Özgür L. Özçep

Data Exchange 2

Lecture 6: Universal Solutions, Core, Certain Answers 25 November, 2015

> Foundations of Ontologies and Databases for Information Systems CS5130 (Winter 2015)

Recap of Lecture 5

Data Exchange

- Specific semantic integration scenario for two data sources with possibly different schemata
- ▶ Mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
 - $\triangleright \sigma$: source schema
 - τ: target schema
 - $M_{\sigma\tau}$: source target dependencies (mostly: st-tgds)
 - M_{τ} : target dependencies
- ▶ Ultimate aim: For given σ instance find appropriate τ instance (solution) to do query answering on it
- ▶ SOLEXISTENCE_M: Is there a solution for a given \mathcal{M}
- Chase construction for finding solutions
- Chase construction gives sufficient and necessary condition if termination is guaranteed
- ► Termination with weakly acyclic dependencies

End of Recap

Universal Solutions

What are Good Solutions?

- We are seeking universal solutions: they represent all other ones
- ► A solution 𝒯 may contain NULLs
- ▶ A DB instance is **complete** iff it does not contain NULLs
- $ightharpoonup Rep(\mathfrak{T}) = \text{all complete DBs instances that represent } \mathfrak{T}$
- Explicate "represent" by homomorphism notion
- ► Now formally define

$$Rep(\mathfrak{T}) = \{\mathfrak{T}' \mid \text{There is } h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}' \text{ for complete } \mathfrak{T}'\}$$

Homomorphism

- Intuitively, homomorphisms are structure preserving mappings
- Defined here for DB instances but similarly definable for arbitrary structures

Definition

A Homomorphism $h: \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ is a map

$$h: Var(\mathfrak{T}) \cup CONST \rightarrow VAR(\mathfrak{T}') \cup CONST$$

s.t.

- ▶ h(c) = c for all $c \in CONST$ and
- if $R(\vec{t}) \in \mathfrak{T}$, then $R(h(\vec{t})) \in \mathfrak{T}'$

Wake-Up Exercise

Consider two instances that are graphs, namely

- $\mathfrak{G} = \text{cycle on 5 nodes with marked nulls } \nu_1, \dots, \nu_5$
- \mathfrak{G}' = cycle on 3 nodes with marked nulls ν_1', ν_2', ν_3' .

Give examples of a mapping $h: \mathfrak{G} \to \mathfrak{G}'$ that is a homomorphism, resp. not a homomorphism.

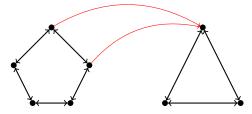
Wake-Up Exercise

Consider two instances that are graphs, namely

- \mathfrak{G} = cycle on 5 nodes with marked nulls ν_1, \ldots, ν_5
- ▶ \mathfrak{G}' = cycle on 3 nodes with marked nulls ν_1', ν_2', ν_3' .

Give examples of a mapping $h: \mathfrak{G} \to \mathfrak{G}'$ that is a homomorphism, resp. not a homomorphism.

no homomorphism

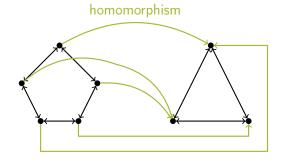


Wake-Up Exercise

Consider two instances that are graphs, namely

- \mathfrak{G} = cycle on 5 nodes with marked nulls ν_1, \ldots, ν_5
- \mathfrak{G}' = cycle on 3 nodes with marked nulls ν_1', ν_2', ν_3' .

Give examples of a mapping $h: \mathfrak{G} \to \mathfrak{G}'$ that is a homomorphism, resp. not a homomorphism.



Universal Solutions

 There are three equivalent characterizations of universal solutions

Definition (Universal Solution)

1. Solution $\mathfrak T$ describing all others

$$\{\mathfrak{T}'\in SOL_{\mathcal{M}}(\mathfrak{S})\mid \mathfrak{T}' \text{ complete}\}\subseteq \textit{Rep}(\mathfrak{T})$$

2. Solution \mathfrak{T} general as all others

$$Rep(\mathfrak{T}') \subseteq Rep(\mathfrak{T})$$
 for every $\mathfrak{T}' \in SOL_{\mathcal{M}}(\mathfrak{S})$

3. Solution ${\mathfrak T}$ mapping homomorphically into others

For all
$$\mathfrak{T}' \in SOL_{\mathcal{M}}(\mathfrak{S})$$
 there is $h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$

