Özgür L. Öz̧ep

Data Exchange 2

Lecture 6: Universal Solutions, Core, Certain Answers 25 November, 2015

Foundations of Ontologies and Databases for Information Systems
CS5130 (Winter 2015)

Recap of Lecture 5

Data Exchange

- Specific semantic integration scenario for two data sources with possibly different schemata
- Mapping $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$
- σ : source schema
- τ : target schema
- $M_{\sigma \tau}$: source target dependencies (mostly: st-tgds)
- M_{τ} : target dependencies
- Ultimate aim: For given σ instance find appropriate τ instance (solution) to do query answering on it
- SOLEXISTENCE $_{\mathcal{M}}$: Is there a solution for a given \mathcal{M}
- Chase construction for finding solutions
- Chase construction gives sufficient and necessary condition if termination is guaranteed
- Termination with weakly acyclic dependencies

Universal Solutions

What are Good Solutions?

- We are seeking universal solutions: they represent all other ones
- A solution \mathfrak{T} may contain NULLs
- A DB instance is complete iff it does not contain NULLs
- $\operatorname{Rep}(\mathfrak{T})=$ all complete DBs instances that represent \mathfrak{T}
- Explicate "represent" by homomorphism notion
- Now formally define

$$
\operatorname{Rep}(\mathfrak{T})=\left\{\mathfrak{T}^{\prime} \mid \text { There is } h: \mathfrak{T} \xrightarrow{\text { hom }} \mathfrak{T}^{\prime} \text { for complete } \mathfrak{T}^{\prime}\right\}
$$

Homomorphism

- Intuitively, homomorphisms are structure preserving mappings
- Defined here for DB instances but similarly definable for arbitrary structures

Definition

A Homomorphism $h: \mathfrak{T} \xrightarrow{\text { hom }} \mathfrak{T}^{\prime}$ is a map

$$
h: \operatorname{Var}(\mathfrak{T}) \cup \operatorname{CONST} \rightarrow \operatorname{VAR}\left(\mathfrak{T}^{\prime}\right) \cup \operatorname{CONST}
$$

s.t.

- $h(c)=c$ for all $c \in$ CONST and
- if $R(\vec{t}) \in \mathfrak{T}$, then $R(h(\vec{t})) \in \mathfrak{T}^{\prime}$

Wake-Up Exercise

Consider two instances that are graphs, namely

- $\mathfrak{G}=$ cycle on 5 nodes with marked nulls ν_{1}, \ldots, ν_{5}
- $\mathfrak{G}^{\prime}=$ cycle on 3 nodes with marked nulls $\nu_{1}^{\prime}, \nu_{2}^{\prime}, \nu_{3}^{\prime}$.

Give examples of a mapping $h: \mathfrak{G} \rightarrow \mathfrak{G}^{\prime}$ that is a homomorphism, resp. not a homomorphism.

Wake-Up Exercise

Consider two instances that are graphs, namely

- $\mathfrak{G}=$ cycle on 5 nodes with marked nulls ν_{1}, \ldots, ν_{5}
- $\mathfrak{G}^{\prime}=$ cycle on 3 nodes with marked nulls $\nu_{1}^{\prime}, \nu_{2}^{\prime}, \nu_{3}^{\prime}$.

Give examples of a mapping $h: \mathfrak{G} \rightarrow \mathfrak{G}^{\prime}$ that is a homomorphism, resp. not a homomorphism.
no homomorphism

Wake-Up Exercise

Consider two instances that are graphs, namely

- $\mathfrak{G}=$ cycle on 5 nodes with marked nulls ν_{1}, \ldots, ν_{5}
- $\mathfrak{G}^{\prime}=$ cycle on 3 nodes with marked nulls $\nu_{1}^{\prime}, \nu_{2}^{\prime}, \nu_{3}^{\prime}$.

Give examples of a mapping $h: \mathfrak{G} \rightarrow \mathfrak{G}^{\prime}$ that is a homomorphism, resp. not a homomorphism.
homomorphism

Universal Solutions

- There are three equivalent characterizations of universal solutions

Definition (Universal Solution)

1. Solution \mathfrak{T} describing all others

$$
\left\{\mathfrak{T}^{\prime} \in S O L_{\mathcal{M}}(\mathfrak{S}) \mid \mathfrak{T}^{\prime} \text { complete }\right\} \subseteq \operatorname{Rep}(\mathfrak{T})
$$

2. Solution \mathfrak{T} general as all others

$$
\operatorname{Rep}\left(\mathfrak{T}^{\prime}\right) \subseteq \operatorname{Rep}(\mathfrak{T}) \quad \text { for every } \mathfrak{T}^{\prime} \in S O L_{\mathcal{M}}(\mathfrak{S})
$$

3. Solution \mathfrak{T} mapping homomorphically into others

$$
\text { For all } \mathfrak{T}^{\prime} \in S O L_{\mathcal{M}}(\mathfrak{S}) \text { there is } h: \mathfrak{T} \xrightarrow{\text { hom }} \mathfrak{T}^{\prime}
$$

Example (Universal Solution)

