

Özgür L. Özçep

Ontology-Based Data Access

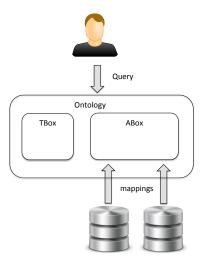
Lecture 8: DL-Lite, Rewriting, Unfolding 14 December, 2016

Foundations of Ontologies and Databases for Information Systems CS5130 (Winter 16/17)

Recap of Lecture 7

Ontology-Based Data Access

- ► Use ontologies as interface
- ► to access (here: query)
- data stored in some format
- using mappings



- ► Talked about description logics as ontology representation language
- Semantics + Tableaux Calculus

References

 Reasoning Web Summer School 2014 course by Kontchakov on Description Logics

http:

//rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf

► Lecture notes by Calvanese in 2013/2014 course on Ontology and Database Systems

https://www.inf.unibz.it/~calvanese/teaching/14-15-odbs/lecture-notes/

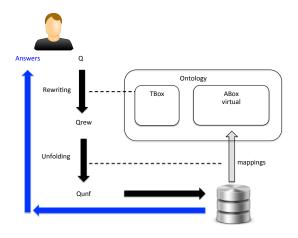
▶ Parts of Reasoning Web Summer School 2014 course by Ö. on Ontology-Based Data Access on Temporal and Streaming Data

http://rw2014.di.uoa.gr/sites/default/files/slides/Ontology_Based_Data_Access_on_

Temporal_and_Streaming_Data.pdf

OBDA in the Classical Sense

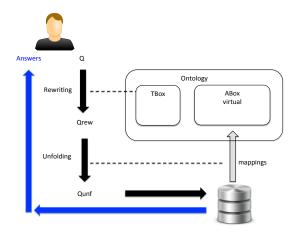
- ▶ Keep the data where they are because of large volume
- ► ABox not loaded into main memory, kept virtual



Rewriting

OBDA in the Classical Sense

- Query answering not with deduction but rewriting and unfolding
- ► Challenge: Complete and correct rewriting and unfolding



Formal Notion of Rewriting

Definition

- $\mathcal{L}_{TBox} = \text{Tbox language}$
- \mathcal{L}_{oQ} = ontology query language
- $\mathcal{L}_{tQ} = \text{target query language}$

Answering \mathcal{L}_{TBox} queries is \mathcal{L}_{tQ} -rewritable iff for every TBox \mathcal{T} over \mathcal{L}_{TBox} and query Q in \mathcal{L}_{oQ} there is a query Q_{rew} in \mathcal{L}_{tQ} such that for all ABoxes \mathcal{A} :

$$\mathit{cert}(\mathit{Q}, \mathcal{T} \cup \mathcal{A}) = \mathit{ans}(\mathit{Q}_{\mathit{rew}}, \mathit{DB}(\mathcal{A}))$$

- ► Here one considers the minimal Herbrand model
 - $DB(\mathcal{A}) = (\Delta, \cdot^{\mathcal{I}})$ for an Abox \mathcal{A}
 - $ightharpoonup \Delta = \text{set of constants occurring in } \mathcal{A}$
 - $c^{\mathcal{I}} = c$ for all constants;
 - $A^{\mathcal{I}} = \{c \mid A(c) \in \mathcal{A}\};$
 - $r^{\mathcal{I}} = \{(c,d) \mid R(c,d) \in \mathcal{A}\}$

Rewriting for Different Languages

- ▶ Possibility of rewriting depends on right expressivity balance between \mathcal{L}_{TBox} , \mathcal{L}_{oQ} , \mathcal{L}_{tQ} .
- ▶ One aims at computably feasible \mathcal{L}_{tQ} queries
- In classical OBDA
 - $ightharpoonup \mathcal{L}_{TBox}$: Language of the DL-Lite family
 - \mathcal{L}_{oQ} : Unions of conjunctive queries
 - $ightharpoonup \mathcal{L}_{tQ}$: (Safe) FOL/SQL (in AC^0)