Example (Universal Solution)

```
Source DB
                                                        Target DB
  Flight (
             src. dest, airl, dep
                                                          Routes( fno, src, dest )
               paris sant.
                                 airFr
                                           2320
                                                          Info( fno, dep, arr,
      Dependencies M_{\sigma\tau}
        Flight(src, dest, airl, dep) \longrightarrow
           \exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))
       \tau solutions
                      = {Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr)}
                     = \{Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_1, airFr)\}
                 \mathfrak{T}'' = \{Routes(123, paris, sant), Info(123, 2320, 930, airFr)\}

ightharpoonup \mathfrak{T} is a universal solution, \mathfrak{T}' and \mathfrak{T}'' are not
```

Example (Non-existence of Universal Solutions)

- $M_{\sigma\tau} = \{ E(x,y) \rightarrow G(x,y) \}$
- $M_{\tau} = \{ G(x,y) \rightarrow \exists z \ L(y,z), \quad L(x,y) \rightarrow \exists z \ G(y,z) \}$
- ▶ Source instance $\mathfrak{S} = \{E(a, b)\}$
- $ightharpoonup \mathfrak{T} = \{G(a,b), L(b,a)\}$ is a solution
- ▶ But there is no universal solution

Proof sketch (by contradiction)

- A universal solution must have an infinite sequence $(\mathfrak{S}, \{G(a,b), L(b,\nu_1), G(\nu_1,\nu_2), L(\nu_2,\nu_3), G(\nu_3,\nu_4)\dots\})$
- As \mathfrak{T} is finite there must be some identification of an ν_i with a or b or with another ν_i
- ► In any case a contradiction follows

Example (Non-existence of Universal Solutions)

- $M_{\sigma\tau} = \{ E(x,y) \rightarrow G(x,y) \}$
- $M_{\tau} = \{ G(x,y) \rightarrow \exists z \ L(y,z), \quad L(x,y) \rightarrow \exists z \ G(y,z) \}$
- ▶ Source instance $\mathfrak{S} = \{E(a, b)\}$
- $\mathfrak{T} = \{G(a,b), L(b,a)\}$ is a solution
- ▶ But there is no universal solution

Proof sketch (by contradiction)

- A universal solution must have an infinite sequence $(\mathfrak{S}, \{G(a,b), L(b,\nu_1), G(\nu_1,\nu_2), L(\nu_2,\nu_3), G(\nu_3,\nu_4)\dots\}$
- As \mathfrak{T} is finite there must be some identification of an ν_i with a or b or with another ν_i
- ► In any case a contradiction follows

Example (Non-existence of Universal Solutions)

- $M_{\sigma\tau} = \{ E(x,y) \rightarrow G(x,y) \}$
- $M_{\tau} = \{ G(x,y) \rightarrow \exists z \ L(y,z), \quad L(x,y) \rightarrow \exists z \ G(y,z) \}$
- ▶ Source instance $\mathfrak{S} = \{E(a, b)\}$
- $\mathfrak{T} = \{G(a,b), L(b,a)\}$ is a solution
- ▶ But there is no universal solution

Proof sketch (by contradiction)

- A universal solution must have an infinite sequence $(\mathfrak{S}, \{G(a,b), L(b,\nu_1), G(\nu_1,\nu_2), L(\nu_2,\nu_3), G(\nu_3,\nu_4)\dots\})$
- As $\mathfrak T$ is finite there must be some identification of an ν_i with a or b or with another ν_i
- ► In any case a contradiction follows

Undecidability of Universal Solution Existence

UNISOLEXISTENCE $_{\mathcal{M}}$

- ▶ Input: A source instance 𝔝
- ▶ Output: Is there a universal solution for \mathfrak{S} under \mathcal{M} ?
- Allowing arbitrary dependencies leads to undecidability
- Shown by of reduction of halting problem

$\mathsf{Theorem}$

There exists a relational mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ s.t. UNISOLEXISTENCE_M is undecidable

▶ Proof in book of Arenas et al. 5 pages long, so ... we do not show it here

By the way: There are Longer Proofs

- Recent example: A computer aided proof for the Erdős
 Discrepancy Problem (EDP) by Alexei Lisitsa and Boris Konev
- ▶ File containing the proof about 13 GB
- Lit: B. Konev and A. Lisitsa. Computer-aided proof of erdos discrepancy properties. Artif. Intell., 224(C):103? 118, July 2015.
- Lit: https://rjlipton.wordpress.com/2014/02/28/practically-pnp/

Desiderata

- ► Due to the undecidabiltiy result one has to constrain dependencies
- ► Constraints such that the following are fulfilled:
 - (C1) Existence of solutions entails existence of universal solutions
 - (C2) UNIVSOLEXISTENCE decidable and even tractable
 - (C3) If a solutions exists, then universal solutions should be constructible in polynomial time

Chase Helps Again

Theorem

Results of successful chase sequences are universal solutions (and sometimes called **canonical** solutions).

