

Özgür L. Özçep

Logic, Logic, and Logic

Lecture 1: Motivation and Overview 7. April 2022

Informationssysteme CS4130 (Summer 2022)

Organizational Stuff

Organization

- Lectures with self-test wake-up exercises
 - On site (IFIS 2035), but (old) lectures provided as slides and recordings in beforehand
 - ► Time: Thursdays, 12:15–13:45
 - Start: Thursday, 7 April 2021
- Exercise labs
 - ▶ on site (IFIS 2035)
 - ► Time: Thursdays 14:15–15:45
 - Start: Thursday, 7 April 2021
 - Discuss solutions presented by students
- ► Lecture and exercise related material in Moodle "Informationssysteme"
- ► Written exam at the end of the semester
 - Preliminary dates: 21 July 2022 (Second Chance: 4 October 2022)
 - Prerequisite for exam
 - Presentation of a solution for one exercise sheet
 - One-page-summary of lecture (handout)

Exercise Lab

- Weekly exercise sheets in Moodle (provided beforehand)
- ► Each group of (up to 2 or 3) students gets responsible for one exercise sheet and must present its solution
- ► Other students solve the exercise on their own: No solutions to be handed in/no corrections
- ► YOUR TODO: Sign in for an exercise sheet in Moodle

One-page summary

- Each group of students (=the same as exercise group) is responsible for summarizing one lecture (= the one associated with the exercise)
- Summary to be handed in within 2 weeks after exercise presentation (possibly revision required) via email to the lecturer
- meant as preparation for written exams for all students
- One page in any format you like / you find useful for preparing for the written exam
- ► Format may be as in
 - ► Theorem of the day (https://www.theoremoftheday.org/)
 - or a Poster format (but such that it is readable when printed in DIN A4)
 - See e.g. LATEXformats at overleaf templates (https://www.theoremoftheday.org/)

Sometimes English Becomes Less Important

Prologue

La loi 101 (Charte de la langue française)

Principe du deux pour un : le texte français doit être écrit en caractères deux fois plus gros que ceux de la version en langue étrangère.

Two for one principle: an english (for clarity) text should be written in characters twice smaller than its french counterpart.

Exception: the english version of the text of the Law itself can be written in characters five times bigger than the french original.

Slide example by Bruno Poizat from a conference talk

- Model Theorist
- Has a wonderful (unconventional) book on model theory
 - Was not well received (for some years)
 - until he translated it into English

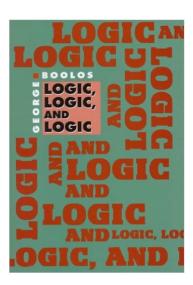
Lit: B. Poizat. A Course in Model Theory. Universitext. Springer Verlag, 2000.

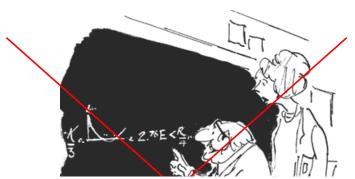
Colour Coding and formatting for the Slides

- Formulae will be encoded in this greenish color
- ► Newly introduced terminology will be given in this light blue color and definitions will be given in light blue boxes
- Important results (observations, theorems) will be given in red boxes
- ► Emphasizing some aspects will done in red
- ► Examples will be given with orange boxes
- ▶ Bibliographic notes are given in this darker blue.

Agenda (overview)

- ► Logic, Logic, Logic (2 lectures)
- ► Logical Foundations of Database Systems: Finite Model Theory (2 lectures)
- ▶ Data Integration and Data Exchange (3 lectures)
- ➤ Semantic Integration with OBDA: Bridging the DB and Ontology World (2 lectures)
- Semantic Integration on Ontology Level: Ontology Integration (2 lectures)
- ► Database Repairs (1 lecture)
- ► Stream Processing (1 lecture)


First-Order Logic

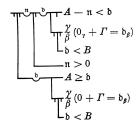

"Logic, Logic, and Logic"

- Interesting collection of essays
- ► Rather "philosophical logic"
- But we adopt the motto:

Logic everywhere !

- We are interested not only in logics per se but
- (Knowledge on) logics useful for computer science

But: "Nothing is more practical than a good theory"


it can be of any practical use whatsoever."