DL-Lite

DL-Lite

- ► Family of DLs underlying the OWL 2 QL profile
- ► Tailored towards the classical OBDA scenario
 - ► Captures (a large fragment of) UML
 - FOL-rewritability for ontology satisfiability checking and query answerings for UCQs
 - Used in many implementations of OBDA (QuOnto, Presto, Rapid, Nyaya, ontop etc.)
- ▶ We give a rough overview. For details consult, e.g.,

Lit: Calvanese et al. Ontologies and databases: The DL-Lite approach. In Tessaris/Franconi, editors, Semantic Technologies for Informations Systems. 5th Int. Reasoning Web Summer School (RW 2009), pages 255–356. Springer, 2009.

Lit: A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR), 36:1–69, 2009.

DL-Lite $_{\mathcal{F}}$

- Simple member of the family allowing functional constraints
- Syntax
 - ▶ Basic role $Q ::= P \mid P^- \text{ for } P \in N_R$
 - ▶ Roles: $R := Q \mid \neg Q$.
 - ▶ Basic concepts $B ::= A \mid \exists Q \text{ for } A \in N_C, Q \in N_R$
 - ▶ Concepts $C ::= B \mid \neg B \mid \exists R.C$
 - ▶ TBox: $B \sqsubseteq C$, (func Q) ("Q is functional") (where (func Q) is allowed in the TBox only if Q does not appear as $\exists Q.C$ on a rhs in the TBox)
 - ► ABox: *A*(*a*), *P*(*a*, *b*)
- Semantics as usual (∃Q shorthand for ∃Q.⊤)
- Note
 - ► No qualified existential on lhs
 - Restriction on function role
 - ▶ Both due to rewritability

Properties

- ▶ DL-Lite_F enables basic UML conceptual modeling
 - ► ISA between classes (*Professor* \sqsubseteq *Person*)
 - ▶ Disjointness (*Professor* $\sqsubseteq \neg Student$)
 - ▶ Domain and range of roles: (Professor

 ∃hasTutor

 Professor)
 - ▶ ..
- ▶ DL-Lite_F does not have finite model property

Example

- ▶ $Nat \sqsubseteq \exists hasSucc, \exists hasSucc^- \sqsubseteq Nat, (funct hasSucc^-),$
- ▶ Zero \sqsubseteq Nat, Zero $\sqsubseteq \neg \exists hasSucc^-$, Zero(0)

$\mathsf{DL}\text{-Lite}_\mathcal{R}$

► Another simple member of the family; allows role hierarchies

Syntax

- ▶ Basic role $Q ::= P \mid P^- \text{ for } P \in N_R$
- ▶ Roles $R ::= Q \mid \neg Q$.
- ▶ Basic concepts $B ::= A \mid \exists Q \text{ for } A \in N_C, Q \in N_R$
- ▶ Concepts $C ::= B \mid \neg B \mid \exists R.C$
- ▶ TBox: $B \sqsubseteq C$, $R_1 \sqsubseteq R_2$
- ABox: A(a), P(a, b)
- Semantics as usual

Note

- Again no qualified existential on lhs
- ▶ DL-Lite_R has finite model property

Qualified Existentials

- Qualified existentials on rhs not necessary (if role inclusions and inverse allowed)
- ► Can be eliminated conserving satisfiably equivalence

Example

- Input: Student

 ∃hasTutor.Professor
- Output
 - ▶ hasProfTutor □ hasTutor
 - Student □ ∃hasProfTutor
 - ► ∃hasProfTutor⁻

 □ Prof
- ► In the following: We assume w.l.o.g. that only non-qualified existentials are used

DL-Lite_A

- ▶ DL-Lite_A extends DL-Lite_F and DL-Lite_R by allowing for
 - attribute expressions (relation between objects and values)
 - identification assertions (corresponds to primary key constraints in DB)
- Restrictions for TBox: Roles (and attributes) appearing in functionality declarations or identification assertions must not appear on the rhs of role inclusions

