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Recap: Role of Logic in CS



Literature Hint: Introductions to Logic

I Logic for CS
Lit: M. Huth and M. Ryan. Logic in Computer Science: Modelling and

Reasoning about Systems. Cambridge University Press, 2000.

Lit: M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 2. edition,

2001.

Lit: U. Schöning. Logik für Informatiker. Spektrum Akademischer Verlag, 5.

edition, 2000.

Lit: M. Fitting. First-Order Logic and Automated Theorem Proving. Graduate

texts in computer science. Springer, 1996.

I Mathematical Logic
Lit: H.Ebbinghaus, J.Flum,and W.Thomas. Einführung in die mathematische

Logik. Hochschul-Taschenbuch. Spektrum Akademischer Verlag, 2007.

Lit: D. J. Monk. Mathematical Logic. Springer, 1976.

Lit: R. Cori and D. Lascar. Mathematical Logic: Propositional calculus, Boolean

algebras, predicate calculus. Mathematical Logic: A Course with Exercises.

Oxford University Press, 2000.
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Recap: First-Order Logic



FOL Structures and Interpretations

I Structures: A = (A,RA
1 , . . .R

A
n , f

A
1 , . . . , f

A
m , c

A
1 , . . . , c

A
l )

I Usually: Universe A assumed to be non-empty
Example: Graphs G = (V ,EG)

I Interpretations I = (A, ν)
Adds assignments ν for free variables.

I Syntax
I Terms (Example: c , f (c , x))
I Atomic formulae (Example: c = d , E (a, d))
I Formulae: (Example: ∃y ∃z E (x , y) ∧ E (x , z) ∧ E (y , z))
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FOL Semantics

I Semantics (Satisfaction/truth/modeling |=)
I ...
I I |= ∃x φ iff: There is d ∈ A s.t. I[x/d ] |= φ

Example

(G, x 7→ a) |= ∃y ∃z E (x , y) ∧ E (x , z) ∧ E (y , z)
a b

Alternative notation:
G |= (∃y ∃z E (x , y) ∧ E (x , z) ∧ E (y , z))(x/a)
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Definition (Derived Semantic Notions)

I Entailment: Φ |= ψ (“Φ entails ψ”) iff for all interpretations I:
if I |= Φ, then I |= ψ

I ψ is satisfiable iff there is an interpretation I s.t. I |= ψ

I Φ is satisfiable iff there is an interpretation I s.t. for all
ψ ∈ Φ: I |= ψ

I Mod(Φ) = {I | I satisfies all ψ ∈ Φ}

I ψ is valid iff for all interpretations I: I |= ψ.

I ψ is contradictory (unsatisfiable) iff for all interpretations I:
Not I |= ψ

END of recap
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FOL: Calculi and Algorithmic Problems



Plan for Today

I We investigate corresponding algorithmic problems for FOL
I Because, e.g., the definition of entailment does not say

anything on how to compute that ψ is entailed by Φ

I Moreover, it does not say how much resources (place, time)
are needed

I Example algorithmic problems
I Given a structure A and formula φ: Decide whether A |= φ
I Given a formula decide whether φ is satisfiable (valid,

contradictory, resp.)
I Given Φ, ψ decide whether Φ � ψ.

I Problems are related by reduction (at least for FOL)
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Wake-Up Exercise

Show: Φ � ψ iff Φ ∪ {¬ψ} is unsatisfiable

I Entailment: Φ |= ψ (“Φ entails ψ”) iff for all interpretations I:
if I |= Φ, then I |= ψ

I ψ is contradictory (unsatisfiable) iff for all interpretations I:
Not I |= ψ
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Challenges of FOL Algorithmic Problems

I First challenge: Domain of structure may be infinite
I But this is not the main problem (as we will see in lecture on

finite model theory)

I Second challenge: Number of possible structures is infinite
I We want to tame the infinite by “syntactifying” the problem
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A First Step Towards Algorithmization: Proof Calculi
I How to approach entailment problem Φ � ψ?
I Idea: Break down entailment into smaller entailment steps

I “Smaller” entailment steps (which are “obvious”)
I Realized by applying finite number of rules R
I Apply rules to Φ and intermediate results to yield ψ

I Common derivation procedure for all calculi
I Input: Φ, ψ

I Output: Φ
?