Source DB

- Dependencies $M_{\sigma \tau}$

Flight(src, dest, airl, dep) \longrightarrow
\exists fno $\exists \operatorname{arr}(\operatorname{Routes}($ fno, src, dest) $\wedge \operatorname{Info}($ fno, dep, arr, airl))

- τ solutions

$$
\begin{aligned}
\mathfrak{T} & =\left\{\text { Routes }\left(\perp_{\mathbf{1}}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{\mathbf{1}}, 2320, \perp_{\mathbf{2}}, \text { airFr }\right)\right\} \\
\mathfrak{T}^{\prime} & =\left\{\text { Routes }\left(\perp_{1}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{\mathbf{1}}, 2320, \perp_{\mathbf{1}}, \text { airFr }\right)\right\} \\
\mathfrak{T}^{\prime \prime} & =\{\text { Routes }(123, \text { paris, sant }), \operatorname{Info}(123,2320,930, \text { airFr })\}
\end{aligned}
$$

- \mathfrak{T} is a universal solution, \mathfrak{T}^{\prime} and $\mathfrak{T}^{\prime \prime}$ are not

Example (Non-existence of Universal Solutions)

- $M_{\sigma \tau}=\{E(x, y) \rightarrow G(x, y)\}$
- $M_{\tau}=\{G(x, y) \rightarrow \exists z L(y, z), \quad L(x, y) \rightarrow \exists z G(y, z)\}$
- Source instance $\mathfrak{S}=\{E(a, b)\}$
- $\mathfrak{T}=\{G(a, b), L(b, a)\}$ is a solution
- But there is no universal solution

Proof sketch (by contradiction)

- A universal solution must have an infinite sequence $\left(\mathfrak{S},\left\{G(a, b), L\left(b, \nu_{1}\right), G\left(\nu_{1}, \nu_{2}\right), L\left(\nu_{2}, \nu_{3}\right), G\left(\nu_{3}, \nu_{4}\right) \ldots\right\}\right)$
- As \mathfrak{T} is finite there must be some identification of an ν_{i} with a or b or with another ν_{j}
- In any case a contradiction follows

Example (Non-existence of Universal Solutions)

- $M_{\sigma \tau}=\{E(x, y) \rightarrow G(x, y)\}$
- $M_{\tau}=\{G(x, y) \rightarrow \exists z L(y, z), \quad L(x, y) \rightarrow \exists z G(y, z)\}$
- Source instance $\mathfrak{S}=\{E(a, b)\}$
- $\mathfrak{T}=\{G(a, b), L(b, a)\}$ is a solution
- But there is no universal solution

Proof sketch (by contradiction)

- A universal solution must have an infinite sequence $\left(\mathfrak{S},\left\{G(a, b), L\left(b, \nu_{1}\right), G\left(\nu_{1}, \nu_{2}\right), L\left(\nu_{2}, \nu_{3}\right), G\left(\nu_{3}, \nu_{4}\right) \ldots\right\}\right)$
- As \mathfrak{T} is finite there must be some identification of an ν_{i} with a or b or with another ν_{j}
- In any case a contradiction follows

Example (Non-existence of Universal Solutions)

- $M_{\sigma \tau}=\{E(x, y) \rightarrow G(x, y)\}$
- $M_{\tau}=\{G(x, y) \rightarrow \exists z L(y, z), \quad L(x, y) \rightarrow \exists z G(y, z)\}$
- Source instance $\mathfrak{S}=\{E(a, b)\}$
- $\mathfrak{T}=\{G(a, b), L(b, a)\}$ is a solution
- But there is no universal solution

Proof sketch (by contradiction)

- A universal solution must have an infinite sequence $\left(\mathfrak{S},\left\{G(a, b), L\left(b, \nu_{1}\right), G\left(\nu_{1}, \nu_{2}\right), L\left(\nu_{2}, \nu_{3}\right), G\left(\nu_{3}, \nu_{4}\right) \ldots\right\}\right)$
- As \mathfrak{T} is finite there must be some identification of an ν_{i} with a or b or with another ν_{j}
- In any case a contradiction follows

Undecidability of Universal Solution Existence

UNISOLEXISTENCE $_{\mathcal{M}}$

- Input: A source instance \mathfrak{S}
- Output: Is there a universal solution for \mathfrak{S} under \mathcal{M} ?
- Allowing arbitrary dependencies leads to undecidability
- Shown by of reduction of halting problem

Theorem

There exists a relational mapping $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ s.t. UNISOLEXISTENCE ${ }_{\mathcal{M}}$ is undecidable

- Proof in book of Arenas et al. 5 pages long, so ... we do not show it here

By the way: There are Longer Proofs

- Recent example: A computer aided proof for the Erdős Discrepancy Problem (EDP) by Alexei Lisitsa and Boris Konev
- File containing the proof about 13 GB
- Lit: B. Konev and A. Lisitsa. Computer-aided proof of erdos discrepancy properties. Artif. Intell., 224(C):103? 118, July 2015.
- Lit: https://rjlipton.wordpress.com/2014/02/28/practically-pnp/

Desiderata

- Due to the undecidabiltiy result one has to constrain dependencies
- Constraints such that the following are fulfilled:
(C1) Existence of solutions entails existence of universal solutions
(C2) UNIVSOLEXISTENCE decidable and even tractable
(C3) If a solutions exists, then universal solutions should be constructible in polynomial time

Chase Helps Again

Theorem

Results of successful chase sequences are universal solutions (and sometimes called canonical solutions).

