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Solutions for Exercise 8



Solution for Exercise 8.1 (4 Bonus points)

Belief Revision has strong connections to Non-monotonic reasoning: For any (say
consistent) belief set K one can define an entailment relation �K as follows:

α �K β iff β ∈ K ∗ α

Answer the question whether �K is a monotonic entailment relation, i.e., whether it
fulfills:

If X �K α and Y ⊆ Y , then Y �K α

Solution: Clearly the entailment relation is non-monotonic. Consider K = Cn(p → q),

X = {p}, X ′ = {p,¬q). We have X �K q, but not X ′ �K q.
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Exercise 8.2 (4 Bonus points)

An alleged weakness of AGM belief revision is dealt under the term “Ramsey Test”.
Inform yourself on this test and explain how it works.

Solution: Define counterfactual conditionals α B β using the above entailment
relation. The Ramsey test gives an acceptability criterion for the acceptance of
counterfactual condition stating: counterfactual α B β is accepted in K iff β belongs
to revision result with α. If the language in which the belief sets and the triggers are
described contains a connective for the counterfactual—i.e. if the counterfactual is
part of the object language, then the Ramsey test reads as

α B β ∈ K iff β ∈ K ∗ α

Gärdenfors showed that in this case there cannot be a non-trivial AGM belief revision

fulfilling the Ramsey test (because such a revision operator would be monotonic in the

left argument).
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Exercise 8.3 (4 Bonus Points)

Consider the following postulate for belief bases B:

(R) If β ∈ B and β /∈ B ∗ α, then there is some B′ with
1. B ∗ α ⊆ B′ ⊆ B ∪ {α}
2. B′ is consistent
3. B′ ∪ {β} is inconsistent

First describe this postulates in natural language. What would be a good name for this
postulate (which was invented following a criticisms of AGM revision)?

Solution: If a sentence (β) does not survive the revision, then this is because it would

lead to an inconsistency with a consistent subset of the belief base and the trigger.

This says that only sentences of the belief base that are relevant for the

(inconsistency with the) trigger, are allowed to be eliminated.
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Recap of/Continuing Lecture 10



Ontology Change

I Considered ontology change from BR perspective
I Required adaptations and extensions for BR

I non-classical logics
I revision of finite belief bases
I multiple revision
I iterated revision
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Infinite Iteration and Learning



Formal Learning Theory for Infinite Revision

I Iterable revision operators applied to potentially infinite
sequence of triggers

I Define principles (postulates) that describe adequate behaviour

I The minimality ideas and relevant principles of BR not
sufficient

I Let you guide by principles of inductive learning and formal
learning theory

I Indeed, we need good principles for induction :)
http://www.der-postillon.com/2015/10/autofahrer-entlarvt-geheimen.html
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The Scientist-Nature-Scenario

I Class of possible worlds (one of them the real world = nature)
I Scientist has to answer queries regarding the real world
I He gets stream of data compatible with the real world
I Conjectures according to some strategy at every new arrival of

trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.
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The Scientist-Nature-Scenario for Orders
I Class of possible worlds
I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world
I Conjectures according to some strategy at every new arrival of

trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Component of Order Example)
Strict orders < on N
I 0,1,2,3, . . .
I 1,0,2,3, . . .
I . . . 3,2,1,0
I 0,2,4,6, . . . , 1,3,5,7
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The Scientist-Nature-Scenario for Orders
I Class of possible worlds
I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world
I Conjectures according to some strategy at every new arrival of

trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Component of Order Example)
Stream of dat made up by facts (called environments)
I R(2,3), R(1,2), R(0,2), R(1,4) . . .

(for world: 0,1,2,3, . . . )
I R(4,3), R(5,2), . . .

(for world: . . . 3,2,1,0)
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The Scientist-Nature-Scenario for Orders
I Class of possible worlds
I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world
I Conjectures according to some strategy at every new arrival of

trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Component of Order Example)
Problem set: orders isomorphic to ω ∪ ω∗

I 0,1,2,3, . . . is isomorphic to ω
I . . . 3,2,1,0 is isomorphic to ω∗.
I Problem query: Has order a least element?
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The Scientist-Nature-Scenario for Orders
I Class of possible worlds
I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world
I Conjectures according to some strategy at every new arrival of

trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Component of Order Example)
Scientist solves problem P iff for every <∈ P and every
environment e:
I If < has least element, then cofinitely often scientist

says yes on e(n) (on n-prefix of environment)
I If < has no least element, then for cofinitely many n

scientist says no on e(n)
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The Scientist-Nature-Scenario for Orders
I Class of possible worlds
I Scientist answers query regarding the real world (problem)
I He gets stream of data compatible with the real world
I Conjectures according to some strategy at every new arrival of

trigger a hypothesis on the correct answer
I Success: Sequence of answers stabilizes to a correct hypothesis.

