
Prof.	Dr.	Ralf	Möller	
Dr.	Özgür	L.	Özçep	
Universität	zu	Lübeck	
InsAtut	für	InformaAonssysteme	
	
Tanya	Braun	(Exercises)	

Based on Slides By
Jure	Leskovec,	Anand	Rajaraman,	Jeff	Ullman	
http://www.mmds.org		
		

Mining	of	Massive	Datasets	
Jure	Leskovec,	Anand	Rajaraman,	Jeff	Ullman	
Stanford	University	

http://www.mmds.org		

Note to other teachers and users of these slides: We would be delighted if you found this our
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://www.mmds.org

High	dim.	
data	

Locality	
sensiAve	
hashing	

Clustering	

Dimensional
ity	

reducAon	

Graph		
data	

PageRank,	
SimRank	

Community	
DetecAon	

Spam	
DetecAon	

Infinite		
data	

Filtering	
data	

streams	

Queries	on	
streams	

Web	
adverAsing	

Machine	
learning	

SVM	

Decision	
Trees	

Perceptron,	
kNN	

Apps	

Recommen
der	systems	

AssociaAon	
Rules	

Duplicate	
document	
detecAon	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 3	

¡  In	many	data	mining	situa-ons,	we	do	not	
know	the	en-re	data	set	in	advance	

¡  Stream	Management	is	important	when	the	
input	rate	is	controlled	externally:	
§ Google	queries	
§  TwiXer	or	Facebook	status	updates	

¡ We	can	think	of	the	data	as	infinite	and		
non-sta-onary	(the	distribuAon	changes		
over	Ame)	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 4	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 5	

Stream Data

16

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016Ex:	Leszek	Rutkowski		

6	

¡  Input	elements	enter	at	a	rapid	rate,		
at	one	or	more	input	ports	(i.e.,	streams)	
§ We	call	elements	of	the	stream	tuples	

¡  The	system	cannot	store	the	en-re	stream	
accessibly	

¡  Q:	How	do	you	make	cri-cal	calcula-ons	
about	the	stream	using	a	limited	amount	of	
(secondary)	memory?	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

¡  Stochas-c	Gradient	Descent	(SGD)	is	an		
example	of	a	stream	algorithm	

¡  In	Machine	Learning	we	call	this:	Online	Learning	
§  Allows	for	modeling	problems	where	we	have	
a	conAnuous	stream	of	data		

§ We	want	an	algorithm	to	learn	from	it	and		
slowly	adapt	to	the	changes	in	data	

¡  Idea:	Do	slow	updates	to	the	model	
§  SGD	(SVM,	Perceptron)	makes	small	updates	
§  So:	First	train	the	classifier	on	training	data.		
§  Then:	For	every	example	from	the	stream,	we	slightly	
update	the	model	(using	small	learning	rate)	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 7	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 8	

Different kinds of learning*
(regarding time constraints and examples availability)

Batch mode learning

Incremental learning

Online learning

Anytime learning

32
* V. Lemaire, Ch. Slaperwyck, A. Bondu, A Survey on Supervised Classification on Data Streams, Lecture Notes in
Business Information Processing, vol. 205, pp. 88-125, Srpinger, 2015

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016

Fully available representative data

New hypotheses depends only on
 last hypothese and last example

Incremental + data driven (stream)
Must handle concept drift

Maximize quality of hypothese until possible
interruption (by new example)

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 9	

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
 time

Streams Entering.

Each is stream is
composed of

elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

Comment: Constructed
by enduser in a general
query language; need
general optimizations

Comment:
Have control over it; can
Use specific optimizations

¡  Types	of	queries	one	wants	to	answer	on		
a	data	stream:	(we’ll	do	these	today)	
§  Sampling	data	from	a	stream	
§ Construct	a	random	sample	

§ Queries	over	sliding	windows	
§ Number	of	items	of	type	x	in	the	last	k	elements		
of	the	stream		

	(Comment:	This	is	only	one	example	among	others)	

			

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 10	

Comment:
Challenging because we need
reliable & sufficient statistics

¡  Types	of	queries	one	wants	on	answer	on		
a	data	stream:	
§  Filtering	a	data	stream	
§  Select	elements	with	property	x	from	the	stream	

§  Coun-ng	dis-nct	elements	
§ Number	of	disAnct	elements	in	the	last	k	elements		
of	the	stream	