Proof Sketch

- Have to show only universality of chase T
- Use the third definition
- Let \mathfrak{T}' be any solution
- ► Lemma: Adding facts in chase step preserves homomorphism
- Argue inductively starting from empty homomorphism
- Distinguish between tgd and egd

Nice Properties of Universal Solutions

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds. Then:

- ▶ UNISOLEXISTENCE_M can be solved in PTIME (C2).
- ▶ And if solutions exist, then a universal solutions exist (C1),
- ▶ and a canonical solution can be computed in polynomial time (C3).

$$M_{\sigma\tau} = \{ P(x) \rightarrow \exists z \exists w (E(x,y) \land E(x,w)) \}$$

$$M_{\tau} = \{ \underbrace{E(x,y) \to \exists z \ F(y,z)}_{\chi_1}, \underbrace{E(x,y) \land E(x,y') \to y = y'}_{\chi_2} \}$$

- ▶ Source instance $\mathfrak{S} = \{P(a)\}$
- ▶ First step: $\mathfrak{T} = \{E(a, \bot_1), E(a, \bot_2)\}$
- ► Two different solutions
 - Apply χ_1 , then χ_2 :

$$T_1 = \{E(a, \perp_1), F(\perp_1, \perp_3)\}, F(\perp_1, \perp_4)\}$$

ightharpoonup Apply χ_2 , then χ_1

$$T_2 = \{E(a, \perp_1), F(\perp_1, \perp_2)\}\$$

$$M_{\sigma\tau} = \{ P(x) \rightarrow \exists z \exists w (E(x,y) \land E(x,w)) \}$$

$$M_{\tau} = \{ \underbrace{E(x,y) \to \exists z \ F(y,z)}_{\chi_1}, \underbrace{E(x,y) \land E(x,y') \to y = y'}_{\chi_2} \}$$

- ▶ Source instance $\mathfrak{S} = \{P(a)\}$
- ▶ First step: $\mathfrak{T} = \{E(a, \bot_1), E(a, \bot_2)\}$
- ▶ Two different solutions
 - ▶ Apply χ_1 , then χ_2 :

$$T_1 = \{E(a, \perp_1), F(\perp_1, \perp_3)\}, F(\perp_1, \perp_4)\}$$

▶ Apply χ_2 , then χ_1 :

$$T_2 = \{E(a, \perp_1), F(\perp_1, \perp_2)\}$$

- $M_{\sigma\tau} = \{ P(x) \rightarrow \exists z \exists w (E(x,y) \land E(x,w)) \}$
- $M_{\tau} = \{ \underbrace{E(x,y) \to \exists z \ F(y,z)}_{\chi_1}, \underbrace{E(x,y) \land E(x,y') \to y = y'}_{\chi_2} \}$
- ▶ Source instance $\mathfrak{S} = \{P(a)\}$
- ▶ First step: $\mathfrak{T} = \{E(a, \bot_1), E(a, \bot_2)\}$
- ► Two different solutions
 - Apply χ_1 , then χ_2 :

$$T_1 = \{E(a, \bot_1), F(\bot_1, \bot_3)), F(\bot_1, \bot_4)\}$$

▶ Apply χ_2 , then χ_1 :

$$T_2 = \{E(a, \perp_1), F(\perp_1, \perp_2)\}$$

- $M_{\sigma\tau} = \{ P(x) \rightarrow \exists z \exists w (E(x,y) \land E(x,w)) \}$
- $M_{\tau} = \{ \underbrace{E(x,y) \to \exists z \ F(y,z)}_{\chi_1}, \underbrace{E(x,y) \land E(x,y') \to y = y'}_{\chi_2} \}$
- ▶ Source instance $\mathfrak{S} = \{P(a)\}$
- ▶ First step: $\mathfrak{T} = \{E(a, \bot_1), E(a, \bot_2)\}$
- ► Two different solutions
 - Apply χ_1 , then χ_2 :

$$T_1 = \{E(a, \perp_1), F(\perp_1, \perp_3)\}, F(\perp_1, \perp_4)\}$$

▶ Apply χ_2 , then χ_1 :

$$T_2 = \{E(a, \perp_1), F(\perp_1, \perp_2)\}\$$

Non-uniqueness

- Non-uniqueness no serious problem as all universal solutions are good
- Nonetheless one can show

