
Özgür L. Özçep

INSTITUT FÜR INFORMATIONSSYSTEME

Stream Processing 2
Lecture 12: STARQL

10 February, 2016

Foundations of Ontologies and Databases
for Information Systems
CS5130 (Winter 2015)

Recap

I Talked about stream basics
I Hinted on higher-level declarative stream processing

I Declarative: streams have assertional status
I High-level: Have to incorporate (reason over) a background KB

I There are many interesting systems for stream processing
w.r.t. an ontology—which we will not consider here

I See activities of the RDF stream community
https://www.w3.org/community/rsp/

I See also one of the tutorials of Emanuelle Della Valle, e.g.
http://emanueledellavalle.org/Teaching/srt2015.html

2 / 88

https://www.w3.org/community/rsp/
http://emanueledellavalle.org/Teaching/srt2015.html

The query framework STARQL

STARQL: Overview

I Started development within OPTIQUE
I Uses non-reified approach
I Use local temporal reasoning on finite state sequences
I Has framework character: embed different condition languages
I Convention for the following

I Use logical ABox/TBox notation for RDF assertions (also in
streams.), i.e.,

I {s0 rdf:type TempSensor} written as TempSens(s0).
I {s0 val 90} written as val(s0,90)

I Use SPARQL notation within STARQL queries.

4 / 88

STARQL: Overview

I Started development within OPTIQUE
I Uses non-reified approach
I Use local temporal reasoning on finite state sequences
I Has framework character: embed different condition languages
I Convention for the following

I Use logical ABox/TBox notation for RDF assertions (also in
streams.), i.e.,

I {s0 rdf:type TempSensor} written as TempSens(s0).
I {s0 val 90} written as val(s0,90)

I Use SPARQL notation within STARQL queries.

5 / 88

End-user IT-expert

Data models
Std. ontologies

. . .

Visualisation
& Analysis

Query
Formulation

Ontology & Mapping
Management

Ontology Mappings

Query Transformation
Query Planning

Query Execution Query Execution Query Execution

· · · · · ·

query

re
su
lt
s

streaming data temporal data static data

OBDA with
streams and
temporal data

End-user IT-expert

Data models
Std. ontologies

. . .

Visualisation
& Analysis

Query
Formulation

Ontology & Mapping
Management

Ontology Mappings

Query Transformation
Query Planning

Query Execution Query Execution Query Execution

· · · · · ·

re
su
lt
s

streaming data temporal data static data

VQS

BootOX

Ontop

STARQL

Distributed DSMS EXAREME (formerly ADP)

Structure of STARQL queries

STARQL Query Template

CREATE STREAM (initializes new stream)
CREATE PULSE (create pulse for

output times)
SELECT/ (specifies output format)
CONSTRUCT
FROM (specifies the input streams)
USING (specifies the static input)
WHERE (selection w.r.t. static data)
SEQUENCE BY (sequencing strategy)
HAVING (FOL template for local temporal

reasoning on states)

8 / 88

A Basic STARQL Example
Input: Stream SMsmt of measurement assertions.

SMsmt = { val(s0, 90◦C)〈0s〉,
val(s0, 93◦C)〈1s〉,
val(s0, 94◦C)〈2s〉,
val(s0, 92◦C)〈3s〉,
val(s0, 95◦C)〈5s〉
. . . }

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

9 / 88

Information Needs in STARQL

Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s.

STARQL Representation (STARQL-Mon)

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 val ?x}<i> AND {s0 val ?y}<j>
THEN ?x <= ?y

10 / 88

Components of STARQL

Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I Creates stream named Sout1
I Can be referenced under this name within another query

11 / 88

Components of STARQL

Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I CONSTRUCT is a SPARQL like constructor
I Alternatively, if one is interested only in the bindings one uses

SELECT

12 / 88

Output Format

SMsmt = { val(s0, 90◦C)〈0s〉,
val(s0, 93◦C)〈1s〉,
val(s0, 94◦C)〈2s〉,
val(s0, 92◦C)〈3s〉,

val(s0, 95◦C)〈5s〉
. . . }

Sout1 = { RecMonInc(s0)〈0s〉,
RecMonInc(s0)〈1s〉,
RecMonInc(s0)〈2s〉,

RecMonInc(s0)〈5s〉
. . . }

13 / 88

Components of STARQL

Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]-> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I Pulse fixes output times (bindings of NOW variable)
I Needed also for synchronization of streams

14 / 88

Components of STARQL

Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]-> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I Window specification with window interval and slide parameter
I Applied to input stream S_Msmt of timestamped RDF

assertions (= RDF quadruples)

15 / 88

Window Semantics
I S_Msmt [NOW-2s,NOW]->1s: stream of temporal ABoxes
I Sliding movement as in CQL but with timestamp preservation

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

Window sliding every second

Time Window contents
0s val(s0, 90◦)〈0s〉
1s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉
2s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉
3s val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
4s val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉

16 / 88

Components of STARQL
Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I Generate every 1 second a sequence of states referred to by
variables i , j

I States are annotated with ABoxes (RDF repositories)
I StdSeq = Standard Sequencing

17 / 88

STARQL Sequencing

I Group elements according to specified criterion (including
timestamps) into mini-bags

I Technically: Result is a sequence of ABoxes/RDF graphs

18 / 88

STARQL Sequencing

I Group elements according to specified criterion (operator
based on timestamps) into mini-bags

I Technically: Result is a sequence of ABoxes/RDF graphs

19 / 88

STARQL Sequencing and Multi-Streams

I Multi Streams are joined in the big bag and grouped together
in mini-bags

I Non-standard sequences as grouping criteria

20 / 88

Don’t Forget the Suitcase

I At every state: Incorporate background knowledge
I Semantically clear; how to achieve feasibility not

21 / 88

Components of STARQL
Extended Information Need for Monotonicity (IN-Mon)

Tell every 1s for every temperature sensor s whether the
temperature increased monotonically in the last 2s in stream
S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
WHERE { s rdf:type TemperatureSensor }
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I One has to incorporate the background knowledge on sensor
types at every state

I Semantically clear: Add static Abox to every state ABox
22 / 88

I Multi streams are joined in the big bag and group together in
mini-bags

I Non standard sequences as grouping criteria
I Static data is added to every ABox

23 / 88

STARQL: Mini-Bags

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Qloc

Ontology

24 / 88

The Sequence View

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

Time Window contents before sequencing
0s val(s0, 90◦)〈0s〉
1s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉
2s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉
3s val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
4s val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉
Time Window contents after standard sequencing SEQ1
0s {val(s0, 90◦)}〈0〉 {0}
1s {val(s0, 90◦)}〈0〉, {val(s0, 93◦)}〈1〉 {0, 1}
2s {val(s0, 90◦)}〈0〉, {val(s0, 93◦)}〈1〉, {val(s0, 94◦)}〈2〉 {0, 1, 2}
3s {val(s0, 93◦)}〈0〉, {val(s0, 94◦)}〈1〉, {val(s0, 92◦)}〈2〉 {0, 1, 2}
4s {val(s0, 94◦)}〈0〉, {val(s0, 92◦)}〈1〉 {0, 1}
5s {val(s0, 92◦)}〈0〉, {val(s0, 95◦)}〈1〉 {0,1}

25 / 88

Timestamps to Sequences

Time Window contents before sequencing
.

5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉
Time Window contents after standard sequencing SEQ1
.

5s {val(s0, 92◦)}〈0〉, {val(s0, 95◦)}〈1〉 {0,1}

I Timestamped assertions are grouped to ABoxes with state
index

I Information on timestamps and on their distance gets lost
I The index set SEQ may be different at every time point NOW
I One may think of SEQ as a dynamic relation giving for every

time point the set of states
I For unfolding: Additionally SEQ may contain for every state

also the corresponding timestamp.

26 / 88

Timestamps to Sequences

Time Window contents before sequencing
.

5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉
Time Window contents after standard sequencing SEQ1
.

5s {val(s0, 92◦)}〈0〉, {val(s0, 95◦)}〈1〉 {0,1}

I Timestamped assertions are grouped to ABoxes with state
index

I Information on timestamps and on their distance gets lost
I The index set SEQ may be different at every time point NOW
I One may think of SEQ as a dynamic relation giving for every

time point the set of states
I For unfolding: Additionally SEQ may contain for every state

also the corresponding timestamp.

27 / 88

Why at all Bother with State Sequences?

I Building microcosm for LTL like temporal reasoning on states
I But note

I Temporal logic frameworks presuppose state sequences
I In contrast, sequence construction is part of STARQL query

I Can, if needed, regain information by timestamp function on
states

I With state approach one can handle non-standard sequencing
techniques

I for advanced machine learning techniques
I in order to realize pre-processing: Filter out inconsistent

ABoxes
I in order to realize pre-processing: Roughen time granularity

28 / 88

Non-Standard Sequencing

I Use arbitrary congruence ∼ on time domain for sequencing
I Example: x ∼ y iff bx/2c = by/2c for all x , y ∈ T = N.

Time Window contents before sequencing
0s val(s0, 90◦)〈0s〉
1s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉
2s val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉
3s val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
4s val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉
5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉
Time Window contents after ∼ sequencing
0s {val(s0, 90◦)}〈0〉
1s {val(s0, 90◦), val(s0, 93◦)}〈0〉
2s {val(s0, 90◦), val(s0, 93◦)}〈0〉, {val(s0, 94◦)}〈1〉
3s {val(s0, 93◦)}〈0〉, {val(s0, 94◦), val(s0, 92◦)}〈1〉
4s {val(s0, 94◦), val(s0, 92◦)}〈0〉
5s {val(s0, 92◦)}〈0〉, {val(s0, 95◦)}〈1〉

29 / 88

Components of STARQL

Information Need for Monotonicity (IN-Mon)
Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s in stream S_Msmt.