§  Es-ma-ng	moments	
§  EsAmate	avg./std.	dev.	of	last	k	elements	

§  Finding	frequent	elements	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 11	

¡ Mining	query	streams	
§ Google	wants	to	know	what	queries	are		
more	frequent	today	than	yesterday	

¡ Mining	click	streams	
§  Yahoo	(well…)	wants	to	know	which	of	its	pages	
are	gejng	an	unusual	number	of	hits	in	the	past	
hour	

¡ Mining	social	network	news	feeds	
§  E.g.,	look	for	trending	topics	on	TwiXer,	Facebook	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 12	

¡  Sensor	Networks		
§ Many	sensors	feeding	into	a	central	controller	

¡  Telephone	call	records		
§ Data	feeds	into	customer	bills	as	well	as	
seXlements	between	telephone	companies	

¡  IP	packets	monitored	at	a	switch	
§ Gather	informaAon	for	opAmal	rouAng	
§ Detect	denial-of-service	aXacks	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 13	

As	the	stream	grows	the	sample		
also	gets	bigger	

¡  Since	we	can	not	store	the	en-re	stream,		
one	obvious	approach	is	to	store	a	sample	

¡  Two	different	problems:	
§  (1)	Sample	a	fixed	propor-on	of	elements		
in	the	stream	(say	1	in	10)	

§  (2)	Maintain	a	random	sample	of	fixed	size		
over	a	potenAally	infinite	stream	
§ At	any	“Ame”	k	we	would	like	a	random	sample		
of	s	elements	
§ What	is	the	property	of	the	sample	we	want	to	maintain?	
For	all	Ame	steps	k,	each	of	k	elements	seen	so	far	has		
equal	prob.	of	being	sampled	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 15	

¡  Problem	1:	Sampling	fixed	propor-on	
¡  Scenario:	Search	engine	query	stream	
§  Stream	of	tuples:	(user,	query,	Ame)	
§ Answer	ques-ons	such	as:	How	oWen	did	a	user	
run	the	same	query	in	a	single	day	

§ Have	space	to	store	1/10th	of	query	stream	
¡  Naïve	solu-on:	
§ Generate	a	random	integer	in	[0..9]	for	each	query	
§  Store	the	query	if	the	integer	is	0,	otherwise	
discard			

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 16	

¡  Simple	ques-on:	What	frac-on	of	queries	by	an	
average	search	engine	user	are	duplicates?	
§  Suppose	each	user	issues	x	queries	once	and	d	queries	
twice	(total	of	x+2d	queries)	
§  Correct	answer:	d/(x+d)	

§  Proposed	solu-on:	We	keep	10%	of	the	queries	
§  Sample	will	contain	x/10	of	the	singleton	queries	and		
2d/10	of	the	duplicate	queries	at	least	once	

§  But	only	d/100	pairs	of	duplicates	
§  d/100	=	1/10	·	1/10	·	d	

§  Of	d	“duplicates”	18d/100	appear	exactly	once	
§  18d/100	=	((1/10	·	9/10)+(9/10	·	1/10))	·	d	

§  So	the	sample-based	answer	is:		
			d/100	/(x/10	+	18d/100	+	d/100)=	d/(10x	+	19d)		
																																																																≠	d/(x+d)		

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 17	

Solu-on:	
¡  Pick	1/10th	of	users	and	take	all	their		
searches	in	the	sample	

¡  Use	a	hash	funcAon	that	hashes	the		
user	name	or	user	id	uniformly	into	10	
buckets	

	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 18	

¡  Stream	of	tuples	with	keys:	
§  Key	is	some	subset	of	each	tuple’s	components	
§  e.g.,	tuple	is	(user,	search,	Ame);	and	here:	key	is	user	

§  Choice	of	key	depends	on	applicaAon	

¡  To	get	a	sample	of	a/b	frac-on	of	the	
stream:	
§ Hash	each	tuple’s	key	uniformly	into	b	buckets	
§  Pick	the	tuple	if	its	hash	value	is	at	most	a	

	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 19	

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

As	the	stream	grows,	the	sample	is	of	
fixed	size	

¡  Problem	2:	Fixed-size	sample	
¡  Suppose	we	need	to	maintain	a	random	
sample	S	of	size	exactly	s	tuples	
§  E.g.,	main	memory	size	constraint	

¡ Why?	Don’t	know	length	of	stream	in	advance	
¡  Suppose	at	-me	n	we	have	seen	n	items	
§  Each	item	is	in	the	sample	S	with	equal	prob.	s/n	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 21	