� ψ
I DS0 = Encode(Φ, ψ)
I Find derivation DS0, . . . ,DSn

where DSi results from applying a rule from R to finite set of
DSj with j < i .

I Decode(DSn) into answer to Φ � ψ

I Differences among calculi regarding
I the types of rules in R
I used data structures DS
I and the proof methodology
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Well known Calculi

calculus rule types data structures methodology

Hilbert axioms formulae direct
2 rules (premises to conclusion)

Natural introduction and elimination rules formulae direct
deduction per constructor

Gentzen style axioms + Entailments direct
I and E rules per constructor

Tableaux “and”, “or” rules formula in a tree refutation proofs
based on DNF

Resolution resolution rule quantifier free formula refutation proofs
in CNF in a tree based on CNF
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Resolution



Resolution
I Refutation calculus, i.e., calculus for showing unsatisfiability

of a formula

I Steps
I Data structures: formulas in clausal-normal form

(Corresponds to CNF (conjuctive normal form) in propositional
logic)

I One rule: use satisfiability preserving resolution rule to reduce
formulae

I Iteratively apply until empty clause (means: contradiction) is
derived

I There are mature and efficient resolution provers (with many
ingenious optimizations)

I Efficient (but nonetheless complete) resolution procedure SLD
part of Prolog
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Prenex Normal Form
I Idea of normalization

I Transform formulas into a (syntactically) simpler form
I preserving as much of the semantics as possible

Definition
A formula of the form Q1x1, . . . ,Qnxnψ, where Qi ∈ {∀,∃} and
I ψ (the matrix) does not contain quantifiers
I no variable occurs free and bounded
I every quantifier bounds a different variable

is said to be in prenex normal form (PNF)

I Here: Simple form ensured by un-nesting quantifiers (the main
reason for un-feasibility)

I Here “preserve semantic” means: Ensure equivalence ≡

φ ≡ ψ iff φ |= ψ and ψ |= φ
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Existence of Prenex Normal Form
Theorem
Every FOL formula has an equivalent formula in PNF

Propositional Equivalences
I ¬¬φ ≡ φ
I ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
I φ→ ψ ≡ ¬φ ∨ ψ
I φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

I φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ)

Equivalence under
bounded substitutions
I ∃xφ ≡ ∃y(φ[x/y ])

I where φ[x/y ] is result
of substituting every
free x with y in φ

Quantifier-specific equivalences
I ∀xφ ≡ ¬∃x¬φ
I φ ≡ ∃x φ (x not free in φ)
I (∃xφ ∧ ψ) ≡ ∃x(φ ∧ ψ) (x not free in ψ)
I (∃xφ ∨ ψ) ≡ ∃x(φ ∨ ψ) (x not free in ψ)
I ∃xφ ∨ ∃xψ ≡ ∃x(φ ∨ ψ)
I ∃x∃yφ ≡ ∃y∃xφ
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Substituting with Equivalent Formula

Theorem
Assume φ ≡ ψ and χ contains φ as subformula. If χ′ results from
substituting φ with ψ, then χ ≡ χ′.

Proof: By structural induction.
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Satisfiably Equivalent

I Formulae in PNF are going to be transformed to formula in
clausal normal form

I Resulting formula may be satisfiably equivalent only

φ ≡sat ψ iff: Mod(φ) 6= ∅ iff Mod(ψ) 6= ∅
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Elimination of Exists Quantifiers: Skolemization

I Input a PNF formula φ : ∀1x1, . . .∀nxn∃yψ
I Output φ′ : ∀1x1, . . .∀nxnψ[y/f (x1, . . . , xn)]

where f a fresh n-ary function symbol
I φ′ results from skolemization out of φ, f called Skolem

function (or Skolem constant if n = 0)