Example (Component of Order Example)
Problem P = {<∈ ω ∪ ω∗ |< has least element} is solvable
I Consider L-score: For any finite sequence it is the

smallest number not occurring in right argument of R

I G-score: smallest number not occurring in first
argument of R

I Scientist: If L-score lower than G-score on given prefix,
say yes, otherwise no.
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Choosing Revision as Strategy

I Kelly investigates learning based on various revision operators
defined for epistemic states

I Hypotheses = sentences in the belief sets
I Main (negative) result in (Kelly 98)

Theorem
Revision operators implementing a minimal (one-step) revision
suffer from inductive amnesia: If and only if some of the past is
forgotten, stabilization is guaranteed.

Lit: K. T. Kelly. Iterated belief revision, reliability, and inductive amnesia. Erkenntnis,

50:11–58, 1998.
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Stabilization for Ontology Learning

Example (Book Shopping Agent)

Orec |= cheap ≡ costs < 5$, ¬costs < 5$(‘Faust ′)
Osend |= cheap ≡ costs < 6$, costs < 6$(‘Faust ′)

I Receiver: “List all cheap books by Goethe”

I Sender stream: α1 = cheap(‘Faust ′)`, α2, α3, . . .

I Integrating stream elements by revision operator ◦ gives
Output stream (O i

rec)i∈N:

(Orec , Orec ◦ α1, (Orec ◦ α1) ◦ α2, . . . )
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Stabilization for (Amnesic) Ontology Learning

I Properties of (O i
rec)i∈N depend on ◦

I Special Case: ◦ = weak type-2 operator (forgets quite a lof of
from “old ontology”)

I Prioritize incoming terminology
I Simple mappings for disambiguation

Example: cheaprec v cheapsend , cheap ≡ cheapsend

Theorem (Eschenbach & Ö., 2011)

For a (internally consistent) stream of atomic assertions the output
streams of ontologies produced with weak type-2 operator stabilizes.

Lit: Eschenbach and Ö. Ontology revision based on reinterpretation. Logic Journal oft

the IGPL, 18(4):579?616, 2010.
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Non-Stabilization for (Non-Amnesic) Ontology Learning

I Special Case: ◦ = strong type-2 operator (remembers “old
ontology”)

I Prioritize incoming terminology
I Advanced mappings for disambiguation

Example: cheaprec v cheapsend ,
cheapsend v cheaprec tDifferConceptrec,send , cheap ≡ cheapsend

Theorem (Eschenbach & Ö., 2011)

There is an ontology and a (internally consistent) stream of atomic
assertions s.t. the output stream of ontologies produced with the
strong type-2 operator does not stabilize.

Lit: Eschenbach and Ö. Ontology revision based on reinterpretation. Logic Journal oft

the IGPL, 18(4):579?616, 2010.
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Choosing Revision as Strategy

I Martin/Osherson investigate learning based revision operators
defined for finite sequences

I So their revision operators have always the whole history
within the trigger

I This leads to positive results

Theorem
Revision operators provide ideal learning strategies:There is a
revision operator a scientist can use to solve every (solvable)
problem.

Lit: E. Martin and D. Osherson. Scientific discovery based on belief revision. Journal

of Symbolic Logic, 62(4):1352–1370, 1997.
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Next Slides

I Infinite sequence from stream processing perspective
I Additional aspects: temporality of data, recency,

data-driveness, velocity

I Resume OBDA and consider how to lift them to temporal
OBDA and streaming OBDA

I Temporal OBDA: Add time aspect (somewhere)
I Stream OBDA: Higher-level stream w.r.t. ontology (and

mappings)
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Temporalized OBDA



A Confession

I Ontology-Based Data Access on temporal and Streaming
Data

I But: Streams are temporal streams and we talk about local
temporal reasoning
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Adding a Temporal Dimension to OBDA

I Most conservative strategy: handle time as “ordinary” attribute
time meas(x) ∧

val(x , y) ∧
time(x , z)

 ←− SELECT f(MID) AS m, Mval AS y, MtimeStamp AS z
FROM MEASUREMENT

I Classical Mapping
I Pro: Minimal (no) adaptation
I Contra:

I No control on “logic of time”
I Need reification

I sometimes necessary (because DLs provided only predicates up
to arity 2)

I but not that “natural”
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Flow of Time

I Flow of time (T ,≤T ) is a structure with a time domain T and
a binary relation ≤T over it.