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Imprac-cal	solu-on	would	be	to	store	all	the	n	tuples	seen		
so	far	and	out	of	them	pick	s	at	random	

¡  Algorithm	(a.k.a.	Reservoir	Sampling)	
§  Store	all	the	first	s	elements	of	the	stream	to	S	
§  Suppose	we	have	seen	n-1	elements,	and	now		
the	nth	element	arrives	(n	>	s)	
§ With	probability	s/n,	keep	the	nth	element,	else	discard	it	
§  If	we	picked	the	nth	element,	then	it	replaces	one	of	the		
s	elements	in	the	sample	S,	picked	uniformly	at	random	

¡  Claim:	This	algorithm	maintains	a	sample	S	
with	the	desired	property:	
§  Aver	n	elements,	the	sample	contains	each	
element	seen	so	far	with	probability	s/n	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 22	

¡ We	prove	this	by	induc-on:	
§  Assume	that	aver	n	elements,	the	sample	contains	
each	element	seen	so	far	with	probability	s/n	

§ We	need	to	show	that	aver	seeing	element	n+1	
the	sample	maintains	the	property	
§  Sample	contains	each	element	seen	so	far	with	
probability	s/(n+1)	

¡  Base	case:	
§  Aver	we	see	n=s	elements	the	sample	S	has	the	
desired	property	
§  Each	out	of	n=s	elements	is	in	the	sample	with	
probability	s/s	=	1	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 23	

¡  Induc-ve	hypothesis:	Aver	n	elements,	the	sample	
S	contains	each	element	seen	so	far	with	prob.	s/n	

¡  Now	element	n+1	arrives	
¡  Induc-ve	step:	For	elements	already	in	S,	
probability	that	the	algorithm	keeps	it	in	S	is:	

¡  So,	at	Ame	n,	tuples	in	S	were	there	with	prob.	s/n	
¡  Time	n→n+1,	tuple	stayed	in	S	with	prob.	n/(n+1)	
¡  So	prob.	tuple	is	in	S	at	Ame	n+1	is	
																										n/(n+1)*	s/n	=	s/(n+1)	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 24	

1
1

11
1

+
=⎟

⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

−
n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the
sample not picked

¡  A	useful	model	of	stream	processing	is	that	
queries	are	about	a	window	of	length	N	–		
the	N	most	recent	elements	received	

¡  Interes-ng	case:	N	is	so	large	that	the	data	
cannot	be	stored	in	memory,	or	even	on	disk	
§  Or,	there	are	so	many	streams	that	windows		
for	all	cannot	be	stored	

¡  Amazon	example:		
§  For	every	product	X	we	keep	0/1	stream	of	whether	
that	product	was	sold	in	the	n-th	transacAon	

§ We	want	answer	queries,	how	many	Ames	have	we	
sold	X	in	the	last	k	sales	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 26	

¡  Sliding	window	on	a	single	stream:	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 27	

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

28	

¡  Problem:		
§ Given	a	stream	of	0s	and	1s	
§  Be	prepared	to	answer	queries	of	the	form		
How	many	1s	are	in	the	last	k	bits?	where	k	≤ N	

¡  Obvious	solu-on:		
Store	the	most	recent	N	bits	
§ When	new	bit	comes	in,	discard	the	1st		(from	lev	
to	right)	bit	in	old		window	

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

Suppose N=6

¡  You	can	not	get	an	exact	answer	without	
storing	the	en-re	window		

¡  Proof	(by	contradic-on):	
§  Assume	R(w)	is	representaAon	of	
NumberOfOnes(w)	with	<	N	bits	

§  There	are	2N	different	windows	
§  #{	R(w)	|	w	an	N-window}	<	2N		
§ Hence,	there	is	w,v	with	R(w)	=	R(v)		
§  Assume	(k-1)-suffixes	of	w	and	v	are	same	but	w	
and	v	differ	at	k	(from	the	right)	

§  But	NumberofOnes(w)	≠	NumberOfOnes(v)	

29	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

¡  You	can	not	get	an	exact	answer	without	
storing	the	en-re	window	

¡  Real	Problem:		
What	if	we	cannot	afford	to	store	N	bits?	
§  E.g.,	we’re	processing	1	billion	streams	and		
N		=	1	billion	

¡  But	we	are	happy	with	an	approximate	
answer	

30	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

¡  Q:	How	many	1s	are	in	the	last	N	bits?	
¡  A	simple	soluAon	that	does	not	really	solve	our	
problem:	Uniformity	assump-on	

¡  Maintain	2	counters:		
§  S:	number	of	1s	from	the	beginning	of	the	stream	
§  Z:	number	of	0s	from	the	beginning	of	the	stream	

¡  How	many	1s	are	in	the	last	N	bits?		
¡  But,	what	if	stream	is	non-uniform?	