Proposition

Let $\mathcal{M}=(\sigma,\tau,M_{\sigma\tau},M_{\tau})$ be a mapping s.t. M_{τ} consists of egds only. Then every source instance $\mathfrak S$ has a unique canonical solution $\mathfrak T$ (up to a reaming of NULLS) under $\mathcal M$.

The Core

Running Example: Flight Domain

```
Source DB \sigma
                                             Canonical Solution T
         city,
 Geo(
                  coun.
                           pop
                                               Routes(
                                                         fno. src. dest
         paris,
                 france.
                           2M
                                                          \perp_1, paris,
                                                                         amst.
                                                          \perp_3, paris,
                                                                         amst.
 Flight (
                   dest.
                          airl,
                                     dep
            src.
                            KLM
                                    1410
                                               Info(
                                                              dep,
                                                                             airl
            paris
                   amst.
                                                      fno.
                                                                      arr.
                                                       \perp_1, 1410, \perp_2
            paris
                            KLM
                                    2230
                                                                            klm
                   amst.
                                                       \perp_1, 2320, \perp_2
                                                                            klm
                                                         airl, city,
                                               Serves(
                                                                         coun.
                                                                                  phone
                                                         klm,
                                                                paris,
                                                                         france.
                                                                                    \perp_5
                                                         klm,
                                                                paris.
                                                                         france.
```

Mapping rules $M_{\sigma\tau}$

- 1. Flight(src, dest, airl, dep) \longrightarrow \exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))
- 2. Flight(src, dest, airl, dep) \land Geo(city, coun, pop) \longrightarrow \exists phone(Serves(airl, city, coun, phone)
- 3. Flight(src, city, airl, dep) \land Geo(city, coun, pop) \longrightarrow \exists phone (Serves(airl, city, coun, phone)

Running Example: Flight Domain

```
Source DB \sigma
                                                Smallest Solution T*
          city,
 Geo(
                   coun.
                            pop
                                                 Routes(
                                                            fno, src, dest
         paris,
                  france.
                             2M
                                                            \perp_1, paris,
                                                                           amst.
                                                            \perp_3, paris,
                                                                           amst.
 Flight (
                    dest.
                           airl,
                                      dep
             src.
            paris
                             KLM
                                      1410
                                                 Info(
                                                                dep,
                                                                                airl
                    amst.
                                                        fno.
                                                                         arr.
                                                         \perp_1, 1410, \perp_2
            paris
                             KLM
                                      2230
                                                                                klm
                    amst.
                                                         \perp_1, 2320, \perp_2
                                                                                klm
                                                           airl, city,
                                                 Serves(
                                                                            coun.
                                                                                      phone
                                                           klm,
                                                                   paris,
                                                                           france.
                                                                                       \perp_5
                                                           klm.
                                                                   <del>paris.</del>
                                                                           france.
                                                                                       16
```

Mapping rules $M_{\sigma\tau}$

- 1. $\begin{array}{l} \textit{Flight}(\textit{src}, \textit{dest}, \textit{airl}, \textit{dep}) \longrightarrow \\ \exists \textit{fno} \ \exists \ \textit{arr}(\textit{Routes}(\textit{fno}, \textit{src}, \textit{dest}) \land \textit{Info}(\textit{fno}, \textit{dep}, \textit{arr}, \textit{airl})) \end{array}$
- 2. Flight(src, dest, airl, dep) \land Geo(city, coun, pop) \longrightarrow \exists phone(Serves(airl, city, coun, phone)
- 3. Flight(src, city, airl, dep) \land Geo(city, coun, pop) \longrightarrow \exists phone (Serves(airl, city, coun, phone)

Better than Universal? The Core?