Proof Sketch

- Have to show only universality of chase \mathfrak{T}
- Use the third definition
- Let \mathfrak{T}^{\prime} be any solution
- Lemma: Adding facts in chase step preserves homomorphism
- Argue inductively starting from empty homomorphism
- Distinguish between tgd and egd

Nice Properties of Universal Solutions

Theorem

Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds. Then:

- UNISOLEXISTENCE \mathcal{M} can be solved in PTIME (C2).
- And if solutions exist, then a universal solutions exist (C1),
- and a canonical solution can be computed in polynomial time (C3).

Example (Non-uniqueness of canonical Solutions)

- $M_{\sigma \tau}=\{P(x) \rightarrow \exists z \exists w(E(x, y) \wedge E(x, w)\}$
- $M_{\tau}=\{\underbrace{E(x, y) \rightarrow \exists z F(y, z)}_{\chi_{1}}, \underbrace{E(x, y) \wedge E\left(x, y^{\prime}\right) \rightarrow y=y^{\prime}}_{\chi_{2}}\}$
- Source instance $\mathfrak{S}=\{P(a)\}$
- First step: $\mathfrak{T}=\left\{E\left(a, \perp_{1}\right), E\left(a, \perp_{2}\right)\right\}$

Example (Non-uniqueness of canonical Solutions)

- $M_{\sigma \tau}=\{P(x) \rightarrow \exists z \exists w(E(x, y) \wedge E(x, w)\}$
- $M_{\tau}=\{\underbrace{E(x, y) \rightarrow \exists z F(y, z)}_{\chi_{1}}, \underbrace{E(x, y) \wedge E\left(x, y^{\prime}\right) \rightarrow y=y^{\prime}}_{\chi_{2}}\}$
- Source instance $\mathfrak{S}=\{P(a)\}$
- First step: $\mathfrak{T}=\left\{E\left(a, \perp_{1}\right), E\left(a, \perp_{2}\right)\right\}$
- Two different solutions

$$
\left.T_{1}=\left\{E\left(a, \perp_{1}\right), F\left(\perp_{1}, \perp_{3}\right)\right), F\left(\perp_{1}, \perp_{4}\right)\right\}
$$

- Apply χ_{2}, then χ_{1} :

$$
\boldsymbol{T}_{2}=\left\{E\left(a, \perp_{1}\right), F\left(\perp_{1}, \perp_{2}\right)\right\}
$$

Example (Non-uniqueness of canonical Solutions)

- $M_{\sigma \tau}=\{P(x) \rightarrow \exists z \exists w(E(x, y) \wedge E(x, w)\}$
- $M_{\tau}=\{\underbrace{E(x, y) \rightarrow \exists z F(y, z)}_{\chi_{1}}, \underbrace{E(x, y) \wedge E\left(x, y^{\prime}\right) \rightarrow y=y^{\prime}}_{\chi_{2}}\}$
- Source instance $\mathfrak{S}=\{P(a)\}$
- First step: $\mathfrak{T}=\left\{E\left(a, \perp_{1}\right), E\left(a, \perp_{2}\right)\right\}$
- Two different solutions
- Apply χ_{1}, then χ_{2} :

$$
\left.T_{1}=\left\{E\left(a, \perp_{1}\right), F\left(\perp_{1}, \perp_{3}\right)\right), F\left(\perp_{1}, \perp_{4}\right)\right\}
$$

- Apply χ_{2}, then χ_{1}

Example (Non-uniqueness of canonical Solutions)

- $M_{\sigma \tau}=\{P(x) \rightarrow \exists z \exists w(E(x, y) \wedge E(x, w)\}$
- $M_{\tau}=\{\underbrace{E(x, y) \rightarrow \exists z F(y, z)}_{\chi_{1}}, \underbrace{E(x, y) \wedge E\left(x, y^{\prime}\right) \rightarrow y=y^{\prime}}_{\chi_{2}}\}$
- Source instance $\mathfrak{S}=\{P(a)\}$
- First step: $\mathfrak{T}=\left\{E\left(a, \perp_{1}\right), E\left(a, \perp_{2}\right)\right\}$
- Two different solutions
- Apply χ_{1}, then χ_{2} :

$$
\left.T_{1}=\left\{E\left(a, \perp_{1}\right), F\left(\perp_{1}, \perp_{3}\right)\right), F\left(\perp_{1}, \perp_{4}\right)\right\}
$$

- Apply χ_{2}, then χ_{1} :

$$
T_{2}=\left\{E\left(a, \perp_{1}\right), F\left(\perp_{1}, \perp_{2}\right)\right\}
$$

Non-uniqueness

- Non-uniqueness no serious problem as all universal solutions are good
- Nonetheless one can show

Proposition

Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping s.t. M_{τ} consists of egds only. Then every source instance \mathfrak{S} has a unique canonical solution \mathfrak{T} (up to a reaming of NULLS) under \mathcal{M}.