§ What	if	distribuAon	changes	over	Ame?	
		(->	concept	driv)	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 31	

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past Future

¡  DGIM	solu-on	that	does	not	assume	
uniformity	

¡ We	store	𝑶(log𝟐𝑵)	bits	per	stream	

¡  Solu-on	gives	approximate	answer,		
never	off	by	more	than	50%	
§  Error	factor	can	be	reduced	to	any	fracAon	>	0,	
with	more	complicated	algorithm	and	
proporAonally	more	stored	bits	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 32	

[Datar,	Gionis,	Indyk,	Motwani]	

O(log2N)

¡  Solu-on	that	doesn’t	(quite)	work:	
§  Summarize	exponen-ally	increasing	regions		
of	the	stream,	looking	backward	

§ Drop	small	regions	if	they	begin	at	the	same	point	
as	a	larger	region	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 33	

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N	

?	

0 1
1 2

2 3
4

10 6

We can reconstruct the count of the last N bits, except we
are not sure how many of the last 6 1s are included in the N

Window of
width 16
has 6 1s

¡  Stores	only	O(log2N)	bits	
§ 𝑶(log𝑵)	counts	of	log↓𝟐 𝑵		bits	each	

¡  Easy	update	as	more	bits	enter	

¡  Error	in	count	no	greater	than	the	number		
of	1s	in	the	“unknown”	area	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 34	

O(log N)

35	

¡  As	long	as	the	1s	are	fairly	evenly	distributed,	
the	error	due	to	the	unknown	region	is	small	
–	no	more	than	50%	

¡  But	it	could	be	that	all	the	1s	are	in	the	
unknown	area	at	the	end	

¡  In	that	case,	the	error	is	unbounded!	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
0 1

1 2
2 3

4
10 6

N	

?	

¡  Idea:	Instead	of	summarizing	fixed-length	
blocks,	summarize	blocks	with	specific	
number	of	1s:	
§  Let	the	block	sizes	(number	of	1s)	increase	
exponenAally	

¡ When	there	are	few	1s	in	the	window,	block	
sizes	stay	small,	so	errors	are	small	

36	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

1001010110001011010101010101011010101010101110101010111010100010110010

N	

[Datar,	Gionis,	Indyk,	Motwani]	

37	

¡  Each	bit	in	the	stream	has	a	<mestamp,	
starAng	1,	2,	…	

¡  Record	Amestamps	modulo	N		(the	window	
size),	so	we	can	represent	any	relevant	
Amestamp	in	𝑶(𝒍𝒐𝒈↓𝟐 𝑵)	bits	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

O(log2N)

¡  A	bucket	in	the	DGIM	method	is	a	record	
consisAng	of:	
§  (A)	The	-mestamp	of	its	right	end	[O(log	N)	bits]	
§  (B)	The	number	of	1s	between	its	beginning	and	
end	[O(log	log	N)	bits]	

¡  Constraint	on	buckets:		
Number	of	1s	must	be	a	power	of	2	

§  That	explains	the	O(log	log	N)		in	(B)	above	

38	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

1001010110001011010101010101011010101010101110101010111010100010110010

N	

¡  Either	one	or	two	buckets	with	the	same	
power-of-2	number	of	1s	

¡  Buckets	do	not	overlap	in	-mestamps	

¡  Buckets	are	sorted	by	size	
§  Earlier	buckets	are	not	smaller	than	later	buckets	

¡  Buckets	disappear	when	their		
end-Ame	is	>	N		Ame	units	in	the	past	

¡  Addendum:	Right	end	of	bucket	always	a	1	
J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 39	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 40	

N	

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Three	proper-es	of	buckets	that	are	maintained:	
		-	Either	one	or	two	buckets	with	the	same	power-of-2	number	of	1s	
		-	Buckets	do	not	overlap	in	Amestamps	
		-	Buckets	are	sorted	by	size	

¡ When	a	new	bit	comes	in,	drop	the	last	
(oldest)	bucket	if	its	end-Ame	is	prior	to	N		
Ame	units	before	the	current	Ame	