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I First order condition over states with special “atoms”
I Informal epistemic semantics of {s0 :val ?x}<i>:

it is (provably) the case that in state i s0 has value ?x.

30 / 88

Testing the Conditions

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

RecMonInc(s0)<NOW>? yes yes yes no no yes

SMsmt = { val(s0, 90◦C)〈0s〉,
val(s0, 93◦C)〈1s〉,
val(s0, 94◦C)〈2s〉,
val(s0, 92◦C)〈3s〉,
val(s0, 95◦C)〈5s〉
. . . }

Sout1 = { RecMonInc(s0)〈0s〉,
RecMonInc(s0)〈1s〉,
RecMonInc(s0)〈2s〉,

RecMonInc(s0)〈5s〉
. . . }

31 / 88

Intricacies of the Monotonicity Condition

Information Need for Monotonicity (IN-Mon)

...
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

RecMonInc(s0)<NOW>? yes yes no no no yes

SMsmt2 :

32 / 88

Expressive Strength of HAVING Clauses
Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 2s in stream S_Msmt and whether the
value is functional.

CREATE STREAM S_out_1 AS
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i <= j IN SEQ1,?x,?y:

IF {s0 :val ?x}<i> AND {s0 :val ?y}<j>
THEN ?x <= ?y

I Check for i = j means checking of “functionality” of val in
ABox i = j

I then “monotonicity” in the usual sense on non-empty bindings
(which must be unique at every time point)

33 / 88

Monotonicity Variant

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0

90.0
91.0
92.0
93.0
94.0
95.0

RecMonInc(s0)<NOW>? no no no no no yes

SMsmt2 :

34 / 88

Pulse Declarations

I STARQL uses window operator as in CQL
I but mitigates CQLs “problems” with continuous time flows on

the query language level
I STARQL uses pulse declaration for well-defined output stream

with CREATE PULSE
I Pulse synchronizes multiples streams
I Pulse defines output times

35 / 88

Operational Semantics

Example template for operational semantics

CREATE STREAM S_out
CREATE PULSE START = st, FREQUENCY = fr
...
FROM S_MSMt [NOW-wr, NOW] -> sl
...

I Pulse time vs. stream time
I Pulse time tpulse regular according to FREQUENCY

tpulse = st −→ st + fr −→ st + 2fr −→ . . .

I Stream time tstr determined by trace of endpoint of sliding
window

I Stream time jumping/sliding

36 / 88

How Streaming Time Evolves I

Example template for operational semantics

CREATE STREAM S_out
CREATE PULSE START = st, FREQUENCY = fr
...
FROM S_MSMt [NOW-wr, NOW] -> sl
...

I Evolvement of tstr :

tstr tstr +m × sl
IF tstr +m × sl ≤ tpulse (for m ∈ N maximal)

I Window contents at tpulse :
{ax〈t〉 ∈ SMsmt | tstr − wr ≤ t ≤ tstr}

I Always tstr ≤ tpulse .

37 / 88

How Streaming Time Evolves II

Instantiation of example template

CREATE STREAM S_out
CREATE PULSE START = 0s, FREQUENCY = 2s
...
FROM S_MSMt [NOW-3s, NOW] -> 3s
...

tpulse : 0s → 2s → 4s → 6s → 8s → 10s → 12s →

tstr : 0s → 0s → 3s → 6s → 6s → 9s → 12s →

38 / 88

Example
Multiple streams

CREAT STREAM Sout AS
PULSE START = 0s, FREQUENCY = 2s
CONSTRUCT ?sens rdf:type RecentMonInc <NOW>
FROM S_Msmt_1 0s<-[NOW-3s, NOW]->3s,

S_Msmt_2 0s<-[NOW-3s, NOW]->2s
SEQUENCE BY StdSeq AS SEQ
HAVING (...)

tpulse : 0s → 2s → 4s → 6s → 8s → 10s → 12s →

tSMsmt1
: 0s → 0s → 3s → 6s → 6s → 9s → 12s →

tSMsmt2
: 0s → 2s → 4s → 6s → 8s → 10s → 12s →

39 / 88

Reasoning w.r.t. TBox and Static ABox

Extended Information Need (IN-Emon)

Tell every 1s whether the temperature in all temperature sensors
increased monotonically in the last 2s in stream S_Msmt

CREATE STREAM S_out_2 AS
PULSE START = 0s, FREQUENCY = 1s
SELECT { ?s rdf:type RecentMonInc }<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
USING STATIC ABOX <http://Astatic>,

TBOX <http://TBox>
WHERE { ?s rdf:type TempSens }
SEQUENCE BY StdSeq AS SEQ
HAVING
FORALL i < j IN SEQ,?x,?y:
IF ({ ?s val ?x }<i> AND { ?s val ?y }<j>)
THEN ?x <= ?y