The Core

Running Example: Flight Domain

Source DB σ
Geo(city, coun, pop)
paris, france, 2 M
Flight (src, dest, airl, dep) paris amst. KLM 1410 paris amst. KLM 2230

Canonical Solution \mathfrak{T}

Routes($\frac{\text { fno }}{}$,	src,	dest
	\perp_{1},	paris,	amst.
\perp_{3},	paris, amst.		

Serves(airl, city, coun, phone)

$$
\text { klm, paris, france, } \quad \perp_{5}
$$

klm, paris, france, $\quad \perp_{6}$

Mapping rules $M_{\sigma \tau}$

1. Flight(src, dest, airl, dep) \longrightarrow
\exists fno $\exists \operatorname{arr}($ Routes $($ fno, src, dest $) \wedge \operatorname{Info}($ fno, dep, arr, airl) $)$
2. Flight(src, dest, airl, dep) \wedge Geo(city, coun, pop) \longrightarrow
\exists phone(Serves(airl, city, coun, phone)
Flight(src, city, airl, dep) \wedge Geo(city, coun , pop) \longrightarrow
\exists phone (Serves(airl, city, coun, phone)

Running Example: Flight Domain

Source DB σ
Geo(city, coun, pop)
paris, france, 2 M
Flight (src, dest, airl, dep) paris amst. KLM 1410 paris amst. KLM 2230

Smallest Solution \mathbb{T}^{*}

$$
\left.\begin{array}{l}
\text { Routes(} \begin{array}{ccccl}
\frac{\text { fno }}{L_{1}}, & \text { src, } & \text { paris, } & \text { dest } & \text { amst. }
\end{array} \\
\perp_{3},
\end{array} \text { paris, } \begin{array}{lllll}
\text { amst. }
\end{array}\right]
$$

Mapping rules $M_{\sigma \tau}$

1. Flight(src, dest, airl, dep) \longrightarrow
$\exists f n o \exists \operatorname{arr}($ Routes $($ fno, src, dest $) \wedge \operatorname{Info}(f n o$, dep, arr, airl))
2. Flight(src, dest, airl, dep) \wedge Geo(city, coun, pop) \longrightarrow
\exists phone(Serves(airl, city, coun, phone)
Flight (src, city, airl, dep) \wedge Geo(city, coun, pop) \longrightarrow
\exists phone (Serves(airl, city, coun, phone)

Better than Universal? The Core?

- Universal solutions may still contain redundant information
- Seeking for smallest universal solutions: cores
- \mathfrak{T}^{\prime} is subinstance of \mathfrak{T}, for short $\mathfrak{T}^{\prime} \subseteq \mathfrak{T}$, iff $R^{\mathfrak{T}^{\prime}} \subseteq R^{\mathfrak{T}}$ for all relation symbols R

Definition

A subsinstance $\mathfrak{T}^{\prime} \subseteq \mathfrak{T}$ is a core of \mathfrak{T} iff there is $h: \mathfrak{T} \xrightarrow{\text { hom }} \mathfrak{T}^{\prime}$ but there is not a homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}^{\prime}.

- Intuitively: An instance can be retracted (structure preservingly) to its core but not further

Properties of Cores

Definition

A subinstance $\mathfrak{T}^{\prime} \subseteq \mathfrak{T}$ is a core of \mathfrak{T} iff there is $h: \mathfrak{T} \xrightarrow{\text { hom }} \mathfrak{T}^{\prime}$ but there is not a homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}^{\prime}.

Proposition

1. Every instance has a core.
2. All cores of the same instance are isomorphic (same up to renaming of NULLs) (\Longrightarrow Talk of the core justified)
3. Two instances are homomorphically equivalent iff their cores are isomorphic
4. If \mathfrak{T}^{\prime} is core of \mathfrak{T}, then there is $h: \mathfrak{T} \xrightarrow{\text { hom }} \mathfrak{T}^{\prime}$ s.t. $h(\nu)=\nu$ for all $\nu \in \operatorname{DOM}\left(\mathfrak{T}^{\prime}\right)$

Main Theorem for Cores

Theorem

1. If $\mathfrak{T} \in S O L_{\mathcal{M}}(\mathfrak{S})$, then also core $(\mathfrak{T}) \in S O L_{\mathcal{M}}(\mathfrak{S})$
2. If $\mathfrak{T} \in \operatorname{UNIVSO}_{\mathcal{M}}(\mathfrak{S})$ then also core $(\mathfrak{T}) \in \operatorname{UNIVSOL}_{\mathcal{M}}(\mathfrak{S})$
3. If $\operatorname{UNIVSO} L_{\mathcal{M}}(\mathfrak{S}) \neq \emptyset$, then all $\mathfrak{T} \in \operatorname{UNIVSOL}_{\mathcal{M}}(\mathfrak{S})$ have same core (up to renaming of NULLs), and the core of any universal solution is the smallest universal solution

Computing the Core

- Easy Case: No tgds in M_{τ}
- Simple algorithm $\operatorname{COMPUTECORE}(\mathcal{M})$
- Assume \mathfrak{S} has successful sequence with result \mathfrak{T}.
- If $\mathfrak{T}=$ fail, then also the output fail
- Otherwise: remove facts as long as $M_{\sigma \tau}$ fulfilled.