I Flow metaphor hints on directionality and dynamic aspect of
time

I But still different forms of flow are possible

I One can consider concrete structures of flow of (time), as
done here

I Or investigate them additionally axiomatically
I An early model-theoretic and axiomatic treatise:

Lit: J. van Benthem. The Logic of Time: A Model-Theoretic Investigation into

the Varieties of Temporal Ontology and Temporal Discourse. Reidel, 2. edition,

1991.
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The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)
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Temporalized OBDA: General Approach

I Semantics rests on family of interpretations (It)t∈T
I Temporal ABox Ã: Finite set of T -tagged ABox axioms

Example

val(s0, 90◦)〈3s〉 holds in (It)t∈T iff I3s |= val(s0, 90◦)
“sensor s0 has value 90◦ at time point 3s”

I Alternative sequence representation of temporal ABox Ã
I (At)t∈T ′ (where T ′ are set of timestamps in T)
I At = {ax | ax〈t〉 ∈ Ã}

Definition (Adapted notion of OBDA rewriting)

cert(Q, (Sig , T , (At)t∈T ′) = ans(Qrew , (DB(At))t∈T ′)
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Temporalized OBDA:TCQs
I Different approaches based on modal (temporal) operators
I LTL (linear temporal logic) operators only in QL (Borgwardt et

al. 13)

Example

Critical(x) = ∃y .Turbine(x) ∧ showsMessage(x , y) ∧
FailureMessage(y)

Q(x) = ©−1©−1©−1(3(Critical(x) ∧©3Critical(x)))

“turbine has been at least two times in a critical
situation in the last three time units”

I CQ embedded into LTL template
I Special operators taking care of endpoints of state sequencing
I Not well-suited for OBDA as non-safe
I Rewriting simple due to atemporal TBox

Lit: S. Borgwardt, M. Lippmann, and V. Thost. Temporal query answering in the

description logic dl-lite. In FroCs, volume 8152 of LNCS, pages 165–180, 2013.
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Temporalized OBDA: TQL

I LTL operators in TBox and T argument in QL

Example

TBox axiom : showsAnomaly v 3UnplanedShutDown

“if turbine shows anomaly (now)
then sometime in the future it will shut down”

Query : ∃t.3s ≤ t ≤ 6s ∧ showsAnomaly(x , t)

I Can formulate rigidity assumptions
I Rewriting not trivial

Lit: A. Artale, R. Kontchakov, F. Wolter, and M. Zakharyaschev. Temporal description

logic for ontology- based data access. In IJCAI’13, pages 711–717. AAAI Press, 2013.
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Stream Basics



Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It?s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.
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Adding a Time Dimension

Definition (Temporal Stream)

A temporal stream S is a potentially infinite sequence of
timestamped objects d〈t〉 over some domain D and flow of time
(T ,≤T ).

I Consider non-branching (or: linear) time, i.e., ≤T is
I We assume that there is no last element in T
I We do not restrict T further, so it may be

I discrete or
I dense or
I continuous
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Arrival Ordering

I Sequence fixed by arrival ordering fixed <ar

I <ar is a strict total ordering on the elements of S

I Synchronuous streams: ≤T compatible with <ar

I Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.

I Asynchronous streams: ≤T not necessarily compatible with
<ar

Convention for the following

I Consider only temporal streams
I Consider only synchronous streams =⇒ neglect <ar .
I Represent streams as a potentially infinite multi-set (bag) of

elements
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Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller and this lecture
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I this and next lecture
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Local vs. global stream proessing

I Global aim: Learn about the whole by looking at the parts
I Examples: inductive learning, ontology change, iterated belief

revision (see slides before), robotics oriented stream processing
with plan generation