Example (Football league example in DL-Lite_A)

- ► League $\sqsubseteq \exists of$ ("Every league is the league ...
- ▶ $\exists of^- \sqsubseteq Nation$.. of some nation")
- ► League $\sqsubseteq \delta(hasYear)$ ("Every league has a year") (Here: $\delta(hasYear)$ = domain of attribute hasYear)
- ▶ $\rho(hasYear) \sqsubseteq xsd : positiveInteger$ ("Range of hasYear are RDF literals of type positive integer")
- ▶ (funct hasYear)
- (id League of, has Year)("Leagues are uniquely determined by the nation and the year")

Rewritability of Query Answering

► UCQ over DL-Lite_A can be rewritten into FOL queries

Theorem

UCQs over DL-Lite_A are FOL-rewritable.

- ▶ We consider first the case where the ontology is satisfiable
- ► In this case rewriting is possible even into UCQs
- One can show that only positive inclusions (PIs) and not negative inclusions (NIs) are relevant
- ▶ PI: $A_1 \sqsubseteq A_2$, $\exists Q \sqsubseteq A_2$, $A_1 \sqsubseteq \exists Q_2$, $\exists Q_1 \sqsubseteq \exists Q_2$, $Q_1 \sqsubseteq Q_2$
- ▶ NI: $A_1 \sqsubseteq \neg A_2$, $\exists Q_1 \sqsubseteq \neg A_2$, $A_1 \sqsubseteq \neg \exists Q_2$, $\exists Q_1 \sqsubseteq \neg \exists Q_2$, $Q_1 \sqsubseteq \neg Q_2$

- ightharpoonup AssistantProf \sqsubseteq Prof
- ► ∃teaches⁻

 Course
- ▶ Prof

 ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- QA by stepwise extension of the initial query
- \triangleright Capture entailments of PIs in order to find also binding x = einstein
- Read PIs as rules applied from right to left

- ightharpoonup AssistantProf \sqsubseteq Prof
- ► ∃teaches⁻ □ Course
- ▶ Prof □ ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $\qquad \qquad Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x, y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,)$
- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $ightharpoonup Q_{rew}(x) \leftarrow AssistantProf(x)$
- Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ightharpoonup ans $(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- ightharpoonup AssistantProf \sqsubseteq Prof
- ► ∃teaches □ Course
- ▶ Prof \(\subseteq \exists teaches\)

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x, y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,)$
- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $\qquad \qquad Q_{rew}(x) \leftarrow AssistantProf(x)$
- Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ightharpoonup ans $(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- $AssistantProf \sqsubseteq Prof$
- $\exists teaches^- \sqsubseteq Course$
- Prof

 ∃teaches

- Prof(schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x, y), Course(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x, y), teaches(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x, y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,)$
- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $ightharpoonup Q_{rew}(x) \leftarrow AssistantProf(x)$

- ightharpoonup AssistantProf \sqsubseteq Prof
- ► ∃teaches⁻

 Course
- ▶ Prof □ ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- $\qquad \qquad Q_{rew}(x) \leftarrow teaches(x,y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x, _)$
- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $ightharpoonup Q_{rew}(x) \leftarrow AssistantProf(x)$
- Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ▶ $ans(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- ightharpoonup AssistantProf \sqsubseteq Prof
- ► ∃teaches⁻

 Course
- ▶ Prof □ ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- ► Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), teaches(y,y)$
- $Q_{rew}(x) \leftarrow teaches(x, y)$ $Q_{rew}(x) \leftarrow teaches(x, y)$

(after unification/reduction)

(after anonymization)

- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $\qquad \qquad Q_{rew}(x) \leftarrow AssistantProf(x)$
- Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ightharpoonup ans $(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- ► AssistantProf