- Universal solutions may still contain redundant information
- Seeking for smallest universal solutions: cores
- ▶ \mathfrak{T}' is subinstance of \mathfrak{T} , for short $\mathfrak{T}' \subseteq \mathfrak{T}$, iff $R^{\mathfrak{T}'} \subseteq R^{\mathfrak{T}}$ for all relation symbols R

Definition

A subsinstance $\mathfrak{T}'\subseteq\mathfrak{T}$ is a **core** of \mathfrak{T} iff there is $h:\mathfrak{T}\xrightarrow{hom}\mathfrak{T}'$ but there is not a homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}' .

► Intuitively: An instance can be retracted (structure preservingly) to its core but not further

Properties of Cores

Definition

A subinstance $\mathfrak{T}'\subseteq\mathfrak{T}$ is a **core** of \mathfrak{T} iff there is $h:\mathfrak{T}\xrightarrow{hom}\mathfrak{T}'$ but there is not a homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}' .

Proposition

- 1. Every instance has a core.
- All cores of the same instance are isomorphic (same up to renaming of NULLs) (⇒ Talk of the core justified)
- 3. Two instances are homomorphically equivalent iff their cores are isomorphic
- 4. If \mathfrak{T}' is core of \mathfrak{T} , then there is $h:\mathfrak{T}\xrightarrow{hom}\mathfrak{T}'$ s.t. $h(\nu)=\nu$ for all $\nu\in DOM(\mathfrak{T}')$

Main Theorem for Cores

$\mathsf{Theorem}$

- 1. If $\mathfrak{T} \in SOL_{\mathcal{M}}(\mathfrak{S})$, then also $core(\mathfrak{T}) \in SOL_{\mathcal{M}}(\mathfrak{S})$
- 2. If $\mathfrak{T} \in UNIVSOL_{\mathcal{M}}(\mathfrak{S})$ then also $core(\mathfrak{T}) \in UNIVSOL_{\mathcal{M}}(\mathfrak{S})$
- 3. If $UNIVSOL_{\mathcal{M}}(\mathfrak{S}) \neq \emptyset$, then all $\mathfrak{T} \in UNIVSOL_{\mathcal{M}}(\mathfrak{S})$ have same core (up to renaming of NULLs), and the core of any universal solution is the smallest universal solution

Computing the Core

- ▶ Easy Case: No tgds in M_{τ}
- ▶ Simple algorithm COMPUTECORE(M)
 - ▶ Assume 𝒢 has successful sequence with result 𝔾.
 - ▶ If $\mathfrak{T} = fail$, then also the output fail
 - ▶ Otherwise: remove facts as long as $M_{\sigma\tau}$ fulfilled.

$\mathsf{Theorem}$

If chase not fails, then $COMPUTECORE(\mathcal{M})$ outputs core of universal solutions in polynomial time.

- Algorithm works as egds satisfactions preserved for subinstances
- lacktriangle More sophisticated methods needed in presence of tgds in $M_ au$

The Core

- Core has nice properties: Uniqueness
- But may be more costly to compute than universal canonical solution
- ► In the end: We want to use solution for QA—and for this canonical universal solutions suffice

Query Answering

Certain Answers

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
- Semantics of query answering specified as certain answer semantics

Definition

The **certain answers** of query Q over τ for given instance $\mathfrak S$ is defined as

$$\mathit{cert}_{\mathcal{M}}(\mathit{Q},\mathfrak{S}) = \bigcap \{\ \mathit{Q}(\mathfrak{T}) \mid \mathfrak{T} \in \mathit{SOL}_{\mathcal{M}}(\mathfrak{S})\ \}$$

- ▶ Note: $Q(\mathfrak{T})$ gives set of tuples of constants from \mathfrak{S}
- Definition does not tell how to actually compute the certain answers
- ▶ In many cases it is not necessary to compute all solutions to get certain answers

Certain Answers

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
- Semantics of query answering specified as certain answer semantics

Definition

The **certain answers** of query Q over τ for given instance $\mathfrak S$ is defined as

$$cert_{\mathcal{M}}(Q,\mathfrak{S}) = \bigcap \{ \ Q(\mathfrak{T}) \mid \mathfrak{T} \in SOL_{\mathcal{M}}(\mathfrak{S}) \ \}$$

- ▶ Note: $Q(\mathfrak{T})$ gives set of tuples of constants from \mathfrak{S}
- Definition does not tell how to actually compute the certain answers
- ▶ In many cases it is not necessary to compute all solutions to get certain answers

Certain Answers

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
- Semantics of query answering specified as certain answer semantics