Logic and Logics

- Science of logic
 - investigates mathematical structures (static and dynamic)
 - and formal languages to describe them
 - distinguishing between syntax
 - and semantics (truth conditions for sentences)
 - providing notions of satisfaction, entailment (from semantics)
 - and of provability, inference (calculus)
- ➤ A logic: A language with syntax, semantics (and possibly calculus)
- ► There are many different logics (within computer science)
- ▶ But in any case somehow related to first-order logic

First-Order Logic (FOL)

- Also called predicate logic (or quantification logic)
- Aristotelian syllogisms already incorporate restricted FOL
 - ► All Philosophers are wise men. All wise men are nice. Hence all Philosophers are nice men.
 - Restricted to unary predicates
- Modern FOL started with Frege's "Begriffsschrift"
 - language constructs based on constants, variables, predicates, functions, boolean connectives, quantifiers
 - Formal axioms and inference rules
 - ► His 2-dimensional representation format aesthetic but not practical

FOL Structures

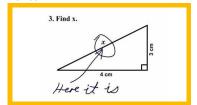
► A formalism to investigate (mathematical) structures

$$\mathfrak{A} = (A, R_1^{\mathfrak{A}}, \dots R_n^{\mathfrak{A}}, f_1^{\mathfrak{A}}, \dots, f_m^{\mathfrak{A}}, c_1^{\mathfrak{A}}, \dots, c_l^{\mathfrak{A}})$$

- ► (Non-logical) Vocabulary
 - ightharpoonup Relation symbols/predicates R_i with arities
 - Function symbols f_i (with arities)
 - Constant symbols c_i
- Components of the structure
 - ► Universe/Domain A
 - Interpretations/denotations of nonlogical symbols
 - ▶ Relation $R^{\mathfrak{A}} \subseteq A^n$ (for *n*-ary relation symbol *R*)
 - Function $f^{\mathfrak{A}} \in A^n \longrightarrow A$ (for n-ary function symbol f)
 - ▶ Individuals $c^{\mathfrak{A}} \in A$ (for constants c)

Example FOL Structures

- ▶ Graphs $\mathfrak{G} = (V, E^{\mathfrak{G}})$
 - 1. V =nodes of the graph
 - 2. $E^{\mathfrak{G}} \subseteq V^2 = \text{edges of the graph}$
- ▶ Undirected, loopless graphs $\mathfrak{G} = (V, E^{\mathfrak{G}})$
 - 1. as above
 - 2. as above
 - 3. Additionally: edge relation is symmetric and a-reflexive
- Need an appropriate language to formulate constraints such as in 3.

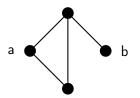

FOL Syntax

- \blacktriangleright Allow variables (x_1, x_2, \dots) and logical constructors
- ▶ Terms
 - variables and constants are terms
 - if t_1, \ldots, t_n are terms, so is $f(t_1, \ldots, t_n)$ (for *n*-ary function symbol f
- ► Formulae
 - $ightharpoonup t_i = t_j$ and $R(t_1, \ldots, t_n)$ (for terms t_i and n-ary relation) R
 - \blacktriangleright If ϕ is a formula, so are
 - $ightharpoonup \neg \phi$ ("Not ϕ ")
 - $\blacktriangleright \ \forall x \ \phi$ ("For all x it holds that ϕ ")
 - $\blacktriangleright \exists x \phi$ ("There is an x s.t. ϕ ")
 - \blacktriangleright If ϕ, ψ are formula, so are
 - \blacktriangleright $(\phi \land \psi)$ (" ϕ and ψ ")
 - \blacktriangleright $(\phi \lor \psi)$ (" ϕ or ψ ")
 - \blacktriangleright $(\phi \rightarrow \psi)$ ("If ϕ then ψ ")

FOL Semantics

- ▶ Interpretation $\mathcal{I} = (\mathfrak{A}, \nu)$
 - \triangleright ν assigns to all variables elements from domain A
 - Needed to deal with open formulae e.g. $\forall y \ R(y, x)$ open/free in variable x
- ► x-Variant $\mathcal{I}_{[x/d]}$ same as \mathcal{I} but with $d \in A$ assigned to x
- ► Interpretation of terms
 - $ightharpoonup \mathcal{I}(c) = c^{\mathfrak{A}}$
 - $ightharpoonup \mathcal{I}(x) = \nu(x)$
 - $\qquad \qquad \mathcal{I}(f(t_1,\ldots,t_n)) = f^{\mathfrak{A}}(\mathcal{I}(t_1),\ldots,\mathcal{I}(t_n))$

Because dealing with variables is non-trivial...