40 / 88

Reasoning

I TBox T
I No temporal constructors
I Example: BurnerTipTempSensor v TempSens

“At every time point: a burner tip temperature sensor is a
temperature sensor”

I Static ABox Ast

I Assertions assumed not to change in time
I i.e., to hold at every time point
I Example: BurnerTipTempSens(s0), hasComponent(turb, s1)

41 / 88

WHERE Clause
Extended Information Need (IN-Emon)

...
USING STATIC ABOX <http://Astatic>,

TBOX <http://TBox>
WHERE { ?s rdf:type TempSens }
SEQUENCE BY StdSeq AS SEQ
HAVING
FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

I Answering WHERE clause by certain answer semantics
I ψWHERE (?s) = TempSens(?s)
I cert(ψWHERE , T ∪ Ast)
I Example: Captures also BurnerTipTempSensors

I Gives preselection of constants for instantiation in HAVING
clause

42 / 88

Semantics of HAVING Clause
Extended Information Need (IN-Emon)

...
HAVING
FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

I In original STARQL semantics 〈i〉 is interpreted as epistemic
operator

I Motivated by framework approach
I val(?s, ?x)〈i〉 holds if it is provably the case in ith ABox that

val(?x , ?y)

I Note the different uses of 〈·〉
I cert(val(?s, ?x),Ai ∪ T ∪ Ast)

43 / 88

Rewritability of HAVING Clauses

I Rewritability of HAVING clause becomes almost trivial for
epistemic semantics

I One perfectly rewrites embedded queries in state indexed
atoms w.r.t. T

I Resulting HAVING clause can be formulated in FOL with <,+
I Example

I HAVING clause
. . . EXISTS i {?s val ?x} <i> . . .

I TBox axiom: tempVal v val ∈ T
I Rewritten HAVING clause

... EXISTS i ({?s val ?x} UNION {?s tempVal ?x})<i>

...

I Works only for T without temporal operators

44 / 88

Rewritability of HAVING Clauses

I Non-epistemic semantics of 〈i〉
I Read 〈i〉 not as operator but as state-index attachment
I val(s, x)〈i〉 read as val(s, x , i)

I Same rewriting as for epistemic semantics works for some
fragment of HAVING clauses

I No negation
I No FORALL over domain variables

45 / 88

Inconsistency Handling

I Want to express that at every time point a sensor has at most
one value

I Non-reified view with classical TBox T : (func val) ∈ T
I No home-made inconsistencies in STARQL window semantics

I Window operator conserves timestamps
Time Window contents before sequencing
.

5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉

I Otherwise we could have: val(s0, 90), val(s0, 91)
I This was the reason to change CQL window semantics to

STARQL window semantic

I In reified view no similar problem with window semantics
I But more difficult to express functionality

“There are no two measurements having the same sensor but
different times”

46 / 88

Inconsistency Handling

I Want to express that at every time point a sensor has at most
one value

I Non-reified view with classical TBox T : (func val) ∈ T
I No home-made inconsistencies in STARQL window semantics

I Window operator conserves timestamps
Time Window contents before sequencing
.

5s val(s0, 92◦)〈3s〉, val(s0, 95◦)〈5s〉

I Otherwise we could have: val(s0, 90), val(s0, 91)
I This was the reason to change CQL window semantics to

STARQL window semantic

I In reified view no similar problem with window semantics
I But more difficult to express functionality

“There are no two measurements having the same sensor but
different times”

47 / 88

Non-Standard Sequencing Again

I SMsmt = {. . . val(s0, 90)〈3s〉, val(s0, 95)〈3s〉 . . . }
I With standard sequencing leads to an ABox not consistent

with (func val)

I Can test for inconsistencies by FOL query (Consistency is FOL
rewritable for DL-Lite)

I How to handle inconsistent ABoxes?
1. Use repair semantics (not classical certain answer semantics)

(perhaps in the future)
2. Use non-standard sequencing eliminating non-consistent

ABoxes

48 / 88

Detecting Inter-Temporal Inconsistencies

I Remember: No temporal operators in T

∃tempVal v TempSens,
∃pressVal v PressSens
TempSens v ¬PressSens

I SMsmt = {. . . tempVal(s0, 90)〈3s〉, pressVal(s0, 70)〈4s〉 . . . }
I Intuitively: Information regarding s0 not consistent
I Not detected if s0 not classified in static ABox
I Reasoning: Cannot express rigidity on sensor concepts

49 / 88

Querying Historical Data

I Different approaches to handle historical data in STARQL
1. Put slide = 0 and fix window ends
2. Stream historical data according to timestamps

Example solution 1
Return all sensor values of a specific sensor s0 within a specific
time interval [0s, 60s]

CREATE GRAPH Solution-One AS
CONSTRUCT { s0 :val ?x }
FROM S_Msmt[0s, 60s]->0s
USING STATIC ABOX <http://ABox>,