Definition

The **certain answers** of query Q over τ for given instance $\mathfrak S$ is defined as

$$cert_{\mathcal{M}}(Q,\mathfrak{S}) = \bigcap \{ \ Q(\mathfrak{T}) \mid \mathfrak{T} \in SOL_{\mathcal{M}}(\mathfrak{S}) \ \}$$

- ▶ Note: $Q(\mathfrak{T})$ gives set of tuples of constants from \mathfrak{S}
- Definition does not tell how to actually compute the certain answers
- ► In many cases it is not necessary to compute all solutions to get certain answers

Algorithmic Problems for Certain Answers

Problem: $CERTAIN_{\mathcal{M}}(Q)$

Input: Source instance \mathfrak{S} and tuple of elements $\vec{t} \in DOM(\mathfrak{S})$ Output: Answer whether $\vec{t} \in certain_{\mathcal{M}}(Q, \mathfrak{S})$

- Again, to guarantee tractability or even decidability one has to restrict the involved components
 - ► Constrain query language (e.g., from FOL to CQs)
 - ► Constrain dependencies (e.g., to weakly acyclic TGDs)

Proposition

There is an FOL query Q and a $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau})$ s.t. CERTAIN $_{\mathcal{M}}(Q)$ is undecidable.

Answering Conjunctive Queries (CQs)

Conjunctive queries (CQs)

$$Q(\vec{x}) = \exists \vec{y} \ (\alpha_1(\vec{x_1}, \vec{y_1}) \land \cdots \land \alpha_n(\vec{x_n}, \vec{y_n}))$$

▶ Unions of conjunctive queries (UCQs)

$$Q(\vec{x}) = CQ_1(\vec{x}) \lor \cdots \lor CQ_n(\vec{x})$$

► Crucial Property: (U)CQs are preserved under homomorphisms

Proposition

Let $h: \mathfrak{S} \xrightarrow{hom} \mathfrak{S}'$ and Q be a UCQ. Then:

$$Q(\mathfrak{S}) \subseteq Q(\mathfrak{S}')$$

(In detail: for all tuples of constants: If $\vec{a} \in Q(\mathfrak{S})$, then $\vec{a} \in Q(\mathfrak{S}')$

Follows easily from homomorphism definition

As a corollary one immediately gets also preservation for certain query answering.

Proposition

Let $h: \mathfrak{S} \xrightarrow{hom} \mathfrak{S}'$ and Q be a UCQ. Then:

 $certain(Q,\mathfrak{S})\subseteq certain(Q,\mathfrak{S}')$

Certain Answering UCQs

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is a union of egds and weakly acyclic tgds and let Q be a UCQ.

Then $CERTAIN_{\mathcal{M}}(Q)$ can be solved in PTIME.

Proof Sketch

- ▶ Consider naive evaluation strategy Q_{naive}
 - Let ${\mathfrak T}$ arbitrarily chosen universal solution
 - ▶ Treat marked NULLS in 𝒯 as constants.
 - ▶ Calculate $Q(\mathfrak{T})$ under this perspective
 - ightharpoonup and then eliminate all tuples from $Q(\mathfrak{T})$ containing a NULL
- ▶ Now one can show $certain_{\mathcal{M}}(Q,\mathfrak{S}) = Q_{naive}(\mathfrak{T}).$

Showing
$$certain_{\mathcal{M}}(Q,\mathfrak{S})=Q_{naive}(\mathfrak{T})$$

- ▶ We know that a universal solution 𝒯 can be constructed in polynomial time.
- ▶ For every $\mathfrak{T}' \in SOL_{\mathcal{M}}$ there is $\mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$
- ▶ NULL-free tuples in $Q(\mathfrak{T}) \subseteq \bigcap_{\mathfrak{T}' \in SOL_{\mathcal{M}}}$ NULL-free tuples in $Q(\mathfrak{T}')$
- Answering FOL queries (and so of UCQs) computable in PTIME data complexity

QA for other classes of Queries

 Proof above used a simple strategy for certain answering by naive evaluation

Naive Evaluation Strategy

$$cert(\mathfrak{S},Q)=Q_{naive}(\mathfrak{T})$$

where \mathfrak{T} is a (universal) solution

- \blacktriangleright This strategy works also for Datalog programs as constraints for the target schema τ
 - Reason: Datalog programs are preserved under homomorphisms
 - ► Even if one adds inequalities, naive evaluation works
 - Hence certain answering is here in PTime

