primed copy of σ
- $M_{\sigma \tau}$ identify relations in σ with primed copies in τ
- No views at all given.
- Answering in this setting means answering independently of data in source.
- Can only happen if $D_{1}^{Q}=D_{2}^{Q}$ for all τ-DBs D_{1}, D_{2}
- But one knows that deciding $D_{1}^{Q}=D_{2}^{Q}$ for arbitrary FOL is undecidable

Definition (Query rewriting w.r.t views (intuition))

- Given: Query Q,

View definitions V_{1}, \ldots, V_{n}

- a rewriting $Q_{\text {rew }}$ is a query that refers to the views only (and possibly interpreted relations) An equivalent rewriting additionally fulfils $Q \equiv Q_{\text {rew }}$.

Definition (Query rewriting w.r.t views (formal))

- Schema σ of relations with arities n_{i}
- Queries V_{1}, \ldots, V_{k} over schema τ with arities n_{i}

Assume those views are CQs

- Input query Q over τ
- Query $Q_{\text {rew }}$ over σ is an equivalent rewriting of Q iff for all τ-DBs:

$$
D^{Q}=Q_{\text {rew }}\left(V_{1}(D) \ldots V_{n}(D)\right)
$$

- Query $Q_{\text {rew }}$ over σ is a maximally contained rewriting of Q iff for all τ-DBs
- $D^{Q} \supseteq Q_{\text {rew }}\left(V_{1}(D) \ldots V_{n}(D)\right)$ and
- $Q_{\text {rew }}$ is maximal in this property, i.e. if $D^{Q} \supseteq Q_{\text {rew }}^{\prime}\left(V_{1}(D) \ldots V_{n}(D)\right)$ then $Q_{\text {rew }}^{\prime} \subseteq Q_{\text {rew }}$.

Example (Equivalent rewriting 1)

- DB: \quad \{Movie(ID, title, year, genre), Director(ID, director), Actor(ID, actor)\}
- $Q(T, Y, D):$ Movie($I, T, Y, G) \wedge Y \geq 1950 \wedge G=$ comedy \wedge Director $(I, D) \wedge$ Actor (I, D)
- $V_{1}(T, Y, D):$ Movie $(I, T, Y, G) \wedge Y \geq 1940 \wedge G=$ comedy \wedge

Director $(I, D) \wedge \operatorname{Actor}(I, D)$

- Because $V_{1} \supseteq Q$ we get equivalent rewriting

$$
Q_{\text {rew }}: V_{1}(T, Y, D) \wedge Y \geq 1950
$$

Example (Equivalent Rewriting 2)

DB: $\quad\{$ Movie(ID, title, year, genre), Director(ID, director), Actor(ID, actor)\}

- $Q(T, Y, D):$ Movie($I, T, Y, G) \wedge Y \geq 1950 \wedge G=$ comedy \wedge Director $(I, D) \wedge \operatorname{Actor}(I, D)$
- $V_{2}(I, T, Y):$ Movie($\left.I, T, Y, G\right) \wedge Y \geq 1950 \wedge G=$ comedy
- $\quad V_{3}(I, D): \quad \operatorname{Director}(I, D) \wedge \operatorname{Actor}(I, D)$
- No subsumption relation for views but nonetheless equivalent rewriting

$$
Q_{\text {rew }}: V_{2}(I, T, Y) \wedge V_{3}(I, D)
$$

Example (Maximally Contained Rewriting)

- DB: \{Movie(ID, title, year, genre), Director(ID, director), Actor(ID, actor)\}
- $Q(T, Y, D):$ Movie(I, $T, Y, G) \wedge Y \geq 1950 \wedge G=$ comedy \wedge Director $(I, D) \wedge \operatorname{Actor}(I, D)$
- $V_{4}(I, T, Y):$ Movie(I, $\left.T, Y, G\right) \wedge Y \geq 1960 \wedge G=$ comedy
- $\quad V_{3}(I, D)$: $\operatorname{Director}(I, D) \wedge \operatorname{Actor}(I, D)$
- Only maximally-contained rewriting possible

$$
Q_{\text {rew }}: V_{4}(I, T, Y) \wedge V_{3}(I, D)
$$

Naive query rewriting algorithm

- Input
- Conjunctive queries V_{1}, \ldots, V_{n} over τ
- Query Q over τ
- Output: equivalent or maximally contained $Q_{\text {rew }}$
- Procedure
- Guess Q^{\prime} over views
- Unfold Q^{\prime} in terms of views
- Check if one unfolding contained in Q
- If one unfolding U equivalent with Q, then $Q_{\text {rew }}=U$
- Otherwise $Q_{\text {rew }}=\bigvee$ Unfoldings $\left(Q^{\prime}\right)$
- Need to test equivalence: Feasible for CQs
- Need to constrain search space: 1) theoretical bound, 2) prune search space (Bucket, MiniCon, inverse rules)

Theoretical Bound

Theorem

- If there is an equivalent rewriting (maximally contained rewriting, resp.) of Q, then there is one with at most n subgoals where n is number of atoms in Q (all CQs in disjunction have less than n atoms, resp.)
- Finding rewriting is NP-complete

Bucket Algorithm: Idea

1. Create a bucket for each subgoal g in query Q Bucket contains view atoms contributing to g
2. Create rewritings from the cartesian product of buckets.