¡  2	cases:	Current	bit	is	0	or	1	

¡  If	the	current	bit	is	0:		
no	other	changes	are	needed	

41	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

¡  If	the	current	bit	is	1:	
§  (1)	Create	a	new	bucket	of	size	1,	for	just	this	bit	
§  End	-mestamp	=	current	-me	

§  (2)	If	there	are	now	three	buckets	of	size	1,	
combine	the	oldest	two	into	a	bucket	of	size	2	

§  (3)	If	there	are	now	three	buckets	of	size	2,	
	combine	the	oldest	two	into	a	bucket	of	size	4	

§  (4)	And	so	on	…	

42	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

43	

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging

44	

¡  To	es-mate	the	number	of	1s	in	the	most	
recent	N	bits:	
1.   Sum	the	sizes	of	all	buckets	(from	right)	but	the	

last	
(note	“size”	means	the	number	of	1s	in	the	bucket)	

2.   Add	half	the	size	of	the	last	bucket	

¡  Remember:	We	do	not	know	how	many	1s		
of	the	last	bucket	are	sAll	within	the	wanted	
window	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 45	

N	

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

¡ Why	is	error	50%?	Let’s	prove	it!	
¡  Suppose	the	last	bucket	has	size	2r	
¡  Then	by	assuming	2r-1		(i.e.,	half)	of	its	1s	are	
sAll	within	the	window,	we	make	an	error	of	
at	most	2r-1	

¡  Since	there	is	at	least	one	bucket	of	each	of	
the	sizes	less	than	2r,	the	true	sum	is	at	least		
1	+	2	+	4	+	..	+	2r-1		=	2r	-1	

¡  Thus,	error	at	most	50%	

46	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

111111110000000011101010101011010101010101110101010111010100010110010

N	

At least 16 1s

¡  Instead	of	maintaining	1	or	2	of	each	size	
bucket,	we	allow	either	r-1	or	r	buckets		(r	>	
2)	
§  Except	for	the	largest	size	buckets;	we	can	have	
any	number	between	1	and	r	of	those	

¡  Error	is	at	most	O(1/r)	
¡  By	picking	r	appropriately,	we	can	tradeoff	
between	number	of	bits	we	store	and	the	
error	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 47	

48	

¡  Can	we	use	the	same	trick	to	answer	queries	
How	many	1’s	in	the	last	k?	where	k	<	N?	
§ A:	Find	earliest	bucket	B	that	at	overlaps	with	k.	
Number	of	1s	is	the	sum	of	sizes	of	more	recent	
buckets	+	½	size	of	B	

¡  Can	we	handle	the	case	where	the	stream	is	
not	bits,	but	integers,	and	we	want	the	sum	
of	the	last	k	elements?	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	

1001010110001011010101010101011010101010101110101010111010100010110010
k	

¡  Stream	of	posi-ve	integers	
¡  We	want	the	sum	of	the	last	k	elements	

§  Amazon:	Avg.	price	of	last	k	sales	
¡  Solu-on:	

§  (1)	If	you	know	all		have	at	most	m	bits	
§  Treat	m	bits	of	each	integer	as	a	separate	stream	
§  Use	DGIM	to	count	1s	in	each	integer	
§  The	sum	is	=∑𝑖=0↑𝑚−1▒𝑐↓𝑖 2↑𝑖  	

§  (2)	Use	buckets	to	keep	par-al	sums	
§  Sum	of	elements	in	size	b	bucket	is	at	most	2b	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 49	

ci …estimated count for i-th bit

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6 3
2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6 3 2
2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6 3 2 5

Idea: Sum in each
bucket is at most
2b (unless bucket
has only 1 integer)
Bucket sizes:

1 2 8 16 4

¡  Sampling	a	fixed	propor-on	of	a	stream	
§  Sample	size	grows	as	the	stream	grows	

¡  Sampling	a	fixed-size	sample	
§  Reservoir	sampling	

¡  Coun-ng	the	number	of	1s	in	the	last	N	
elements	
§  ExponenAally	increasing	windows	
§  Extensions:	
§ Number	of	1s	in	any	last	k	(k	<	N)	elements	
§  Sums	of	integers	in	the	last	N	elements	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 50	

¡  The	following	is	based	on	slides	of		
				Ullmann:	“More	Clustering”	
			infolab.stanford.edu/~ullman/mining/pdf/cs345-cl2new.pdf	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 51	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 52	

9

Clustering a Stream (New Topic)

!Assume points enter in a stream.
!Maintain a sliding window of points.
!Queries ask for clusters of points within

some suffix of the window.
!Only important issue: where are the

cluster centroids.
" There is no notion of “all the points” in a

stream.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 53	

10

BDMO Approach

!BDMO = Babcock, Datar, Motwani,
O’Callaghan.