Rewritability

- ▶ Naive evaluation is a form of rewriting
- ► Fundamental method that re-appears in different areas of CS
- ► Rewrite a query w.r.t. a given KB into a new query that "contains" the knowledge of KB
- Challenges
 - Preserve the semantics in the rewriting process
 - ► The language of the output query is constraint to a "simple language" (so rewritability not always guaranteed)

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and let Q be a quer over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^{C} such that

$$certain_{\mathcal{M}}(Q,\mathfrak{S})=Q_{rew}(\mathfrak{T})$$

- ▶ Here $\tau^C = \tau \cup \{C\}$ where unary predicate C depicts all constants (not NULLs) in targets
- Works like a type predicate

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and let Q be a quer over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^C such that

$$certain_{\mathcal{M}}(Q,\mathfrak{S})=Q_{rew}(\mathfrak{T})$$

There is **one** rewriting for any given pair of source $\mathfrak S$ and universal solution $\mathfrak T$

- ► The known component is the mapping M
- lacktriangle The unknown components are all pairs $(\mathfrak{S},\mathfrak{T})$

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and let Q be a quer over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^{C} such that

$$certain_{\mathcal{M}}(Q,\mathfrak{S})=Q_{rew}(\mathfrak{T})$$

If in definition one talk about cores $\mathfrak T$ instead of universal solutions then Q is said to be **FOL rewritable over cores**

Theorem

FOL rewritability over core \models FOL rewritability over universal sol., but not vice versa.

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and let Q be a quer over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^{C} such that

$$certain_{\mathcal{M}}(Q,\mathfrak{S})=Q_{rew}(\mathfrak{T})$$

Example

- ▶ $Q(\vec{x})$: a conjunctive query
- Q_{rew} : $Q(\vec{x}) \wedge C(x_1) \wedge \cdots \wedge C(x_n)$
- lacktriangle The rewriting is even independent of ${\mathcal M}$

Adding Negations to Query Language

- Negations in query languages lead to lose of naive rewriting technique
- ► Even if one allows only negation in inequalities

Definition (Conjunctive Queries with inequalities CQ^{\neq})

A conjunctive query with inequalities is a query of the form

$$Q(\vec{x}) = \exists \vec{y} \ (\alpha_1(\vec{x_1}, \vec{y_1}) \land \cdots \land \alpha_n(\vec{x_n}, \vec{y_n}))$$

where α_i is either an atomic relational formula or an inequality $z_i \neq z_j$.

```
Source DB
                                                         Target DB
  Flight (
                        dest.
                                  airl.
               src.
                                            dep
                                                           Routes( fno, src,
                                                                                         dest
               paris
                                  airFr
                                            2320
                        sant.
                                                           Info(
                                                                    fno, dep,
                                                                                       arr,
                                            2200
               paris
                        sant.
                                   lan
       Dependencies M_{\sigma\tau}
         Flight(src, dest, airl, dep) \longrightarrow
           \exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))
   • Query Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')
   ▶ But: cert(Q(x,z),\mathfrak{S})_{\mathcal{M}} = \emptyset because there is a solution
```

```
Source DB
                                                            Target DB
  Flight (
                         dest.
                                   airl.
                src.
                                               dep
                                                               Routes( fno, src, dest
                paris
                                    airFr
                                              2320
                          sant.
                                                               Info( fno, dep, arr,
                                     lan
                                              2200
                paris
                          sant.
       Dependencies M_{\sigma\tau}
         Flight(src, dest, airl, dep) \longrightarrow
            \exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))
      Any universal solution \mathfrak{T}' contains solution \tau solutions
                   \mathfrak{T} = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), \}
                                 Routes(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_4, Ian) }
   • Query Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')

ightharpoonup Q_{naive}(\mathfrak{T}') = \{(paris, sant)\}
   ▶ But: cert(Q(x,z),\mathfrak{S})_{\mathcal{M}} = \emptyset because there is a solution
```