I May produce also an output stream
I But in the end the whole stream counts

I Local aim: Monitor window contents with time-local
I Examples: Real-time monitoring, simulation for reactive

diagnostics

I Categories not exclusive
I In learning one applies operation on (NOW)-window to learn

about stream
I In predictive analytics one monitors with wndow in order to

predcit upcoming events
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Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains
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Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D = a set of typed relational tuples adhering to a relational
schema
I Streams at the backend sources
I Srel = {(s1, 90◦)〈1s〉, (s2, 92◦)〈2s〉, (s1, 94◦)〈3s〉, . . . }
I Schema: hasSensorRelation(Sensor:string, temperature:integer)
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Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D = set of untyped tuples (of the same arity)
I Stream of tuples resulting as bindings for subqueries
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Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D = set of assertions (RDF tuples).
I Srdf = { val(s0, 90◦)〈1s〉, val(s2, 92◦)〈2s〉, val(s1, 94◦)〈3s〉, . . . }
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Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T ).

Streamified OBDA has to deal with different types of domains

D = set of RDF graphs
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Taming the Infinite

Nearly all stream provide a fundamental means to cope with
potential infinity of streams, namely ...
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Taming the Infinite

Nearly all stream provide a fundamental means to cope with
potential infinity of streams, namely ...

I Stream query continuous,
not one-shot activity

I Window content continuosly
updated
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Taming the Infinite

Nearly all stream provide a fundamental means to cope with
potential infinity of streams, namely ...

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Sin

Sout

I Here a time-based window of width 3 seconds
I and slide 1 second is applied
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Window Operators: Classification

I Direction of movement of the endpoints
I Both endpoints fixed (needed for “historical” queries)
I Both moving/sliding
I One moving the other not

I Window size
I Temporal
I Tuple-based
I Partitioned window
I Predicate window

I Window update
I tumbling
I sampling
I overlapping
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Relational Stream Processing with CQL



Relational Data Stream Processing
I Different groups working on DSMS around 2004

I Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

I Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

I Though well investigated and many similarities there is no
streaming SQL standard

I First try for standardization:
Lit: N. Jain et al. Towards a streaming sql standard. Proc. VLDB Endow.,

1(2):1379–1390, Aug. 2008.

I But if development speed similar to that for introducing
temporal dimension into SQL, then we have to wait...
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CQL (Continuous Query Language)
I Early relational stream query language extending SQL

I Developed in Stanford as part of a DSMS called STREAM

I Semantics theoretically specified by denotational semantics

I Practically, development of CQL was accompanied by the
development the Linear Road Benchmark (LRB)
(http://www.cs.brandeis.edu/~linearroad/)

I Had immense impact also on development of early RDF
streaming engines in RSP community
https://www.w3.org/community/rsp/)

Lit: A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:

semantic foundations and query execution. The VLDB Journal, 15:121–142, 2006.

Lit: A. Arasu et al. Linear road: A stream data management benchmark. In VLDB,

pages 480–491, 2004. 63 / 87
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CQL Operators

I Special data structure next to streams: relations R
I R maps times t to ordinary (instantaneous) relations R(t)
I Motivation: Use of ordinary SQL operators on instantaneous

relations
I Operators

I Stream-to-relation = window operator
I Relation-to-relation = standard SQL operators at every single

time point
I relation-stream = for getting streams agains

I Non-predictability condition for operators op:
I If two inputs S1 , S2 are the same up to t, then

op(S1)(t) = op(S2)(t).
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CQL Windows
I Window operators are stream-to-relation operators
I CQL knows tuple-based, partition based, and time-based

windows

Definition (Semantics of Window Operator)

R = S [Range wr Slide sl]
I with slide parameter sl and range wr
I tstart = bt/slc · sl
I tend = max{tstart − wr , 0}

R(t) =

{
∅ if t < sl
{s | s〈t ′〉 ∈ S and tend ≤ t ′ ≤ tstart} else

I Standard slide = 1: [RANGE wr]
I Left end fixed: [Range UNBOUND]
I Width 0: [NOW]
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Sliding Window Example in CQL

I Flow of time (N,≤)
I Input stream

S = {(s0, 90◦)〈0〉, (s1, 94◦)〈0〉, (s0, 91◦)〈1〉, (s0, 92◦)〈2〉,
(s0, 93◦)〈3〉, (s0, 95◦)〈5〉, (s0, 94◦)〈6〉....}

I Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93),
(s0, 95)}

{(s0, 93),
(s0, 95),
(s0, 94)}
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Sliding Window Example in CQL
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Sliding Window Example in CQL
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Relation vs. Stream