Theorem

If chase not fails, then $\operatorname{COMPUTECORE}(\mathcal{M})$ outputs core of universal solutions in polynomial time.

- Algorithm works as egds satisfactions preserved for subinstances
- More sophisticated methods needed in presence of tgds in M_{τ}

The Core

- Core has nice properties: Uniqueness
- But may be more costly to compute than universal canonical solution
- In the end: We want to use solution for QA—and for this canonical universal solutions suffice

Query Answering

Certain Answers

- Given mapping $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$
- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$$
\operatorname{cert}_{\mathcal{M}}(Q, \mathfrak{S})=\bigcap\left\{Q(\mathfrak{T}) \mid \mathfrak{T} \in S_{\mathcal{M}} O L_{\mathcal{M}}(\mathfrak{S})\right\}
$$

- Note: $Q(\mathfrak{T})$ gives set of tuples of constants from \mathfrak{S}
- Definition does not tell how to actually compute the certain answers
- In many cases it is not necessary to compute all solutions to get certain answers

Certain Answers

- Given mapping $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$
- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$$
\operatorname{cert}_{\mathcal{M}}(Q, \mathfrak{S})=\bigcap\left\{Q(\mathfrak{T}) \mid \mathfrak{T} \in S^{S} O L_{\mathcal{M}}(\mathfrak{S})\right\}
$$

- Note: $Q(\mathfrak{T})$ gives set of tuples of constants from \mathfrak{S}
- Definition does not tell how to actually compute the certain answers
- In many cases it is not necessary to compute all solutions to get certain answers

Certain Answers

- Given mapping $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$
- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$$
\operatorname{cert}_{\mathcal{M}}(Q, \mathfrak{S})=\bigcap\left\{Q(\mathfrak{T}) \mid \mathfrak{T} \in S_{\mathcal{M}}(\mathfrak{S})\right\}
$$

- Note: $Q(\mathfrak{T})$ gives set of tuples of constants from \mathfrak{S}
- Definition does not tell how to actually compute the certain answers
- In many cases it is not necessary to compute all solutions to get certain answers

Algorithmic Problems for Certain Answers

Problem: CERTAIN $_{\mathcal{M}}(Q)$

Input: Source instance \mathfrak{S} and tuple of elements $\vec{t} \in \operatorname{DOM}(\mathfrak{S})$
Output: Answer whether $\vec{t} \in \operatorname{certain}_{\mathcal{M}}(Q, \mathfrak{S})$

- Again, to guarantee tractability or even decidability one has to restrict the involved components
- Constrain query language (e.g., from FOL to CQs)
- Constrain dependencies (e.g., to weakly acyclic TGDs)

Proposition

There is an FOL query Q and a $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}\right)$ s.t.
$\operatorname{CERTAIN}_{\mathcal{M}}(Q)$ is undecidable.

Answering Conjunctive Queries (CQs)

- Conjunctive queries (CQs)

$$
Q(\vec{x})=\exists \vec{y}\left(\alpha_{1}\left(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}\right) \wedge \cdots \wedge \alpha_{n}\left(\overrightarrow{x_{n}}, \overrightarrow{y_{n}}\right)\right)
$$

- Unions of conjunctive queries (UCQs)

$$
Q(\vec{x})=C Q_{1}(\vec{x}) \vee \cdots \vee C Q_{n}(\vec{x})
$$

- Crucial Property: (U)CQs are preserved under homomorphisms

Proposition

Let $h: \mathfrak{S} \xrightarrow{\text { hom }} \mathfrak{S}^{\prime}$ and Q be a UCQ. Then:

$$
Q(\mathfrak{S}) \subseteq Q\left(\mathfrak{S}^{\prime}\right)
$$

(In detail: for all tuples of constants: If $\vec{a} \in Q(\mathfrak{S})$, then $\vec{a} \in Q\left(\mathfrak{S}^{\prime}\right)$
Follows easily from homomorphism definition

As a corollary one immediately gets also preservation for certain query answering.

Proposition

Let $h: \mathfrak{S} \xrightarrow{\text { hom }} \mathfrak{S}^{\prime}$ and Q be a UCQ. Then:

$$
\operatorname{certain}(Q, \mathfrak{S}) \subseteq \operatorname{certain}\left(Q, \mathfrak{S}^{\prime}\right)
$$

Certain Answering UCQs

Theorem
Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping where M_{τ} is a union of egds and weakly acyclic tgds and let Q be a UCQ.

Then $\operatorname{CERTAIN}_{\mathcal{M}}(Q)$ can be solved in PTIME.