 Prof
- ► ∃teaches⁻ ⊑ Course
- ▶ Prof □ ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $\qquad \qquad Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- $Q_{rew}(x) \leftarrow teaches(x, y)$ $Q_{rew}(x) \leftarrow teaches(x, y)$

(after unification/reduction)

(after anonymization)

- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $ightharpoonup Q_{rew}(x) \leftarrow AssistantProf(x)$
- \triangleright Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ightharpoonup ans $(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- ► AssistantProf

 Prof
- ► ∃teaches⁻ ⊑ Course
- ► Prof

 ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- ► Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x, y)$

- (after unification/reduction)
- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $ightharpoonup Q_{rew}(x) \leftarrow AssistantProf(x)$
- \triangleright Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ightharpoonup ans $(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- ightharpoonup AssistantProf \sqsubseteq Prof
- ► ∃teaches⁻ ⊑ Course
- ▶ Prof □ ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y)$

(after unification/reduction)

 $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,)$

(after anonymization)

- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $\qquad \qquad Q_{rew}(x) \leftarrow AssistantProf(x)$
- \triangleright Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ightharpoonup ans $(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- ► AssistantProf

 Prof
- ► ∃teaches⁻

 Course
- ▶ Prof □ ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- ► $Q_{rew}(x) \leftarrow teaches(x, y)$ ► $Q_{rew}(x) \leftarrow teaches(x, y)$

(after unification/reduction)

(after anonymization)

- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $ightharpoonup Q_{rew}(x) \leftarrow AssistantProf(x)$
- \triangleright Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ightharpoonup ans $(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

- ▶ AssistantProf □ Prof
- ► ∃teaches⁻ ⊑ Course
- ▶ Prof □ ∃teaches

- Prof (schroedinger)
- teaches(schroedinger, csCats)
- Course(csCats)
- ► Prof (einstein)

$$Q(x) = \exists y.teaches(x, y) \land Course(y)$$

- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,y), Course(y)$
- $\qquad \qquad Q_{rew}(x) \leftarrow teaches(x,y), teaches(_,y)$
- \triangleright $Q_{rew}(x) \leftarrow teaches(x, y)$
- $ightharpoonup Q_{rew}(x) \leftarrow teaches(x,)$

- (after unification/reduction)
 - (after anonymization)

- $ightharpoonup Q_{rew}(x) \leftarrow Prof(x)$
- $ightharpoonup Q_{rew}(x) \leftarrow AssistantProf(x)$
- ightharpoonup Resulting query Q_{rew} is an UCQ and is called the **perfect rewriting** of Q
- ▶ $ans(Q_{rew}, DB(A)) = \{schroedinger, einstein\} = cert(Q, (T, A))$

Perfect Rewriting Algorithm PerfectRew(Q, TP)

```
Input: Q = UCQ (in set notation), TP = DL-Lite A PIs
Output: union of conjunctive queries PR
PR := Q:
repeat
    PR' := PR:
    forall the q \in PR' do
         forall the g \in q do
              forall the PI I \in TP do
                   if I is applicable to g then
                     PR := PR \cup \{ApplyPI(q,g,I)\}
                   end
              end
         end
         forall the g1, g2 in q do
              if g1 and g2 unify then
                  \overline{PR := PR \cup \{anon(reduce(q, g1, g2))\}};
              end
         end
    end
until PR' = PR;
return PR;
```

- ► Anonymization: Substitute variables that are not bound with
- Variable is bound iff it is a distinguished variable or occurs at least twice in the body of a CQ

Properties of PerfectRew

Termination

► There are only finitely many different rewritings

Correctness

- Only certain answers are produced by the rewriting
- ▶ Formally: $ans(Q_{rew}, A) \subseteq cert(Q, (T, A)))$
- Clear, as PI applied correctly

Completeness

- ▶ All certain answers are produced by the rewriting
- ▶ $ans(Q_{rew}, A) \supseteq cert(Q, (T, A)))$
- How to prove this?
 - ⇒ Our old friend, the chase, helps again

Chase Construction for DL

- ► The PIs of the TBox are read as (TGD) rules in the natural direction from left to right
- ► Resulting structure, the chase, also called **canonical model** here is **universal**
- Reminder: A universal model can be mapped homomorphically into any other model.