I Can be iteratively applied (starting with left-most ∃) until all ∃
are eliminated. Result is said to be in Skolem form and to be
the skolemization of the original formula

Theorem
A formula and its skolemization are satisfiably equivalent.
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Example Skolem Form
Given formula

φ = ∀x∀y(P(x , y)→ Q(x))→ ∃x(∀y¬Q(y)→ ∃y¬P(y , x))

transform it to Skolem form

∀x∀y(P(x , y)→ Q(x))→ ∃x(∀y¬Q(y)→ ∃y¬P(y , x))

≡ ∀x∀y(¬P(x , y) ∨ Q(x))→ ∃x(¬∀y¬Q(y) ∨ ∃y¬P(y , x))

≡ ¬∀x∀y(¬P(x , y) ∨ Q(x)) ∨ ∃x(¬∀y¬Q(y) ∨ ∃y¬P(y , x))

≡ ∃x∃y¬(¬P(x , y) ∨ Q(x)) ∨ ∃x(∃y¬¬Q(y) ∨ ∃y¬P(y , x))

≡ ∃x∃y(¬¬P(x , y) ∧ ¬Q(x)) ∨ ∃x(∃y¬¬Q(y) ∨ ∃y¬P(y , x))

≡ ∃x∃y(P(x , y) ∧ ¬Q(x)) ∨ ∃x(∃yQ(y) ∨ ∃y¬P(y , x))

≡ ∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ ∃x2(∃y2Q(y2) ∨ ∃y3¬P(y3, x2))

≡ ∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ ∃x2∃y2(Q(y2) ∨ ∃y3¬P(y3, x2))

≡ ∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ ∃x2∃y2∃y3(Q(y2) ∨ ¬P(y3, x2))

≡ ∃x2∃y2∃y3(∃x1∃y1(P(x1, y1) ∧ ¬Q(x1)) ∨ (Q(y2) ∨ ¬P(y3, x2)))

≡ ∃x2∃y2∃y3∃x1∃y1((P(x1, y1) ∧ ¬Q(x1)) ∨ (Q(y2) ∨ ¬P(y3, x2)))

≡sat ((P(d , e) ∧ ¬Q(d)) ∨ (Q(b) ∨ ¬P(c, a)))
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Clausal Normal Form

Definition
ψ is in clausal normal form (CLNF) iff it is in Skolem form,
contains no free variables and its matrix is in CNF

Definition
A quantifier-free formula is in conjunctive normal form (CNF) iff
it is a conjunction of clauses
I Clause: Disjunction of literals
I Literal: atomic FOL formula or negated atomic FOL formula

Example CNF: (R(a, x) ∨ ¬P(x))︸ ︷︷ ︸
clause

∧ (¬P(b) ∨ Q(y))︸ ︷︷ ︸
clause

Theorem
For every ψ there exists a satisfiably equivalent ψ′ in CLNF
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Resolution Idea

I Observation used for resolution:

(α ∨ φ) ∧ (¬α ∨ ψ) ∧ χ ≡sat (φ ∨ ψ) ∧ χ

where
I {α,¬α} is a pair of complementary literals
I φ, ψ, χ arbitrary formulae

I Apply this equivalence iteratively on the matrix of formula in
CLNF until empty clause (i.e. contradiction) is derived

I More convenient notation
I Clause L1 ∨ · · · ∨ Ln written as set {L1, . . . , Ln}
I Li is complement of Li

E.g.: R(a) = ¬R(a), ¬R(a) = R(a)

31 / 64



Lazy Proof Strategy by Unification
I Want to identify literals as complementary using unification
I Substitution σ: function from variables to terms

I σ unifies literals L1, L2 iff L1σ = L2σ
I Example

I L1 = P(x , y), L2 = P(g(z), a)
I σ1 = [x/g(z), y/a]

I Laziness: Find a most general unifier (mgu)
I σ1 more general than σ2 = [x/g(a), y/a, z/a].
I σ is an mgu iff for all unifiers σ′ there is substitution σ′′ such

that σ′ = σ ◦ σ′′.