Proof Sketch

- Consider naive evaluation strategy $Q_{\text {naive }}$
- Let \mathfrak{T} arbitrarily chosen universal solution
- Treat marked NULLS in \mathfrak{T} as constants.
- Calculate $Q(\mathfrak{T})$ under this perspective
- and then eliminate all tuples from $Q(\mathfrak{T})$ containing a NULL
- Now one can show $\operatorname{certain}_{\mathcal{M}}(Q, \mathfrak{S})=Q_{\text {naive }}(\mathfrak{T})$.

Showing $\operatorname{certain}_{\mathcal{M}}(Q, \mathfrak{S})=Q_{\text {naive }}(\mathfrak{T})$

- We know that a universal solution \mathfrak{T} can be constructed in polynomial time.
- For every $\mathfrak{T}^{\prime} \in S O L_{\mathcal{M}}$ there is $\mathfrak{T} \xrightarrow{\text { hom }} \mathfrak{T}^{\prime}$
- NULL-free tuples in $Q(\mathbb{T}) \subseteq$
$\bigcap_{\mathfrak{T}^{\prime} \in S O L_{\mathcal{M}}}$ NULL-free tuples in $Q\left(\mathfrak{T}^{\prime}\right)$
- Answering FOL queries (and so of UCQs) computable in PTIME data complexity

QA for other classes of Queries

- Proof above used a simple strategy for certain answering by naive evaluation

Naive Evaluation Strategy

$$
\operatorname{cert}(\mathfrak{S}, Q)=Q_{\text {naive }}(\mathfrak{T})
$$

where \mathfrak{T} is a (universal) solution

- This strategy works also for Datalog programs as constraints for the target schema τ
- Reason: Datalog programs are preserved under homomorphisms
- Even if one adds inequalities, naive evaluation works
- Hence certain answering is here in PTime

Rewritability

- Naive evaluation is a form of rewriting
- Fundamental method that re-appears in different areas of CS
- Rewrite a query w.r.t. a given KB into a new query that "contains" the knowledge of KB
- Challenges
- Preserve the semantics in the rewriting process
- The language of the output query is constraint to a "simple language" (so rewritability not always guaranteed)

Rewritability for DE

Definition (FOL Rewritability)

Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping and let Q be a quer over τ.
Then Q is said to be FOL-rewritable over the canonical universal solution under \mathcal{M} if there is a FOL query $Q_{\text {rew }}$ over τ^{C} such that

$$
\operatorname{certain}_{\mathcal{M}}(Q, \mathfrak{S})=Q_{\text {rew }}(\mathfrak{T})
$$

- Here $\tau^{C}=\tau \cup\{C\}$ where unary predicate C depicts all constants (not NULLs) in targets
- Works like a type predicate

Rewritability for DE

Definition (FOL Rewritability)

Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping and let Q be a quer over τ.
Then Q is said to be FOL-rewritable over the canonical universal solution under \mathcal{M} if there is a FOL query $Q_{\text {rew }}$ over τ^{C} such that

$$
\operatorname{certain}_{\mathcal{M}}(Q, \mathfrak{S})=Q_{\text {rew }}(\mathfrak{T})
$$

There is one rewriting for any given pair of source \mathfrak{S} and universal solution \mathfrak{T}

- The known component is the mapping \mathcal{M}
- The unknown components are all pairs $(\mathfrak{S}, \mathfrak{T})$

Rewritability for DE

Definition (FOL Rewritability)

Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping and let Q be a quer over τ.
Then Q is said to be FOL-rewritable over the canonical universal solution under \mathcal{M} if there is a FOL query $Q_{\text {rew }}$ over τ^{C} such that

$$
\operatorname{certain}_{\mathcal{M}}(Q, \mathfrak{S})=Q_{\text {rew }}(\mathfrak{T})
$$

If in definition one talk about cores \mathfrak{T} instead of universal solutions then Q is said to be FOL rewritable over cores

Theorem

FOL rewritability over core \vDash FOL rewritability over universal sol., but not vice versa.

Rewritability for DE

Definition (FOL Rewritability)

Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping and let Q be a quer over τ.
Then Q is said to be FOL-rewritable over the canonical universal solution under \mathcal{M} if there is a FOL query $Q_{\text {rew }}$ over τ^{C} such that

$$
\operatorname{certain}_{\mathcal{M}}(Q, \mathfrak{S})=Q_{\text {rew }}(\mathfrak{T})
$$

Example

- $Q(\vec{x})$: a conjunctive query
- $Q_{\text {rew }}: Q(\vec{x}) \wedge C\left(x_{1}\right) \wedge \cdots \wedge C\left(x_{n}\right)$
- The rewriting is even independent of \mathcal{M}

Adding Negations to Query Language

- Negations in query languages lead to lose of naive rewriting technique
- Even if one allows only negation in inequalities

Definition (Conjunctive Queries with inequalities $C Q^{\neq}$)

A conjunctive query with inequalities is a query of the form

$$
Q(\vec{x})=\exists \vec{y}\left(\alpha_{1}\left(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}\right) \wedge \cdots \wedge \alpha_{n}\left(\overrightarrow{x_{n}}, \overrightarrow{y_{n}}\right)\right)
$$

where α_{i} is either an atomic relational formula or an inequality $z_{i} \neq z_{j}$.