Theorem

Every satisfiable DL-Lite ontology has a canonical model

- Different from the approach in Date Exchange, one does not aim for finite chases (cannot be guaranteed)
- ▶ Chase used as tool for proving, e.g., completeness: Answering the rewritten query Q_{rew} on the minimal Herbrand model of the ABox is the same as answering Q on the chase.

Satisfiability Check for Ontologies

- ► In case an ontology is unsatisfiable, answer set becomes trivial: An unsatisfiable ontology entails all assertions
- Hence to determine correct answers, a satisfiability check is needed
- ► We will consider this in the following

Theorem

Checking (un-)satisfiability of DL-Lite ontologies is FOL rewritable.

That means: For any TBox there is a Boolean query Q such that for all ABoxes A: (\mathcal{T}, A) is satisfiable iff Q is false.

- Unsatisfiability may be caused by an NI (negative inclusion) or by a functional declaration
- ► So the rewritten query asks for an object in the ABox violating an NI or a functional declaration

FOL Rewritability of Satisfiability

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
$\exists mentors \sqsubseteq Prof$	mentors(alice, bob)
$(funct mentors^-)$	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the ABox:

▶ alice (via NI)

$$Q_1() \leftarrow \exists x (Prof(x) \land Student(x)) \lor \exists x, ymentors(x, y) \land Student(x))$$

bob for the functional axiom

$$Q_2() \leftarrow \exists x, y, z (mentors^-(x, y) \land mentors^-(x, z) \land y \neq z)$$

▶ Unsatisfiability tester query: $Q_1 \lor Q_2$

FOL Rewritability of Satisfiability

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
\exists mentors \sqsubseteq Prof	mentors(alice, bob)
$(funct mentors^-)$	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the ABox:

► alice (via NI)

$$Q_1() \leftarrow \exists x (\textit{Prof}(x) \land \textit{Student}(x)) \lor \exists x, \textit{ymentors}(x,y) \land \textit{Student}(x))$$

bob for the functional axiom

$$Q_2() \leftarrow \exists x, y, z (mentors^-(x, y) \land mentors^-(x, z) \land y \neq z)$$

▶ Unsatisfiability tester query: $Q_1 \lor Q_2$

FOL Rewritability of Satisfiability

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
$\exists mentors \sqsubseteq Prof$	mentors(alice, bob)
(funct mentors ⁻)	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the ABox:

► alice (via NI)

$$Q_1() \leftarrow \exists x (\textit{Prof}(x) \land \textit{Student}(x)) \lor \exists x, \textit{ymentors}(x, y) \land \textit{Student}(x))$$

bob for the functional axiom

$$Q_2() \leftarrow \exists x, y, z (mentors^-(x, y) \land mentors^-(x, z) \land y \neq z)$$

▶ Unsatisfiability tester query: $Q_1 \lor Q_2$

FOL Rewritability of Satisfiability

Example

TBox	ABox
$Prof \sqsubseteq \neg Student$	Student(alice)
$\exists mentors \sqsubseteq Prof$	mentors(alice, bob)
$(funct\ mentors^-)$	mentors(andreia, bob)

The ontology is made unsatisfiable by two culprits in the ABox:

► alice (via NI)

$$Q_1() \leftarrow \exists x (Prof(x) \land Student(x)) \lor \exists x, ymentors(x, y) \land Student(x))$$

bob for the functional axiom

$$Q_2() \leftarrow \exists x, y, z (mentors^-(x, y) \land mentors^-(x, z) \land y \neq z)$$