Theorem (Robinson)

Every unifyable finite set of literals has a mgu.
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Resolution step

Definition
Given clauses Cl1,Cl2, the clause RCl is a resolvent of Cl1,Cl2 iff
1. There are variable renamings σ1, σ2 s.t. Cl1σ1 and Cl2σ2

contain different variables.
2. There is a literal L1 ∈ Cl1σ1 and L′1 ∈ Cl2 s.t. {L1, L′1}

unifyable with mgu σ
3. RCl = (CL1σ1 \ {L1} ∪ CL2σ2 \ {L′1})σ

A convenient graphical notation
Cl1

σ ""

Cl2

σ||
RCl
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Resolution Example

{¬P(x1, y1),Q(x1)}

##

{¬Q(y2)}

��

{P(y3, x2)}

��

[x1/y2]

{¬P(y2, y1)}

��

[y3/y2][x2/y1]

2
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Correctness and Completeness

Definition
A calculus C is
I correct w.r.t. entailment iff: Whenever Φ `C ψ, then Φ � ψ

I complete w.r.t. entailment iff: Whenever Φ � ψ, then Φ `C ψ

I Correctness means: you can only prove entailments that really
hold

I Completeness means: Whenever an entailment holds then
there is also a proof for it. (Proved by ingenious Gödel)

Theorem
All aforementioned calculi are correct and complete
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Resolution Theorem

I Let ψ be a clause set
I Res(ψ) = ψ ∪ {RCl | RCl is a resolvent of clauses in ψ}
I R i+1 = Res(Res i (ψ))

I Res∗(ψ) =
⋃
Res i (ψ)

Theorem
Every φ in CLNF with matrix ψ is unsatisfiable iff 2 ∈ Res∗(ψ)
(or equivalently: if there is a derivation graph ending in 2.)

I This shows correctness and completeness w.r.t. unsatisfiability
testing

I But entailment can be reduced to it (remember wake-up
question).

I Possible proof based on Herbrand models
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Completeness and Correctness for Resolution
I Herbrand structures blur syntax-semantic distinctions.

I Given ψ in Skolem form.
I Herbrand terms HT (ψ): all possible closed terms from

function symbols (and constants) in ψ
I Herbrand structure HS(ψ)

I Domain: HT (ψ)
I Interpretation of function symbols:

f HS(ψ)(t1, . . . , tn) = f (t1, . . . , tn)
I Relation symbols arbitrarily

Theorem
A formula is satisfiable iff it (its CLNF) has a Herbrand model

I Construction of Herband model: Interpret relation symbols R
as RHS(ψ)(t1, . . . , tn) if I(t1), . . . , I(tn) ∈ RI for satisfying I.
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Herbrand Expansion

I Given ψ in Skolem form ∀x1, . . . ,∀xnφ
I HE (ψ): All “groundings” of the matrix with Herbrand terms

{ψ[x1/t1, . . . , xn/tn] | ti ∈ HS(ψ)}

Theorem (Herbrand)

Skolem formula ψ is satisfiable iff a finite subset of HE (ψ) is
satisfiable

Proof idea
I Show that ψ is satisfiable iff it has a Herbrand model
I Show that ψ has a Herbrand model iff HE (ψ) is satisfiable
I Use compactness of propositional logic (discussed later)
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But wait....

I We have shown completeness of calculi
I Doesn’t this mean that we have a decision procedure for

entailment (unsatisfiability)?

I NO!