FOL Semantics

- ► Satisfaction relation ⊨
 - $ightharpoonup \mathcal{I} \models t_1 = t_2 \text{ iff } \mathcal{I}(t_1) = \mathcal{I}(t_2)$
 - $\blacktriangleright \ \mathcal{I} \models R(t_1,\ldots,t_n) \text{ iff } (\mathcal{I}(t_1),\ldots,\mathcal{I}(t_n)) \in R^{\mathfrak{A}}$
 - $ightharpoonup \mathcal{I} \models \neg \phi \text{ iff not } \mathcal{I} \models \phi$
 - $ightharpoonup \mathcal{I} \models (\phi \land \psi) \text{ iff } \mathcal{I} \models \phi \text{ and } \mathcal{I} \models \psi$
 - $ightharpoonup \mathcal{I} \models (\phi \lor \psi) \text{ iff } \mathcal{I} \models \phi \text{ or } \mathcal{I} \models \psi$
 - $ightharpoonup \mathcal{I} \models (\phi \rightarrow \psi)$ iff: If $\mathcal{I} \models \phi$ then $\mathcal{I} \models \psi$
 - $ightharpoonup \mathcal{I} \models (\phi \leftrightarrow \psi) \text{ iff: } \mathcal{I} \models \phi \text{ iff } \mathcal{I} \models \psi$
 - $ightharpoonup \mathcal{I} \models \forall x \ \phi \ \text{iff for all} \ d \in A: \mathcal{I}_{[x/d]} \models \phi$
 - ▶ $\mathcal{I} \models \exists x \ \phi$ iff there is $d \in A$ s.t. $\mathcal{I}_{[x/d]} \models \phi$
- Nown result: ν can be assumed to be defined only for the free variables in the formula.
- ► Terminology: \mathcal{I} satisfies ϕ , \mathcal{I} makes ϕ true, \mathcal{I} is a model for/of ϕ
- \blacktriangleright We also write $\mathfrak{A} \models \phi(\vec{x}/\nu)$

Examples

Consider loopless, symmetric graphs $\mathfrak{G} = (G, E^{\mathfrak{G}})$

 $ightharpoonup \phi_1 := \exists x \; \exists y \; E(x,y)$

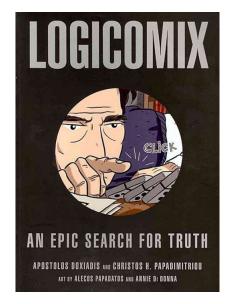
- $\mathfrak{G} \models \phi_1$? Yes!
- $\blacktriangleright \phi_2(x) := \exists y \; \exists z \; E(x,y) \land E(x,z) \land E(y,z) \qquad \mathfrak{G} \models \phi_2(x/a)$? Yes!

 $ightharpoonup \phi_3(x,y) := E(x,y)$

 $\mathfrak{G} \models \phi_3(x/a, y/b)$? NO!

Entailment

- \blacktriangleright $X \models \phi$ iff all models of X are models of ϕ
 - ▶ We say: X entails ϕ or ϕ follows from X
 - ► X: set of sentences
 - ϕ : sentence
- Note: entailment definition (per se) not easy implementable ⇒: Notion of derivibility/inference in a calculus (see later lectures)


Algorithmic Problems in First-Order Logic

- ► Model Checking:
 - Input: graph (or generally structure) \mathfrak{G} , formula $\phi(x_1, \ldots, x_n)$ and assignment $[x_1/a_1, \ldots, x_n/a_n]$
 - Output: Is $\mathfrak{G} \models \phi(x_1/a_1, \dots, x_n/a_n)$ the case?
- ► Satisfiability Problem
 - ▶ Input: sentence ϕ
 - ▶ Output: Does there exist a structure \mathfrak{G} s.t. $\mathfrak{G} \models \phi$?
- ► Complexity of problems
 - Model checking problem is decidable and PSPACE complete (in combined complexity)
 - Satisfiability is undecidable