▶ Unsatisfiability tester query: $Q_1 \lor Q_2$

Checking Inconsistency for NIs

 Every NI is separately transformed to a CQ asking for a counterexample object, e.g.,

```
A \sqsubseteq \neg B becomes Q() \leftarrow \exists x.A \land B
\exists P \sqsubseteq \neg B becomes Q() \leftarrow \exists y, x.P(x,y) \land B(x)
```

- Resulting CQs are rewritten separately with PerfectRew w.r.t.
 Pls in the TBox
 - ▶ Intuition closure: $A \sqsubseteq B$ and $B \sqsubseteq \neg C$ entails $A \sqsubseteq \neg C$
 - ▶ Intuition separability: No two NIs can interact.
- $ightharpoonup Q_N := union of these CQs$
- ▶ For functionalities, it is enough to consider these alone (funct P) becomes $Q() \leftarrow \exists x, y, z.P(x,y) \land P(x,z) \land y \neq z$
- $ightharpoonup Q_F := union of these CQs$
 - Intuition: No interaction of PI or NI with functionalities

Rewritability

Theorem

Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be a DL-Lite_{\mathcal{A}} ontology. Then:

 \mathcal{O} is satisfiable iff $Q_N \vee Q_F$ (which is a UCQ^{\neq} and hence FOL query) is false.

- The separability has consequences for identifying culprits of inconsistency
 - At most two ABox axioms may be responsible for an inconsistency
 - ► This is relevant for ontology repair, version, change etc. (see next lectures)

Constructs Leading to Non-rewritability in DL-Lite

- ▶ DL-Lite_A is a maximal DL w.r.t. the allowed logical constructors under the FOL constraints
- Useful constructions such as qualified existentials, disjunction, non-restricted use of functional roles lead to non FOL-rewritability
- This can be proved using complexity theory and FOL (un-)definability arguments

Qualified existentials on Lhs

- Reachability in directed gaphs is known to be NLOGSPACE-complete
- Use the fact that

FOL expressible
$$= AC^0 \subseteq NLOGSPACE$$

and the following reachability-to-QA reduction

Reduction

```
Given: \mathfrak{G}, start s, end t
\mathcal{A}_{\mathfrak{G},t} = \{edge(v_1,v_2) \mid (v_1,v_2)\} \cup \{pathToTarget(t)\}
\mathcal{T} = \{\exists edge.PathToTarget \sqsubseteq PathToTarget\}
CQ = q() \leftarrow PathToTarget(s)
```

- ▶ Fact: $\mathcal{T} \cup \mathcal{A}_{\mathfrak{G},t} \models q$ iff there is a path from s to t in \mathfrak{G}
- ▶ Fact: \mathcal{T} , q do not depend on \mathfrak{G} , t
- ▶ Problem $\mathcal{T} \cup \mathcal{A}_{\mathfrak{G},t} \models q$ is NLOGSPACE hard

Limits of DL-Lite

- ▶ DL-Lite_A is not the maximal fragment of FOL allowing for rewritability
- ▶ Datalog[±] = Datalog with existentials in head = set of tuple generating (TGDs) rules (and EGDs)
 - ▶ Datalog[±]₀ = "Linear fragment" of Datalog[±] containing rules whose body consists of one atom
 - ► Fact: Datalog₀[±] is strictly more expressive than DL-Lite.

Example

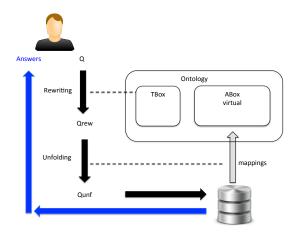
The rule

$$\forall x.manager(x) \rightarrow manages(x,x)$$

is in $\mathsf{Datalog}_0^\pm$ but in no member of the DL-Lite family.