Theorem
Deciding validity (unsatisfiability, entailment) is un-decidable

I But semi-decidability:
if formula is valid you will eventually find a derivation; if
formula not valid you won’t know
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Turing machines

I One of the first precise computation models are Turing
machines (TMs)

I Specifies precisely what it means to solve a problem
algorithmically

I Starting from a finite input (encoding)
I give after a (finite number) of discrete steps
I an encoding of the desired output

I Other alternative computation models: recursive functions,
lambda calculus, register machines

I These computation models have been shown to be equivalent

Church Turing Thesis

What is intuitively computable is computable by a Turing machine

VIDEO: A LegoTM Turing machine
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Undecidability of Validity

I Shown by Reduction of Post Correspondence Problem to
Validity problem

I Reduction is a widely used strategy: Relies on library of known
results (also for proving complexity bounds)

Post Correspondence Problem (PCP)

I Input: Finite list of word pairs (x1, y1), . . . , (xk , yk) with
xi , yi ∈ {0, 1}+

I Output: Is there list of indices i1, . . . , in ∈ {1, . . . k} with
n ≥ 1 s.t. xi1xi2 . . . xin = yi1yi2 . . . yin
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Undecidability of Validity

I Given PCP instance K = ((x1, y1), . . . , (xk , yk)), produce
formula φk such that
K has a solution iff φK is valid.

I Use two function symbols f0 and f1 to mimic 1 and 0
I fi1,...il (x) abbreviates fi1(fi2(...fil (x) . . . )) (string i1 . . . il)
I Consider formula

φK : (φ1 ∧ φ2 → φ3)

with
I φ1 :

∧k
i=1 P(fxi (a), fyi (a))

I φ2 : ∀u∀v(P(u, v)→
∧k

i=1 P(fxi (u), fyi (v))
I φ3 : ∃zP(z , z)
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Semi-decidability

Theorem
FOL entailment is semi-decidable, i.e., there is a TM s.t.
I If Φ and ψ are inputs with Φ � ψ, then TM stops with yes

I otherwise it stops with false or it does not stop.

Proof sketch:
I Given a calculus C with derivation relation `C complete and

correct for entailment
I The possible inferences starting from Φ make up a tree (with

finite set of children for every node)
I The root (level 0) is Encode(Φ, ψ)
I The finitely many children at level n + 1 are those Di that are

generated from children at level up to n
I Do a breadth first search until Encode(Φ � ψ) appears

46 / 64



Why is FOL so Important?



Why is FOL so Successful (w.r.t.) CS

I Theoretical Answer: Most expressive language w.r.t. relevant
properties (Lindström Theorems)
=⇒ today

I Practical Answer: Has proven useful for query answering on
SQL DBs and much more
=⇒ next lectures
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Compactness in Topology

“Ah, Kompaktheit, eine wundervolle Eigenschaft” (Jaenich 2008, S.24)

I Compactness notion stems from mathematical field topology

I Topologies T = (X ,O)
I Domain X and open sets O ⊆ Pot(X ) with
I Every union of open sets is open
I Every finite intersection is open
I X and ∅ are open

I Open covering of X
Family of open sets {Ui}i∈I with Ui ∈ O and

⋃
i∈I Ui = X

Lit: K. Jänich. Topologie. Springer, 8th edition, 2008.
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Compactness in Topology

Definition
(X ,O) is compact iff every open covering of X has a finite
sub-covering.

I How compactness is used to infer global properties from local
properties

I Let P be a property such that if open U,V have it, then also
U ∪ V has it.

I Then: If for every point a ∈ X there is an open Ua having P,
then X has P.
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Wake-Up Exercise

Prove the correctness of this type of reasoning from local to global
within compact spaces!

Solution
I Assume that if open U,V have P , then also U ∪ V has it. (*)
I Assume further that for all a there is Ua having P .
I {Ua}a∈X is a covering of X .
I Because of compactness there is a finite covering

Ua1 ∪ · · · ∪ Uan = X .
I Because of (*) it follows that Ua1 , . . . ,Uan has P , i.e., X has

P .
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Definition ((Logical) Compactness)

A logic L has the compactness property if the following holds: For
all sets Φ of formulae in L: If every finite subset of Φ has a model,
then Φ has a model.

I Equivalent definition:
If Φ � ψ, then already Φ0 � ψ for a finite Φ0

I Intuitively: Infiniteness adds not additional expressive power for
FOL

Theorem
FOL has the compactness property.