Source DB Target DB Flight (airl. src. dest. dep Routes(fno, src, dest paris airFr 2320 sant. Info(fno, dep, arr, lan 2200 paris sant. Dependencies $M_{\sigma\tau}$ $Flight(src, dest, airl, dep) \longrightarrow$ $\exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))$ Any universal solution \mathfrak{T}' contains solution τ solutions $\mathfrak{T} = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), \}$ Routes(\perp_3 , paris, sant), Info(\perp_3 , 2320, \perp_4 , Ian) } • Query $Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$ $ightharpoonup Q_{naive}(\mathfrak{T}') = \{(paris, sant)\}$ ▶ But: $cert(Q(x,z),\mathfrak{S})_{\mathcal{M}} = \emptyset$ because there is a solution

Target DB Source DB Flight (airl. src. dest. dep Routes(fno, src, dest paris airFr 2320 sant. Info(fno, dep, arr, 2200 paris sant. lan Dependencies $M_{\sigma\tau}$ $Flight(src, dest, airl, dep) \longrightarrow$ $\exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))$ Any universal solution \mathfrak{T}' contains solution τ solutions $\mathfrak{T} = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), \}$ Routes(\perp_3 , paris, sant), Info(\perp_3 , 2320, \perp_4 , Ian) } • Query $Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$ $ightharpoonup Q_{naive}(\mathfrak{T}') = \{(paris, sant)\}$ (for any universal solution \mathfrak{T}') ▶ But: $cert(Q(x,z),\mathfrak{S})_{\mathcal{M}} = \emptyset$ because there is a solution

Source DB

Target DB

▶ Dependencies $M_{\sigma\tau}$

$$\begin{aligned} &\textit{Flight}(\textit{src}, \textit{dest}, \textit{airl}, \textit{dep}) \longrightarrow \\ &\exists \textit{fno} \ \exists \ \textit{arr}(\textit{Routes}(\textit{fno}, \textit{src}, \textit{dest}) \land \textit{Info}(\textit{fno}, \textit{dep}, \textit{arr}, \textit{airl})) \end{aligned}$$

Any universal solution \mathfrak{T}' contains solution τ solutions

$$\mathfrak{T} = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), Routes(\bot_3, paris, sant), Info(\bot_3, 2320, \bot_4, lan) \}$$

- Query $Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$
- $Q_{\text{naive}}(\mathfrak{T}') = \{(paris, sant)\}$ (for any universal solution \mathfrak{T}')
- ▶ But: $cert(Q(x,z),\mathfrak{S})_{\mathcal{M}} = \emptyset$ because there is a solution

$$\mathfrak{T}'' = \{ Routes(\pm_1, paris, sant), Info(\pm_1, 2320, \pm_2, airFr), Info(\pm_1, 2320, \pm_2, Ian) \}$$

CQ[≠] is in coNP

► In case of CQ[≠] one cannot even find a tractable possibility to certain answer them Answering

Theorem

Let $\mathcal{M}=(\sigma,\tau,M_{\sigma\tau},M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds, and let Q be a UCQ^{\neq} query. Then:

 $CERTAIN_{\mathcal{M}}(Q)$ is in coNP

Non-rewritability

► Generally it is not possible to decide whether rewritability holds

Theorem

For mappings without target constraints one can not decide whether a given FOL query is rewritable over the canonical solutions (over the core).

- Showing Non-FOL-rewritability can be done with locality tools
- Actually: One uses Hanf-locality of FOL
- Adaptation to DE setting

Not Covered

- Different semantics for query answering
 - Combinations of open-world (certain answers) and closed-word semantics
- ▶ Whole sub-field of mapping management
 - How to compose mappings
 - ► How to maintain mappings (e.g., w.r.t. consistency)
 - ► How to invert mappings: Get back source DB from target DB
- DE for non-relational DBs
 - e.g., DE for semi-structured data (XML)
 - different techniques needed

Exercise 5

Exercise 5.1 (4 Points)

Prove the folklore proposition that conjunctive queries are preserved under homomorphisms.

Exercise 5.2 (6 Points)

Complete the proof of the non-existence of a universal solution for the example given in the lecture.

Example (Non-existence of Universal Solutions)

$$M_{\sigma\tau} = \{\underbrace{E(x,y) \to G(x,y)}_{\theta_1} \}$$

$$M_{\tau} = \{\underbrace{G(x,y) \to \exists z \ L(y,z)}_{\chi_1}, \underbrace{L(x,y) \to \exists z \ G(y,z)}_{\chi_2} \}$$

▶ Source instance $\mathfrak{S} = \{E(a, b)\}$

Exercise 5.3 (4 Points)

- 1. Prove that every finite graph has a core
- 2. Prove that two cores of the same graph are isomorphic