TBOX <http://TBox>
SEQUENCE BY StdSeq AS SEQ
HAVING EXISTS i { s0 :val ?x } <i>

50 / 88

Querying Historical Data

Example solution 2
Return all sensor values of a specific sensor s0 within a specific
time interval [0s, 60s]

CREATE STREAM Solution-TWO AS
CREATE PULSE AS

START = 0s, FREQUENCY = 1s, END = 60s
CONSTRUCT { s0 :val ?x }<NOW>
FROM S_Msmt[NOW, NOW]->1s
USING STATIC ABOX <http://ABox>,

TBOX <http://TBox>
SEQUENCE BY StdSeq AS SEQ
HAVING EXISTS i { s0 :val ?x } <i>

51 / 88

Window Semantics Again

I No difference whether S_Msmt is real-time stream or
streamed historical data

I Due to tstr ≤ tpulse
I Assume otherwise (tstr > tpulse)

I Historical query: window may contain future elements from
[tpulse , tstr]

I Stream query: window cannot contain future elements from
[tpulse , tstr]

52 / 88

Mapping Temporal and Streaming Data

I Mapping historical data

m1 : val(x , y)〈z〉 ←− SELECT f(SID) AS x, Mval AS y, MtimeStamp AS z
FROM MEASUREMENT-TABLE

I A(m1,DB) is a temporal ABox
I where MEASUREMENT-TABLE in DB

I Mapping streams

m2 : val(x , y)〈z〉 ←−
SELECT Rstream(f(SID) AS x, Mval AS y,

MtimeStamp AS z)
FROM MEASUREMENT-REL-STREAM

I A(m2,Str − DB) is a stream of timestamped ABox assertions
I where MEASUREMENT-REL-STREAM in Str-DB

53 / 88

Mapping Temporal and Streaming Data

I Mapping historical data

m1 : val(x , y)〈z〉 ←− SELECT f(SID) AS x, Mval AS y, MtimeStamp AS z
FROM MEASUREMENT-TABLE

I A(m1,DB) is a temporal ABox
I where MEASUREMENT-TABLE in DB

I Mapping streams

m2 : val(x , y)〈z〉 ←−
SELECT Rstream(f(SID) AS x, Mval AS y,

MtimeStamp AS z)
FROM MEASUREMENT-REL-STREAM

I A(m2,Str − DB) is a stream of timestamped ABox assertions
I where MEASUREMENT-REL-STREAM in Str-DB

54 / 88

Challenges of Unfolding

I HAVING clause language refers to state tagged not time
stamped assertions

I Solution
I Use simple sequencing mechanisms such as standard

sequencing
I Keep track of time window processing by stream of

SEQ-entries

I HAVING clause language uses domain calculus, CQL tuple
calculus

I Solution: Use safety mechanisms by adornments for variables
to guarantee domain independence

I CQL looses timestamps in window contents
I Solution: Assume Stream-To-Stream Operator duplicating

timestamps as time attributes: d〈t〉 7→ (d , t)〈t〉

55 / 88

Challenges of Unfolding

I HAVING clause language refers to state tagged not time
stamped assertions

I Solution
I Use simple sequencing mechanisms such as standard

sequencing
I Keep track of time window processing by stream of

SEQ-entries

I HAVING clause language uses domain calculus, CQL tuple
calculus

I Solution: Use safety mechanisms by adornments for variables
to guarantee domain independence

I CQL looses timestamps in window contents
I Solution: Assume Stream-To-Stream Operator duplicating

timestamps as time attributes: d〈t〉 7→ (d , t)〈t〉

56 / 88

Challenges of Unfolding

I HAVING clause language refers to state tagged not time
stamped assertions

I Solution
I Use simple sequencing mechanisms such as standard

sequencing
I Keep track of time window processing by stream of

SEQ-entries

I HAVING clause language uses domain calculus, CQL tuple
calculus

I Solution: Use safety mechanisms by adornments for variables
to guarantee domain independence

I CQL looses timestamps in window contents
I Solution: Assume Stream-To-Stream Operator duplicating

timestamps as time attributes: d〈t〉 7→ (d , t)〈t〉

57 / 88

Safety Mechanism

I HAVING clause ?y > 3 is not safe: Infinite binding set for ?y
I val(s0, ?y)〈i〉 ∧ (?y > 3) is safe
I Adornments for variables ensure not only finiteness but domain

independence
I Domain independence

I Query answer depends only on the interpretations of the
predicates mentioned in the query or the DB but not the
domain

I A query φ is domain independent iff for all interpretations I,J
such that I is a substructure of J : ans(φ, I) = ans(φ,J).

58 / 88

Safety Mechanism

I HAVING clause ?y > 3 is not safe: Infinite binding set for ?y
I val(s0, ?y)〈i〉 ∧ (?y > 3) is safe
I Adornments for variables ensure not only finiteness but domain

independence
I Domain independence

I Query answer depends only on the interpretations of the
predicates mentioned in the query or the DB but not the
domain

I A query φ is domain independent iff for all interpretations I,J
such that I is a substructure of J : ans(φ, I) = ans(φ,J).