Role of Logic for/in Computer Science

The Burden of Logic in the 19-20th Century

- Role of logic as a foundation for all of mathematics
- Literature hint: Logicomix
 - ► fantastic graphic novel
 - Narrator: Philosopher and logician B. Russell
 - ► About the illusions, disillusions, and landmarking results at the end of the 19th century

Foundations of Mathematics with Mathematical Logic

- ► Attempts to find formal foundation for mathematical logic
- ► Hilberts Program (1900-1928)
 - ► Mathematics is consistent
 - ► Mathematics is (semantically) complete
 - ► Mathematics is decidable

Awakening

- ► Young Gödel proves (1931-33)
 - arithmetics not complete
 - consistency of set theory not provable
- ► Church/Turing (1936/37)
 - ► First-order logic is not decidable
 - Valid sentences not recursive
 - Sentences true in arithmetic not recursively enumerable (semi-decidable)
- ▶ Nonetheless there are the following positive insights
 - Syntactically completeness for FOL (Gödel, 1930)
 - ► ZFC (Zermelo-Fraenkel Set Theory) can be used to formalize all contemporary mathematics

The Unusual Effectiveness of Logic

- ► Logic (Research) and Computer Science had fruitful effects onto each other
- ► Logic even more w.r.t. CS (than w.r.t. mathematics)
- "Logic is the calculus of CS"

Lit: M. Y. Vardi. From philosophical to industrial logics. In Proceedings of the 3rd Indian Conference on Logic and Its Applications, ICLA'09, pages 89–115, Berlin, Heidelberg, 2009. Springer-Verlag.

Lit: J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi, and V. Vianu. On the unusual effectiveness of logic in computer science. Bull. Symbolic Logic, 7(2):213–236, 2001.

Why is this the Case?

- ► Logic is so general that it allows to
 - talk precisely about the objects within a computer/computation model
 - specify and reason about the properties of runs in the model
- Even more: One can characterize complexity classes with logics (Descriptive Complexity)

So ...

As an upcoming computer scientist (in academia or industry) you should train in formal models, in particular **logics**, because:

- ▶ you want to apply successfully for a job
- ▶ But more importantly: you want to keep your job

Computer Science Areas Effected by Logic Research

- Database Systems
- Ontology-Based Information Systems
- Semantic Integration
- Computer-Aided Verification (Model Checking)
- ► Computational Complexity
- ► High-Level Stream Processing
- ► Multi-Agent Systems
- ► Machine Learning (e.g. probabilistic graph models and logics)
- Semantic Web
- ► Logic Programming
- ► Knowledge Representation
- ► Semantics of Programms
- Digital Design ...

This course

Other courses of module "Web and Data Science" (CS4513)

This semester: "Web-Mining-Agenten"

Effects of Computer Science to Logic Research

- ► Focus/Intensive research on finite structures
 - Objects of computation are finite (Finite Model Theory)
 - But: potentially infinite structures (such as infinite DBs or streams) are useful as well
- Need for extensions of FOL
 - ► Higher-order logics (quantification over sets/relations)
 - ► Recursion (Datalog)
- ► Feasibility of reasoning services ⇒ restrictions of FOL
 - Modal and temporal logics
 - Description Logics
- Connections of logic and automata models
 - ► Regular expressions, finite automata, sequential logics
 - Buechi automata
- Logic engineering
- Different forms of inference ...

Overview of Course With Examples

Example: Logic in DB Research (Lectures 3-4)

- Travel DB with direct connection flights
- Reachability query
- SQL allows for recursion (CONNECT key word)
- ► But is it really necessary?

Table Flight			
Start	End		
Hamburg	Berlin		
Hamburg	New York		
New York	Berlin		

Query Q_{reach}: List all cities reachable from Hamburg!

Intuitively without recursion:

```
Q_{reach}(x) = Flight(Hamburg, x) \lor
                     \exists x_1 Flight(Hamburg, x_1) \land Flight(x_1, x) \lor
                     \exists x_1, x_2 Flight(Hamburg, x_2) \land Flight(x_2, x_1) \land Flight(x_1, x) \lor
```

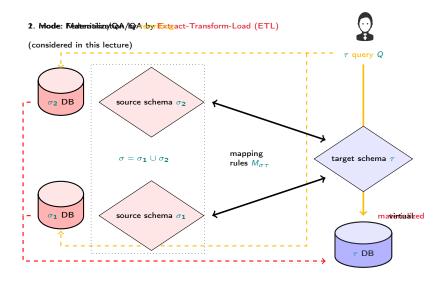
Example: Logic In DB Research

- ► Finite Model Theory (FMT) gives a proof for the impossibility to use FOL for recursive queries
- ► FMT models DBs as finite relational FOL structures