An Example Run

Example

- Q(ID, Dir): Movie(ID, title, year, genre) \wedge Revenues $(I D$, amount $) \wedge$

$$
\text { Director }(I D, \text { dir }) \wedge \text { amount } \geq 100 \mathrm{M}
$$

- $V_{1}(I, Y): \operatorname{Movie}(I, T, Y, G) \wedge \operatorname{Revenues}(I, A) \wedge I \geq 5000 \wedge A \geq 200 M$
- $V_{2}(I, A): \operatorname{Movie}(I, T, Y, G) \wedge \operatorname{Revenues}(I, A)$
- $V_{3}(I, A): \operatorname{Revenues}(I, A) \wedge A \leq 50 M$
- $V_{4}(I, D, Y) \operatorname{Movie}(I, T, Y, G) \wedge \operatorname{Director}(I, D) \wedge I \leq 3000$
- Atoms that can contribute to Movie(ID, title, year, genre)

$$
V_{1}(I D, \text { year }), V_{2}\left(I D, A^{\prime}\right), V_{4}\left(I D, D^{\prime}, \text { year }\right)
$$

- Similarly for Revenues(ID, amount) and Director(ID, dir)

Example (First Candidate rewriting)

Movie(ID, title, year, genre)	Revenues(ID, amount)	Director(ID, dir)
$V_{1}(I D$, year $)$	$V_{1}\left(I D, Y^{\prime}\right)$	$V_{4}\left(I D\right.$, Dir, $\left.Y^{\prime}\right)$
$V_{2}\left(I D, A^{\prime}\right)$	$V_{2}(I D$, amount $)$	
$V_{4}\left(I D, D^{\prime}\right.$, year $)$		

Consider first triple as potential rewriting

- first atom redundant,
- second and third exclusive (so can neglect rewriting Q_{1}^{\prime})
- $Q_{1}^{\prime}(I D$, dir $)=\forall_{1}(I D$, year $) \wedge V_{1}\left(I D, y^{\prime}\right) \wedge V_{4}\left(I D\right.$, dir, $\left.y^{\prime}\right)$

Example (Second candidate rewriting)

Movie(ID, title, year, genre $)$	Revenues(ID, amount)	Director(ID, dir)
$V_{1}(I D$, year $)$	$V_{1}\left(I D, Y^{\prime}\right)$	$V_{4}\left(I D\right.$, Dir, $\left.Y^{\prime}\right)$
$V_{2}\left(I D, A^{\prime}\right)$	$V_{2}(I D$, amount $)$	
$V_{4}\left(I D, D^{\prime}\right.$, year $)$		

becomes redundant

- $Q_{2}^{\prime}(I D, \operatorname{dir})=V_{2}\left(I D, A^{\prime}\right) \overbrace{V_{2}\left(I D, A^{\prime}\right)}$
$\wedge V_{2}(I D$, amount $) \wedge V_{4}\left(I D\right.$, dir, $\left.y^{\prime}\right)$
- $Q_{2}^{\prime \prime}(I D$, dir $)=V_{2}(I D$, amount $) \wedge V_{4}\left(I D\right.$, dir,$\left.y^{\prime}\right) \wedge$ amount $\geq 100 M$;

Step 1: Create Buckets Procedure

```
Input : CQ \(Q(\vec{X})=R_{1}(\vec{X}), \ldots, R_{n}\left(\vec{X}_{n}\right), c_{1}, \ldots, c_{l}\); set \(\mathcal{V}\) of \(C Q\) views
Output: list of buckets
forall \(i \in[n]\) do
    | \({\overline{\text { Bucket }_{i}}:=\emptyset}=\emptyset\)
end
forall \(i \in[n]\) do
        foreach \(V \in \mathcal{V}\) do
        //Let \(V\) be of form \(V(\vec{Y})=S_{1}\left(\vec{Y}_{1}\right), \ldots, S_{m}\left(\vec{Y}_{m}\right), d_{1}, \ldots, d_{k}\)
        forall \(j \in[m]\) do
            if \(R_{i}=S_{j}\) then
                \(/ /\) Let \(\psi\) be the mapping defined on the \(\operatorname{vars}(V)\) as: Let \(y\) be the \(b\) th variable
                    in \(\vec{Y}_{i}\) and \(x\) be the \(b\) th variable in \(\vec{X}_{i}\)
                        if \(x \in \vec{X}\) and \(y \notin \vec{Y}\) then
                    \(\psi\) undefined, \(j++\)
                                else if \(\frac{y \in \vec{Y}}{\psi(y)=}\) then
                        else
                        | \(\psi(y)\) is a new variable not in \(Q\) or \(V\)
                        endif
                                \(Q^{\prime}:=R_{\mathbf{1}}\left(\vec{X}_{\mathbf{1}}\right), \ldots, R_{n}\left(\vec{X}_{n}\right), c_{\mathbf{1}}, \ldots, c_{n}\),
                                \(S_{1}\left(\psi\left(\vec{Y}_{1}\right)\right), \ldots, S_{m}\left(\psi\left(\vec{Y}_{m}\right)\right), \psi\left(d_{1}\right), \ldots \psi\left(d_{k}\right)\)
                                if \(Q^{\prime}\) is satisfiable then
                            Add \(\psi(V)\) to Bucket \(_{i}\)
                            endif
            endif
        end
    end
end
return Bucket \(_{1}, \ldots\), Bucket \(_{n}\)
```