Unfolding

Connecting to the Real World: Mappings and Unfolding



Reminder: Mappings

Mappings have an important role for OBDA

Schema of Mappings \mathcal{M} m_1 : ontology template $1 \leftarrow 0$ data source template $1 \leftarrow 0$

. . .

 m_2 :

► Lift data to the ontology level

ontology template₂

- ► Data level: (nearly) closed world
- Ontology level: open world
- Mappings, described as rules, provide declarative means of implementing the lifting
 - User friendliness: users may built mappings on their own
 - Neat semantics: the semantics can be clearly specified and is not hidden in algorithms (as in direct mappings)

data source template₂

- Modularity: mappings can be easly extended, combined etc.
- ► Reuse of tools: Can be managed by (adapted) rule engines

The Burden of Mappings

- ► The data-to-ontology lift faces **impedance mismatch**
 - data values in the data vs.
 - abstract objects in the ontology world
 - ▶ Solved by Skolem terms $\vec{f}(\vec{x})$ below

Schema of Mappings

$$m: \psi(\vec{f}(\vec{x})) \longleftarrow Q(\vec{x}, \vec{y})$$

- $\psi(\vec{f}(\vec{x}))$: Query for generating ABox axioms
- $Q(\vec{x}, \vec{y})$: Query over the backend sources
- Function \vec{f} translates backend instantiations of \vec{x} to constants
- ▶ Mappings M over backend sources generates ABox A(M, DB).
- Use of mappings
 - ▶ as ETL (extract, transform, load) means: materialize ABox
 - ▶ as logical view means: ABox kept virtual (classical OBDA)

Example Scenario: Measurements

► Example schema for measurement and event data in DB

```
SENSOR(<u>SID</u>, CID, Sname, TID, description)

SENSORTYPE(<u>TID</u>, Tname)

COMPONENT(<u>CID</u>, superCID, AID, Cname)

ASSEMBLY(<u>AID</u>, AName, ALocation)

MEASUREMENT(<u>MID</u>, MtimeStamp, SID, Mval)

MESSAGE(<u>MesID</u>, MesTimeStamp, MesAssemblyID, catID, MesEventText)

CATEGORY(<u>catID</u>, catName)
```

► For mapping

```
Sens(f(SID)) \land name(f(SID), y) \leftarrow

SELECT SID. Sname as v FROM SENSOR
```

▶ the row data in SENSOR table

```
SENSOR
(123, comp45, TC255, TempSens, 'A temperature sensor')
```

generates facts

```
Sens(f(123)), name(f(123), TempSens) \in A(m, DB)
```

Example Scenario: Measurements

► Example schema for measurement and event data in DB

```
SENSOR(SID, CID, Sname, TID, description)
SENSORTYPE(TID, Tname)
COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)
MEASUREMENT(MID, MtimeStamp, SID, Mval)
MESSAGE(MesID, MesTimeStamp, MesAssemblyID, catID, MesEventText)
CATEGORY(catID, catName)
```

For mapping

```
m: Sens(f(SID)) \land name(f(SID), y) \leftarrow

SELECT SID, Sname as y FROM SENSOR
```

▶ the row data in SENSOR table

```
SENSOR
(123, comp45, TC255, TempSens, 'A temperature sensor')
```

generates facts

```
Sens(f(123)), name(f(123), TempSens) \in A(m, DB)
```

R2RML

- Very expressive mapping language couched in the RDF terminology
- Read only (not to allowed to write the RDFs view generated by the mappings)
- ▶ W3C standard (since 2012), http://www.w3.org/TR/r2rml/
- Defined for logical tables (= SQL table or SQL view or R2RML view)
 - \Longrightarrow they can be composed to chains of mappings
- ► Has means to model foreign keys (referencing object map)

Example (R2RML for Sensor Scenario)

```
@prefix rdf : <http ://www.w3.org/1999/02/22?rdf?syntax?ns#> .
@prefix rr : <http ://www.w3. org/ns/r2rml#> .
@prefix ex : <http ://www. example . org/> .
ex : SensorMap
    a rr:TriplesMap;
    rr: logicalTable [ rr : tableName "Senso" ] ;
    rr : subjectMap [
        rr:template 'http://www.sensorworld.org/SID';
        rr:class ex:Sensor
   1:
    rr: predicateObjectMap [
        rr:predicate ex:hasName;
        rr:objectMap [column "name"]
```