Example (No Naive Evaluation Possible)

Source DB

Flight (src, dest, airl, dep) Routes(fno, src, dest) paris sant. airFr 2320 paris sant. lan 2200

Target DB

Info(fno, dep, arr, airl)

- Dependencies $M_{\sigma \tau}$

Flight(src, dest, airl, dep) \longrightarrow
\exists fno $\exists \operatorname{arr}($ Routes $($ fno, src, dest $) \wedge \operatorname{Info}($ fno, dep, arr, airl) $)$

- Any universal solution T^{\prime} contains solution τ solutions
$\tau=\left\{\right.$ Routes $\left(\perp_{1}\right.$, paris, sant $), \operatorname{Info}\left(\perp_{1}, 2320, \perp_{2}\right.$, airFr $)$ Routes(1_{3}, paris, sant), Info $\left.\left(1_{3}, 2320,1_{1}, \operatorname{lan}\right)\right\}$
\rightarrow Query $Q(x, z)=\exists y \exists y^{\prime}\left(\operatorname{Routes}(y, x, z) \wedge \operatorname{Routes}\left(y^{\prime}, x, z\right) \wedge y \neq y^{\prime}\right)$
$\rightarrow Q_{\text {naive }}\left(T^{\prime}\right)=\{($ paris, sant $)\} \quad$ (for any universal solution T^{\prime})
- But: $\operatorname{cert}(Q(x, z), \mathfrak{S})_{\mathcal{M}}=\emptyset$ because there is a solution

Example (No Naive Evaluation Possible)

Source DB

Flight (src, dest, airl, dep) Routes(fno, src, dest) paris sant. airFr 2320 paris sant. lan 2200

Target DB

Info(fno, dep, arr, airl)

- Dependencies $M_{\sigma \tau}$

Flight(src, dest, airl, dep) \longrightarrow
\exists fno $\exists \operatorname{arr}(R o u t e s($ fno, src, dest) $\wedge \operatorname{Info}($ fno, dep, arr, airl))

- Any universal solution \mathfrak{T}^{\prime} contains solution τ solutions

$$
\begin{aligned}
\mathfrak{T}= & \left\{\text { Routes }\left(\perp_{1}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{1}, 2320, \perp_{2}, \text { airFr }\right),\right. \\
& \text { Routes } \left.\left(\perp_{3}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{3}, 2320, \perp_{4}, \text { lan }\right)\right\}
\end{aligned}
$$

\Rightarrow Query $Q(x, z)=\exists y \exists y^{\prime}\left(\operatorname{Routes}(y, x, z) \wedge \operatorname{Routes}\left(y^{\prime}, x, z\right) \wedge y \neq y^{\prime}\right)$
$\rightarrow Q_{\text {naive }}\left(\mathfrak{T}^{\prime}\right)=\{($ paris, sant $)\} \quad$ (for any universal solution \mathfrak{T}^{\prime})

- But: $\operatorname{cert}(Q(x, z), \mathfrak{S})_{\mathcal{M}}=\emptyset$ because there is a solution

Example (No Naive Evaluation Possible)

Source DB

Flight (src, dest, airl, dep) Routes(fno, src, dest) paris sant. airFr 2320 paris sant. lan 2200

Target DB

Info(fno, dep, arr, airl)

- Dependencies $M_{\sigma \tau}$

Flight(src, dest, airl, dep) \longrightarrow
\exists fno $\exists \operatorname{arr}(R o u t e s($ fno, src, dest) $\wedge \operatorname{Info}($ fno, dep, arr, airl))

- Any universal solution \mathfrak{T}^{\prime} contains solution τ solutions

$$
\begin{aligned}
\mathfrak{T}= & \left\{\text { Routes }\left(\perp_{1}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{1}, 2320, \perp_{2}, \text { airFr }\right),\right. \\
& \text { Routes } \left.\left(\perp_{3}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{3}, 2320, \perp_{4}, \text { lan }\right)\right\}
\end{aligned}
$$

- Query $Q(x, z)=\exists y \exists y^{\prime}\left(\operatorname{Routes}(y, x, z) \wedge \operatorname{Routes}\left(y^{\prime}, x, z\right) \wedge y \neq y^{\prime}\right)$
\rightarrow But: $\operatorname{cert}(Q(x, z), \mathfrak{S})_{\mathcal{M}}=\emptyset$ because there is a solution

Example (No Naive Evaluation Possible)

Source DB

Flight (src, dest, airl, dep) Routes(fno, src, dest) paris sant. airFr 2320 paris sant. lan 2200

Target DB

Info(fno, dep, arr, airl)

- Dependencies $M_{\sigma \tau}$

Flight(src, dest, airl, dep) \longrightarrow
\exists fno $\exists \operatorname{arr}(R o u t e s($ fno, src, dest) $\wedge \operatorname{Info}($ fno, dep, arr, airl))