Step 2: Creating rewritings (exact or max. contained)

Consider each $Q^{\prime} \in$ Bucket $_{1} \times \cdots \times$ Bucket $_{n}$

- For equivalent rewriting
- If $Q \equiv Q^{\prime}$ or can add interpreted atoms C s.t. $Q \wedge C \equiv Q^{\prime}$ then $Q_{\text {rew }}:=Q$ is a potential rewriting
- For maximally contained rewriting construct UCQ $Q_{\text {rew }}$ rewriting considering each conjunctive rewriting Q^{\prime}
- If $Q^{\prime} \subseteq Q$, then $Q_{\text {rew }}:=Q_{\text {rew }} \vee Q^{\prime}$
- If there is an interpreted atom C that can be added to Q^{\prime} s.t. $Q^{\prime} \wedge C \subseteq Q$ then $Q_{\text {rew }}:=Q_{\text {rew }} \vee\left(Q^{\prime} \wedge C\right)$
- If $Q^{\prime} \nsubseteq Q$ but there is homomorphism ψ on head variables of Q^{\prime} s.t. $\psi\left(Q^{\prime}\right) \subseteq Q$, then $Q_{\text {rew }}:=Q_{\text {rew }} \vee \psi\left(Q^{\prime}\right)$

Other Algorithms

- Bucket algorithms do not consider interaction of goals

$$
\begin{aligned}
Q(\text { title, year, dir })= & \text { Movie }(I D, \text { title, year, genre }), \\
& \text { Director }(I D, \text { dir }) \text { Actor }(I D, \text { dir }) \\
V_{5}(D, A)= & \text { Director }(I, D), \text { Actor }(I, A)
\end{aligned}
$$

- Variable I not in head of V_{5} hence V_{5} not usable in rewriting \Longrightarrow mitigated in MiniCon
- Logical approach with inverse rules
- See Lit: A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. 2012. Chapter 2, p. 51 ff

Further Topics

Finding (logical) mappings I: Hierarchical approach

Topic on its own, here only some hints

- Find value correspondences by schema matching methods
- On top of them build logical mapping rules

Example

- τ : movie(Title, Year, Director), european(Director), review (Title, Critique)
- $\sigma: r_{1}$ (MTitle, Year, Director), r_{2} (MTitle, Critique)
- Value correspondence: r_{1}.MTitle \longrightarrow movie. Title etc. (found by, say, string-matching)
- Possible LAV-rule: $r_{1}(T$, Year, Director $) \longrightarrow$ movie $(T$, Year, Director)

Lit: U. Leser and F. Naumann. Informationsintegration: Architekturen und Methoden zur Integration verteilter und heterogener Datenquellen. Chapter 5

Finding (Logical) Mappings II: Direct-Supervised

Learn directly logical mappings in supervised fashion

- Present pairs of sources DBs and potential target DB solutions
- See, e.g., Lit: G. Gottlob and P. Senellart. Schema mapping discovery from data instances. J. ACM, 57(2), Feb. 2010.
- Systemically studied using computational learning theory for GAV mappings in
Lit: B. T. Cate, V. Dalmau, and P. G. Kolaitis. Learning schema mappings.
ACM Trans. Database Syst., 38(4):28:1-28:31, Dec. 2013.

View Rewriting Advanced

- Consider view rewriting as application of Craig's interpolation theorem
- Benthem 2008: "last significant property of FOL that has come to light"
Lit: J. van Benthem. The many faces of interpolation.
Synthese, 164(3):451-460, 2008.
- Benedikt et al. generalize this w.r.t. accesibility methods (privacy)

Lit: M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura. Generating Plans from Proofs: The interpolation-based Approach to Query Reformulation. Synthesis Lectures on Data Management, 2016.

Next Lecture: Data Exchange

- Main difference: requires materialization
- Usually considered without views (no access restrictions)
- Will consider in that lecture also target constraints
- Will consider mapping management