Example

- Flight table becomes structure $\mathfrak{A} = (D, Flight^{\mathfrak{A}}, Hamburg^{\mathfrak{A}}, Berlin^{\mathfrak{A}}, \dots)$
- ▶ Domain D: all constants in DB
- ► Constants named by themselves, e.g., $Hamburg^{\mathfrak{A}} = Hamburg$
- ► $Flight^{\mathfrak{A}} = \{(Hamburg, Berlin), (Hamburg, NewYork), \dots\}$

Example: Logic In DB Research


- ▶ Investigate all relevant reasoning problems w.r.t. finite models
 - ► Many properties for classical FOL do not hold
 - ► Also w.r.t. complexity
 - ⇒ Calls for new techniques
- ▶ In particular: Investigate properties that all FOL queries have.

Theorem

All FOL formulas are local. (Holds even for FOL extended with aggregation)

► Recursive queries are not local!

Data Integration and Data Exchange (lectures 5-7)

Example: Querying via Ontologies (Lectures 8-9)

- Ontologies
 - Formal means to represent and reason over data
 - Specify constraints/completeness rules
 - May have many models (open world assumption)
 - May be used for access of heterogeneous data sources
- ► Appropriate ontology languages: Description Logics (OWL and variants)
 - Constants, concepts (unary predicates), roles (binary predicates)
 - ► Terminological axioms, e.g., *Students*

 Humans
 - ► Assertions axioms, e.g., *Student(Frege)*
 - Description logics are feasible fragments of FOL

- ► No university known for *Goedel*
- ► Completeness: $Student \sqsubseteq \exists hasUniv.University$
- ► Functionality constraint:

(func hasUniv)

Table university		
Student	Univ	
Frege	U — Jena	
Russell	U-London	
Goedel	NULL	

Example: Ontology Integration (Lectures 10-11)

- There exist many ontologies out there
- For some applications need to integrate ontologies
- Problem: Joining ontologies may lead to incoherences/inconsistencies

Lyam	nl	
	Įυ.	

Ontology A

Ontology B

- ightharpoonup Article $\equiv \exists publ. Journal$
- ► Journal

 ¬Proceedings
- ► (func publ)

- 67
- ► Article $\equiv \exists publ. Journal$ $\sqcup Proceedings$
- ► publish(ab, procXY)
- \triangleright $O_A \cup O_B$ is inconsistent
- ► How to repair this?

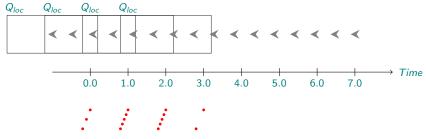
Belief Revision

- ▶ Belief Revision deals with operators for revising theories under possible inconsistencies
- Investigates concrete revision operators
- Principles that these must fulfill (minimality etc.)
- ► Representation theorems
- Recent research how to adapt these for non-classical logics/ontologies

Database repairs (Lecture 12)

- ▶ Databases may become inconsistent (falsify some integrity constraint)
 - ► Lack of support for ICs
 - ▶ due to integration ...
- ► Database repair
 - repair (only) virtually
 - Allow query answering over inconsistent DB
 - ► Formalize repair notion (minimality of repair), complexity issues

Streams (Lecture 13)


- "It's a streaming world" (Ubiquity)
 - ► Many data are temporal (sensor, event data)
 - ► Big data is mostly temporal data
- "Streams are forever" (Potential Infinity)
 - Streams are potentially infinite
 - One has to tame the infinite
 - Streams call for continuous querying (monitoring)
- "Order Matters" (Sequentiality)
 - Stream elements have an arriving order next to temporal order
 - Re-ordering or special sequencing may be needed

Lit: E. Della Valle. et al. It's a streaming world! Reasoning upon rapidly changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of the EATCS, 109:70–106, 2013.

Lit: E. D. Valle et al. Order matters! Harnessing a world of orderings for reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

Query With Sliding Window

- ▶ The role of windows
- Stringology
- ► Bounded-memory computing
- ► High-level stream processing