- Any universal solution \mathfrak{T}^{\prime} contains solution τ solutions

$$
\begin{aligned}
\mathfrak{T}= & \left\{\text { Routes }\left(\perp_{1}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{1}, 2320, \perp_{2}, \text { airFr }\right),\right. \\
& \text { Routes } \left.\left(\perp_{3}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{3}, 2320, \perp_{4}, \text { lan }\right)\right\}
\end{aligned}
$$

- Query $Q(x, z)=\exists y \exists y^{\prime}\left(\operatorname{Routes}(y, x, z) \wedge \operatorname{Routes}\left(y^{\prime}, x, z\right) \wedge y \neq y^{\prime}\right)$
- $Q_{\text {naive }}\left(\mathfrak{T}^{\prime}\right)=\{($ paris, sant $)\}$
(for any universal solution \mathfrak{T}^{\prime})
\rightarrow But: $\operatorname{cert}(Q(x, z), \mathfrak{S})_{\mathcal{M}}=\emptyset$ because there is a solution

Example (No Naive Evaluation Possible)

Source DB

Flight (src, dest, airl, dep) Routes(fno, src, dest) paris sant. airFr 2320 paris sant. lan 2200

Target DB

Info(fno, dep, arr, airl)

- Dependencies $M_{\sigma \tau}$

Flight(src, dest, airl, dep) \longrightarrow
\exists fno $\exists \operatorname{arr}(R o u t e s($ fno, src, dest) $\wedge \operatorname{Info}($ fno, dep, arr, airl))

- Any universal solution \mathfrak{T}^{\prime} contains solution τ solutions

$$
\begin{aligned}
\mathfrak{T}= & \left\{\text { Routes }\left(\perp_{1}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{1}, 2320, \perp_{2}, \text { airFr }\right),\right. \\
& \text { Routes } \left.\left(\perp_{3}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{3}, 2320, \perp_{4}, \text { lan }\right)\right\}
\end{aligned}
$$

- Query $Q(x, z)=\exists y \exists y^{\prime}\left(\operatorname{Routes}(y, x, z) \wedge \operatorname{Routes}\left(y^{\prime}, x, z\right) \wedge y \neq y^{\prime}\right)$
- $Q_{\text {naive }}\left(\mathfrak{T}^{\prime}\right)=\{($ paris, sant $)\}$
(for any universal solution \mathfrak{T}^{\prime})
- But: $\operatorname{cert}(Q(x, z), \mathfrak{S})_{\mathcal{M}}=\emptyset$ because there is a solution

$$
\begin{aligned}
\mathfrak{T}^{\prime \prime}= & \left\{\operatorname{Routes}\left(\perp_{\mathbf{1}}, \text { paris, sant }\right), \operatorname{Info}\left(\perp_{\mathbf{1}}, 2320, \perp_{\mathbf{2}}, \text { airFr }\right),\right. \\
& \left.\operatorname{Info}\left(\perp_{\mathbf{1}}, 2320, \perp_{2}, \text { lan }\right)\right\}
\end{aligned}
$$

$C Q^{\neq}$is in coNP

- In case of $C Q^{\neq}$one cannot even find a tractable possibility to certain answer them Answering

Theorem

Let $\mathcal{M}=\left(\sigma, \tau, M_{\sigma \tau}, M_{\tau}\right)$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds, and let Q be a UCQ ${ }^{\neq}$query. Then:
$\operatorname{CERTAIN}_{\mathcal{M}}(Q)$ is in coNP

Non-rewritability

- Generally it is not possible to decide whether rewritability holds

Theorem

For mappings without target constraints one can not decide whether a given FOL query is rewritable over the canonical solutions (over the core).

- Showing Non-FOL-rewritability can be done with locality tools
- Actually: One uses Hanf-locality of FOL
- Adaptation to DE setting

Not Covered

- Different semantics for query answering
- Combinations of open-world (certain answers) and closed-word semantics
- Whole sub-field of mapping management
- How to compose mappings
- How to maintain mappings (e.g., w.r.t. consistency)
- How to invert mappings: Get back source DB from target DB
- DE for non-relational DBs
- e.g., DE for semi-structured data (XML)
- different techniques needed

Exercise 5

Exercise 5.1 (4 Points)

Prove the folklore proposition that conjunctive queries are preserved under homomorphisms.

Exercise 5.2 (6 Points)

Complete the proof of the non-existence of a universal solution for the example given in the lecture.

Example (Non-existence of Universal Solutions)

- $M_{\sigma \tau}=\{\underbrace{E(x, y) \rightarrow G(x, y)}_{\theta_{1}}\}$

$$
M_{\tau}=\{\underbrace{G(x, y) \rightarrow \exists z L(y, z)}_{\chi_{1}}, \underbrace{L(x, y) \rightarrow \exists z G(y, z)}_{\chi_{2}}\}
$$

- Source instance $\mathfrak{S}=\{E(a, b)\}$

Exercise 5.3 (4 Points)

1. Prove that every finite graph has a core
2. Prove that two cores of the same graph are isomorphic