59 / 88

Domain Independence

I Counterexample
I φ(x , y) = A(x) ∨ B(y)
I I = ({α}, (·)I), J = ({α, β}, (·)J)
I AI = AJ = {α}
I BI = BJ = ∅:
I (α, β) ∈ ans(φ,J) but (α, β) /∈ ans(φ, I).

I Arbitrary use of disjunction has strange consequences for
answering on DB

I ψ(?x , ?y) = TempSens(?x) ∨ PressureSens(?y)
I gives finite set of bindings but is not domain independent

DB: TempSens PressureSens
a1 b1

I ans(ψ(?x , ?y),DB) = {(a1, b1), (a1, a1), (b1, b1)}

60 / 88

Adornments

I Safety conditions by variable
adornments in {+,−,−−, ∅}

I x+: x is safe variable
I x−: x is non-safe variable

(but may become safe by
negation)

I x−−: x is non-safe variable
I x∅: x does not occur in other

formula

I Allowed adornment
combinations fixed by table

I Grammar rules have form

hCl(~z~g
1∨~g2

) −→ hCl(~z~g
1
) OR hCl(~z~g

2
)

g1 g2 g1 ∨ g2 . . .
−− −− −− . . .
−− − −
−− + −−
−− ∅ −−
− −− −
− − −
− + −
− ∅ −
+ −− −−
+ − −
+ + +
+ ∅ −−
∅ −− −−
∅ − −
∅ + −−
∅ ∅ ∅

61 / 88

Adornments

I Grammar rules have form

hCl(~z~g
1∨~g2

) −→ hCl(~z~g
1
) OR hCl(~z~g

2
)

I Example

F (x−−1 , x+2 , x
−
3) −→

F1(x
−−
1 , x+2 , x

−
3) OR F2(x

+
1 , x+2 , x

∅
3)

g1 g2 g1 ∨ g2 . . .
−− −− −− . . .
−− − −
−− + −−
−− ∅ −−
− −− −
− − −
− + −
− ∅ −
+ −− −−
+ − −
+ + +
+ ∅ −−
∅ −− −−
∅ − −
∅ + −−
∅ ∅ ∅

62 / 88

Safety in Monotonicity Condition

Extended Information Need (IN-Emon)

HAVING
FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

I Unsafe variables in ?x <= ?y ...
I ... are bound by antecedens of all quantifier

63 / 88

Transformation into SQL
I Safety mechanism guarantees: HAVING clauses transformable

into formulas in safe range normal form (SRNF)
I Folklore theorem: SRNF is domain independent
I Transformation into SQL

I Rewrite FORALL with NOT EXISTS NOT
I Push NOT inwards (stopping at EXISTS) . . .

Example (Part of the STARQL-to-Backend Transformation)

FORALL i < j IN SEQ,?x,?y:
IF { ?s val ?x }<i> AND { ?s val ?y }<j>
THEN ?x <= ?y

;; ==== transformed to ====>

NOT EXISTS i,j in SEQ, x,y:
i < j AND { ?s val ?x }<i> AND { ?s val ?y }<j>
AND x > y

64 / 88

Example (Monotonicity Query in STARQL)

CREATE STREAM S_out_1 AS
PULSE START = 0s, FREQUENCY = 1s
CONSTRUCT {s0 rdf:type RecMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ1
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 val ?x}<i> AND {s0 val ?y}<j>
THEN ?x <= ?y

Example (Outcome of Transformation in CQL)

CREATE VIEW windowRel as
SELECT * FROM REL-STREAM-MEASUREMENT[RANGE 2s Slide 1s];

SELECT Rstream(’ s0 rdf:Type RecMonInc ’||’<’||timestamp||’>’)
FROM windowRel
WHERE windowRel.SID = ‘TC255’ AND

NOT EXISTS (
SELECT * FROM
(SELECT timestamp as i, value as x FROM windowRel),
(SELECT timestamp as j, value as y FROM windowRel)
WHERE i < j AND x > y);

65 / 88

Complexity in Stream Processing
I Low-level stream processing: strict constraints on space

complexity
I Very strict: exact O(log(n)) where n is length of stream (seen

so far)
I Less strict:

1. Approximate solutions
2. O(polylog(n) n) (“semi-stream” in graph processing where n is

number of vertices)
I Extensive use of synopses: data structure for storing relevant

interim results

Questions

1. Isn’t the space problem already solved by choosing a finite
window?

2. Is this relevant for high-level (in particular STARQL) stream
processing?

66 / 88

Ad Question 1 (Finite Window)

I Window may still be too big
I Small time based windows may still cause problems

S: { val(s0,90)<3s>, val(s1,91)<3s>, val(s2,95)<3s>,
val(s3,94)<3s>, val(s4,96)<3s>, . . . }

S[NOW,NOW] at (t = 3s): unbounded

67 / 88

Ad Question II (High-Level Streams)

I Answer: Want optimized version with small synopses (in
particular for multiple query scenarios)

I Related problem in high-level data stream processing:
Achieve memory-boundedness

Definition
A query is memory-bounded if there exists an algorithm using a
constant number of registers as synopsis for producing answers.