I Logical compactness derived from topological notion
I FOL compactness is a corollary of Tychonoff’s Theorem

(“Any product of compact topological spaces is compact”)
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Application: Reachability is not FOL Expressible

Query Qreach: List all cities reachable from Hamburg!

Qreach(x) = Flight(Hamburg , x) ∨
∃x1Flight(Hamburg , x1) ∧ Flight(x1, x) ∨
∃x1, x2Flight(Hamburg , x2) ∧ Flight(x2, x1) ∧ Flight(x1, x) ∨ . . .

Theorem
Reachability is not expressible in FOL.

Proof
I For contradiction assume there is FOL φreach(x , y)

expressing reachability over edges E
I Consider FOL formulae φn: “There is an n path from c to c ′”
I Let Ψ = {¬φi | i ∈ N} ∪ {φreach(c, c ′)}
I Ψ is unsatisfiable, but every finite subset is satisfiable E
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FOL has the Löwenheim-Skolem-Property

Theorem (Downward Löwenheim-Skolem-Property)

Every satisfiable, countable set of FOL sentences (theory) has a
countable model.

I Intuitively: If you can talk with countably many sentences
about structures, then there is a countable model verifying this
fact.

I Can be shown by Herbrand expansions
I Leads to Skolem’s paradox

I You can formalize mathematics within countable FOL theory,
namely, Zermelo-Fränkel Set Theory (ZFC)

I ZFC � “there are uncountable sets”.
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Wake-up Question

Argue why Skolem’s paradox is only of a psychological nature, i.e.,
it does not prove the inconsistency of ZFC.

I In ZFC one can express that there are is an uncountable set
US .

I Uncountable means that there does not exist an injective
function f from US to the natural numbers.

I So in the countable domain of a model A for ZFC there there
is no injective function f : US → N though clearly you may
find (in another richer model) such an injective function.

57 / 64



Wake-up Question

Argue why Skolem’s paradox is only of a psychological nature, i.e.,
it does not prove the inconsistency of ZFC.

I In ZFC one can express that there are is an uncountable set
US .

I Uncountable means that there does not exist an injective
function f from US to the natural numbers.

I So in the countable domain of a model A for ZFC there there
is no injective function f : US → N though clearly you may
find (in another richer model) such an injective function.

58 / 64



Why FOL is so Important: Lindström Theorems

Theorem (First Lindström Theorem)

There is no (regular) logic that is more expressive than FOL and
fulfills compactness and Löwenheim-Skolem Property

I Meta theorem
I Intuitively: FOL is the most expressive (regular) logic fulfilling

compactness and the Löwenheim-Skolem Property
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Limits of FOL

I Positive: FOL can be used for effective query answering on one
model!

I Negative
I Entailment problem, satisfiability etc. not computable

=⇒ Calls for restriction to feasible fragments
I Expressivity not sufficient (no recursion)

=⇒ Calls for extensions (and restrictions)
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Exercise 2 (15 Points)

Upload your solutions in one pdf file as presentation by Monday
evening, 31 October, 2015 to Moodle.



Exercise 2.1 (6 points)

Formulate the following English sentences in FOL— preserving as
much as possible the logical structure.
1. Every graduate course is a course.
2. No Student is a tutor of himself.
3. A person is a student if and only if he takes some graduate

course
4. Every student has exactly one Identity number.
5. No course was attended by no student.
6. There are courses that were not attended by all students.
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Exercise 2.2 (3 points)

State FOL sentences φi over a given signature whose models
Mi = Mod(φi ) are the following ones—if possible. Otherwise argue
why this is not possible.
1. M1 = { All structures with at least 3 elements}
2. M2 = { All structures with at least one element and at most 2

elements}
3. M3 = { All structures with finitely many elements}
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Exercise 2.3 (6 points)

1. Show that the formula ∀x P(x)→ ∃y P(y) is valid—using
only the definition of the satisfaction relation |=. (2 points)

2. Transfer the following formula into clausal normal form

∀xP(x , a)→ (∃xQ(f (x)) ∨ P(a, b) ∨ ∀yQ(f (y)))

(4 points)
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