!k –means based.

!Can use less than O(N) space for
windows of size N.

!Generalizes trick of DGIM: buckets of
increasing “weight.”

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 54	

11

Recall DGIM

!Maintains a sequence of buckets B1, B2,
…

!Buckets have timestamps (most recent
stream element in bucket).

!Sizes of buckets nondecreasing.
" In DGIM size = power of 2.

!Either 1 or 2 of each size.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 55	

13

Buckets for Clustering

!In place of “size” (number of 1’s) we
use (an approximation to) the sum of
the distances from all points to the
centroid of their cluster.

!Merge consecutive buckets if the “size”
of the merged bucket is less than the
sum of the sizes of all later buckets.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 56	

14

Consequence of Merge Rule

!In a stable list of buckets, any two
consecutive buckets are “bigger” than
all smaller buckets.

!Thus, “sizes” grow exponentially.

!If there is a limit on total “size,” then
the number of buckets is O(log N).

• N = window size.

" E.g., all points are in a fixed hypercube.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 57	

15

Outline of Algorithm

1. What do buckets look like?
! Clusters at various levels, represented by

centroids.

2. How do we merge buckets?
! Keep # of clusters at each level small.

3. What happens when we query?
! Final clustering of all clusters of all

relevant buckets.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 58	

16

Organization of Buckets

! Each bucket consists of clusters at
some number of levels.
" 4 levels in our examples.

! Clusters represented by:
1. Location of centroid.
2. Weight = number of points in the cluster.
3. Cost = upper bound on sum of distances

from member points to centroid.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 59	

18

Processing Buckets --- (2)

!Initialize a new bucket with k new
points.
" Each is a cluster at level 0.

!If the timestamp of the oldest bucket is
outside the window, delete that bucket.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 60	

19

Level-0 Clusters

! A single point p is represented by
(p, 1, 0).

! That is:
1. A point is its own centroid.
2. The cluster has one point.
3. The sum of distances to the centroid is 0.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 61	

20

Merging Buckets --- (1)

! Needed in two situations:
1. We have to process a query, which

requires us to (temporarily) merge some
tail of the bucket sequence.

2. We have just added a new (most recent)
bucket and we need to check the rule
about two consecutive buckets being
“bigger” than all that follow.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 62	

21

Merging Buckets --- (2)

!Step 1: Take the union of the clusters at

each level.

!Step 2: If the number of clusters (points)

at level 0 is now more than N 1/4, cluster

them into k clusters.

" These become clusters at level 1.

!Steps 3,…: Repeat, going up the levels,

if needed.

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 63	

22

Representing New Clusters

! Centroid = weighted average of
centroids of component clusters.

! Weight = sum of weights.
! Cost = sum over all component

clusters of:
1. Cost of component cluster.
2. Weight of component times distance from

its centroid to new centroid.
Addendum: Cost required in sitations where clusters in consecutive
buckets change rapidly

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 64	

23

Example: New Centroid

+ (18,-2)

+ (3,3)

+ (12,12)

centroids

5

10

15weights

+ (12,2)

new centroid

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 65	

24

Example: New Costs

+ (18,-2)

+ (3,3)

+ (12,12)
5

10

15

+ (12,2)

old cost

added

true cost

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 66	

25

Queries

!Find all the buckets within the range of
the query.
" The last bucket may be only partially within

the range.

!Cluster all clusters at all levels into k
clusters.

!Return the k centroids.

Addendum: E.g., Give k
clusters w.r.t. last m points

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 67	

26

Error in Estimation

!Goal is to pick the k centroids that
minimize the true cost (sum of distances
from each point to its centroid).

!Since recorded “costs” are inexact, there
can be a factor of 2 error at each level.

!Additional error because some of last
bucket may not belong.
" But fraction of spurious points is small (why?).

Addendum
: because
of (triangle
inequality)

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	hXp://www.mmds.org	 68	

27

Effect of Cost-Errors

1. Alter when buckets get combined.
! Not really important.

2. Produce suboptimal clustering at any
stage of the algorithm.
! The real measure of how bad the output

is.