68 / 88

Example: Monotonic Increase

Information Need for Monotonicity (IN-Mon)

Tell every 1s whether the temperature in sensor s0 increased
monotonically in the last 10s.

STARQL Representation (STARQL-Mon)

...
FROM S_Msmt [NOW-10s, NOW]->1s
...
HAVING FORALL i < j IN SEQ1,?x,?y:

IF {s0 val ?x}<i> AND {s0 val ?y}<j>
THEN ?x <= ?y

69 / 88

Example: Monotonic Increase

I Simple implementation
I Every 1 second construct from scratch sequence in 10s-window

and
I test monotonicity (by iterating over all state pairs (i , j))

I Efficient implementation (alg-mon)
I store max temp value for last and current time point
I shift if incoming triple has new (bigger) timestamp

I Can this idea be generalized?
Yes, but surely not for all queries

Example: not memory bounded

HAVING
EXISTS i,j { ?s :val ?x } <i> AND { ?r :val ?x }<j>

70 / 88

Example: Monotonic Increase

I Simple implementation
I Every 1 second construct from scratch sequence in 10s-window

and
I test monotonicity (by iterating over all state pairs (i , j))

I Efficient implementation (alg-mon)
I store max temp value for last and current time point
I shift if incoming triple has new (bigger) timestamp

I Can this idea be generalized?
Yes, but surely not for all queries

Example: not memory bounded

HAVING
EXISTS i,j { ?s :val ?x } <i> AND { ?r :val ?x }<j>

71 / 88

Testing for Memory Boundedness

Proposition

I There is a polynomial syntactic criterion on the existential
positive fragment of HAVING clauses for testing whether a
memory-bounded algorithm exists

(uses a theorem of (Arasu et al. 04))
I In this case, the synopsis algorithm is a slightly generalized

version of alg-mon

I But how to implement algorithm in STARQL?
=⇒ user defined functions (UDFs)

Lit: A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing

memory requirements for queries over continuous data streams. ACM Trans. Database

Syst., 29(1):162–194, Mar. 2004.

72 / 88

Testing for Memory Boundedness

Proposition

I There is a polynomial syntactic criterion on the existential
positive fragment of HAVING clauses for testing whether a
memory-bounded algorithm exists

(uses a theorem of (Arasu et al. 04))
I In this case, the synopsis algorithm is a slightly generalized

version of alg-mon

I But how to implement algorithm in STARQL?
=⇒ user defined functions (UDFs)

Lit: A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing

memory requirements for queries over continuous data streams. ACM Trans. Database

Syst., 29(1):162–194, Mar. 2004.

73 / 88

Multiple Queries and Streams

I Reasons for multiplicity in Sensor Measurement scenario
I Monitor different components (e.g. turbines, sensors) in a

system
I Monitor different hand-crafted well-proven patterns

I Challenges
I Scalability
I Need specific and Generic optimization strategies

74 / 88

Example: Comparing sensor readings

What is it?
Measure the temperature at different (6 to 24) interduct
thermocouples
How to spot problems?

I Do the readings really change in unison?
I Spot failing temperature probes: does one reading go out of

sync with the others?

Bias drift solution
Compute average, monitor deviation from average for all
individual temperatures, generate event if a certain absolute
difference is exceeded.
=⇒ up to 24 queries (per turbine)
=⇒ using aggregation (average AVG)

75 / 88

Correlation

I Weakness of “Biased Drift” solution: Does not detect
1. change of signal position (e.g., from coldest to hottest)
2. when signals start spreading apart

I A fine-grained solution: using (Pearson) correlation

Definition

ρ(X ,Y) =
cov(X ,Y)

σXσY
=

E [(X − µX)(Y − µY)]
σXσY

I Measure linear dependence of two random variables with value
in [-1,1]

I µ = mean
I E = expectation value
I σ = standard deviation

76 / 88

Correlation

I Note: SQL allows only unary (one-column) aggregation
I Have to invent multicolumn user defined function
I Even more: we may be interested in calculating correlations

among all sensors
I Challenge: Quadratic increase of correlation calculations
I Known optimization strategy for online correlation calculation:

Locality-sensitive hashing

77 / 88

Local-Sensitive Hashing (LSH)
I Calculates most similar pairs above some correlation threshold
I Is an approximation technique for continuous calculation

I Idea: Hash into buckets and then calculate correlation only
over bucket
=⇒ Elements in different buckets are not similar

I But: An element is allowed to be in different buckets

I The unwanted cases
I False positives: objects in same bucket but not similar

Not severe: One recognizes it during correlation calculation,
but may only lower performance

I False negatives: similar object in different buckets
Severe: not recognized.