S = {(s0, 90◦)〈0〉, (s1, 94◦)〈0〉, (s0, 91◦)〈1〉, (s0, 92◦)〈2〉,
(s0, 93◦)〈3〉, (s0, 95◦)〈5〉, (s0, 94◦)〈6〉....}

I Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93),
(s0, 95)}

{(s0, 93),
(s0, 95),
(s0, 94)}

I Note that there are also entries for second 4
I Note that timestamps are lost in the bags
I Slides are local to streams and may be different over different

streams
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Relation-To-Stream Operators

I Output stream of input relation R :

Istream(R) =
⋃
t∈T

(R(t) \ R(t − 1))× {t}

stream of inserted elements
Dstream(R) =

⋃
t∈T

(R(t − 1) \ R(t))× {t}

stream of deleted elements
Rstream(R) =

⋃
t∈T

R(t)× {t}

stream of all elements

I In CQL IStream and DStream are syntactic sugar
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Sensor Measurement CQL Example

Example

SELECT Rstream(m.sensorID)
FROM Msmt[Range 1] as m, Events[Range 2] as e
WHERE m.val > 30 AND

e.category = Alarm AND
m.sensorID = e.sensorID

I Stream join realized by join of window contents
I Output is a stream
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Non-discrete Time Flows

I Taken literally, CQL window definitions work only for discrete
flows of times

I Time flow: (T ,≤) = (R,≤)
I Input stream: S = {i〈i〉 | i ∈ N}
I RStream(S [RANGE 1 SLIDE 1]) is “stream” with cardinality

of R
I “Solution” in CQL hidden in stream engine layer
I Heartbeat with smallest possible time granularity
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High-Level Declarative Stream Processing



Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

I Need to apply calculation/reasoning CRloc locally, e.g.
I arithmetics, timeseries analysis operations
I SELECT querying, CONSTRUCT querying, abduction,

revision, planning
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High-Level and Declarative

I Declarative:
Stream elements have “assertional status” and allow for
symbolic processing

Example (Relational data streams)

Stream element (sensor , val)〈3sec〉 “asserts” that sensor shows
some value at second 3

I High-Level:
Streams are processed with respect to some background
knowledge base such as a set of rules or an ontology.

Example (Streams of time-tagged ABox assertions)

Streams elements of form val(sensor , val)〈3sec〉 evaluated w.r.t. to
an ontology containing, e.g., axiom tempVal v val
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Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

KB

I Need to apply calculation/reasoning CRloc locally, e.g.
I arithmetics, timeseries analysis operations
I SELECT querying, CONSTRUCT querying, abduction,

revision, planning (=⇒ high-level & declarative)
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Streamified OBDA

I Nearly ontology layer stream processing
I CEP (Complex event processing)
I EP-SPARQL/ETALIS, T-REX/ TESLA, Commonsens/ESPER

I RDF-ontology layer stream processing
I C-SPARQL (della Valle et al. 09), CQELS

I Classical OBDA stream processing
I SPARQLStream (Calbimonte et al. 12) and MorphStream

I All approaches rely on CQL window semantics
I extend SPARQL or use some derivative of it
I Treat timestamped RDF triples but use reification
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Example of Reified Handling

Example

SELECT ?windspeed ?tidespeed
FROM NAMED STREAM <http://swiss-experiment.ch/

data#WannengratSensors.srdf>
[NOW-10 MINUTES TO NOW-0 MINUTES]
WHERE

?WaveObs a ssn:Observation;
ssn:observationResult ?windspeed;
ssn:observedProperty sweetSpeed:WindSpeed.

?TideObs a ssn:Observation;
ssn:observationResult ?tidespeed;
ssn:observedProperty sweetSpeed:TideSpeed.

FILTER (?tidespeed<?windspeed)
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SRBench (Zhang et al. 2012)
I Benchmark for RDF/SPARQL Stream Engines
I Contains data from LinkedSensorData, GeoNames, DBPedia
I Mainly queries for functionality tests, with eye on SPARQL

1.1. functionalities

Example (Example Query (to test basic pattern matching))

Q1. Get the rainfall observed once in an hour.

I Tested on CQELS, SPARQLStream and C-SPARQL

I Test results (for engine versions as of 2012)
I Basic SPARQL features supported
I SPARQL 1.1 features (property paths) rather not supported
I Only C-SPARQL supports reasoning (on RDFS level)

(tested subsumption and sameAs)
I Combined treatment of static data plus streaming data only

for CQELS and C-SPARQL
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