I Technique to lower false negatives: Allow objects to fall in
more buckets.

78 / 88

STARQL Implementations(s)
I STARQL running as submodule in Optique platform

I Uses stream extended version of EXAREME (formerly ADP)
I https://github.com/madgik/exareme

I Highly distributable DBMS
I Extends SQL-Lite with window operators (as in CQL)

I Mapping handling using ontop and hardcoded timestamp hook
mechanism

I Multiple streams
I Nested queries

I But don’t you stop here? Why more than one implementation?

I Additional system for comparison with Optique submodule
I Fast identification of errors, faults, unexpected behaviours
I Fast change without dependencies
I Pre-testing of desired features/requirements
I Testing different paradigms: materialized vs. non-materialized

79 / 88

https://github.com/madgik/exareme

STARQL Implementations(s)
I STARQL running as submodule in Optique platform

I Uses stream extended version of EXAREME (formerly ADP)
I https://github.com/madgik/exareme

I Highly distributable DBMS
I Extends SQL-Lite with window operators (as in CQL)

I Mapping handling using ontop and hardcoded timestamp hook
mechanism

I Multiple streams
I Nested queries

I But don’t you stop here? Why more than one implementation?

I Additional system for comparison with Optique submodule
I Fast identification of errors, faults, unexpected behaviours
I Fast change without dependencies
I Pre-testing of desired features/requirements
I Testing different paradigms: materialized vs. non-materialized

80 / 88

https://github.com/madgik/exareme

STARQL implementations(s)

I STARQL+ PostgreSQL
I Meant to be used for historical reasoning
I Extended to STARQL+PipelineDB

(https://www.pipelinedb.com/) in order to handle streams
(work in progress)

I Prolog prototype
I Translates STARQL queries into safe non-recursive datalog

with negation
I Uses mappings to SQL
I Stream handling to be implemented

I LISP prototype
I ABDEO approach
I Uses materialization

81 / 88

https://www.pipelinedb.com/

Another Use Case

I Applying STARQL prototype to a use case which requires
I handling timed data for reactive diagnosis and monitoring
I coping with heterogeneous data
I use of pattern recognition/machine learning

I Tiny Stream OBDA demo within FP7 Panoptesec
(www.panoptesec.eu)

I Intrusion detection within a cyber defence decision support
system

I Simple OWL ontology extracted from IDMEF XML file
(Intrusion Detection Exchange Format)

82 / 88

www.panoptesec.eu

Data

I Logs from components such as routers, hubs, firewalls, ids
I Example: IDS schema
timestamp severity src dest id analyzer description
09:41:28 1 21 ids0 url/rule-1111207/
05:52:56 1 22 ids0 url/rule-1111207/
02:10:34 2 23 ids0 url/rule-1111210/
17:44:50 2 24 ids0 url/rule-1111210/
06:49:49 2 25 ids0 url/rule-1111210/

...
03:00:43 5 34 ids0 url/rule-1111203/

I url =
http://www.digitalbond.com/tools/quickdraw/dnp3-rules

83 / 88

I Rules described in
specific language

I For demo: STARQL
used on level above
IDS

I Possible extension:
STARQL implements
rules (CEP style)

Complex Event Processing

I One stream with point-events
I Example: Recognize shipment chain of contaminated products

Example: Contamination (Agrawal et al 08)

PATTERN SEQ(Alert a, Shipment+ b[])
WHERE skip_till_any_match(a, b[])

a.type = ’contaminated’ and
b[1].from = a.site and
b[i].from = b[i-1].to

WITHIN 3 hours

85 / 88

Complex Event Processing

I One stream with point-events
I Example: Recognize shipment chain of contaminated products

Example: Contamination (Agrawal et al 08)

PATTERN SEQ(Alert a, Shipment+ b[])
WHERE skip_till_any_match(a, b[])

a.type = ’contaminated’ and
b[1].from = a.site and
b[i].from = b[i-1].to

WITHIN 3 hours

86 / 88

Complex Event Processing

I One stream with point-events
I Example: Recognize shipment chain of contaminated products

Example: Contamination (Agrawal et al 08)

PATTERN SEQ(Alert a, Shipment+ b[])
WHERE skip_till_any_match(a, b[])

a.type = ’contaminated’ and
b[1].from = a.site and
b[i].from = b[i-1].to

WITHIN 3 hours

87 / 88

Complex Event Processing

I One stream with point-events
I Example: Recognize shipment chain of contaminated products

Example: Contamination (Agrawal et al 08)

PATTERN SEQ(Alert a, Shipment+ b[])
WHERE skip_till_any_match(a, b[])

a.type = ’contaminated’ and
b[1].from = a.site and
b[i].from = b[i-1].to

WITHIN 3 hours

88 / 88

	The query framework STARQL