OBDA Semantics with Mappings

- ▶ Semantics canonically specified by using the generated ABox $\mathcal{A}(DB, \mathcal{M})$
- Ontology Based Data Access System (OBDAS)

$$\mathcal{OS} = (\underbrace{\mathcal{T}}_{TBox}, \underbrace{\mathcal{M}}_{relational\ data\ base})$$

Definition

An interpretation \mathcal{I} satisfies an OBDAS $\mathcal{OS} = (\mathcal{T}, \mathcal{M}, DB)$, for short: $\mathcal{I} \models \mathcal{OS}$, iff $\mathcal{I} \models (\mathcal{T}, \mathcal{A}(DB, \mathcal{M}))$

An OBDAS is satisfiable iff it has a satisfying interpretation.

Unfolding

- Unfolding is the second but not to be underestimated step in classical OBDA QA
- ► Applies mappings in the inverse direction to produce query Q_{unf} over data sources which then becomes evaluated

Unfolding steps

1. Split mappings

$$atom_1 \wedge \cdots \wedge atom_n \longleftarrow Q$$
 becomes $atom_1 \longleftarrow Q, \ldots, atom_n \longleftarrow Q$

- 2. Introduce auxiliary predicates (views for SQL) for rhs queries
- 3. In Q_{rew} unfold the atoms (with unification) into a UCQ Q_{aux} using purely auxiliary predicates
- 4. Translate Q_{aux} into SQL
 - logical conjunction of atoms realized by a join
 - disjunction of queries realized by SQL UNION

Unfolding for Measurement Scenario

DB with schema

```
SENSOR(<u>SID</u>, CID, Sname, TID, description)
MEASUREMENT1(<u>MID</u>, MtimeStamp, SID, Mval)
MEASUREMENT2(<u>MID</u>, MtimeStamp, SID, Mval) ...
```

Mappings

```
m1: Sens(f(SID)) \land name(f(SID), y) \longleftarrow
SELECT SID, Sname as y FROM SENSOR

m2: hasVal(f(SID), Mval) \longleftarrow
SELECT SID, Mval FROM Measurement1

m3: hasVal(f(SID), Mval) \longleftarrow
SELECT SID, Mval FROM Measurement2

m4: criticalValue(Mval) \longleftarrow
SELECT Mval FROM MEASUREMENT1
WHERE Mval > 300
```

Query

$$Q(x) \leftarrow Sens(x) \wedge hasVal(x, y) \wedge Critical(y)$$

Unfolding for Measurement Scenario

Split mappings m1.1: $Sens(f(SID)) \leftarrow$ SELECT SID FROM SENSOR m1.2: $name(f(SID), y) \leftarrow$ SELECT SID, Sname as y FROM SENSOR $hasVal(f(SID), Mval) \leftarrow$ m2: SELECT SID, Mval FROM Measurement1 m3· $hasVal(f(SID), Mval) \leftarrow$ SELECT SID, Mval FROM Measurement2 $criticalValue(Mval) \leftarrow$ m4: SELECT Myal FROM MEASUREMENT1 WHERE Mval > 300 Query $Q(x) \leftarrow Sens(x) \land hasVal(x, y) \land Critical(y)$

Unfolding for Measurement Scenario

Split mappings m1.1: $Sens(f(SID)) \leftarrow$ SELECT SID FROM SENSOR =: Aux1(SID) m1.2: $name(f(SID), y) \leftarrow$ SELECT SID, Sname as y FROM SENSOR =: Aux2(SID,y) $hasVal(f(SID), Mval) \leftarrow$ m2: SELECT SID, Mval FROM Measurement1 =: Aux3(SID, Mval) m3· $hasVal(f(SID), Mval) \leftarrow$ SELECT SID, Mval FROM Measurement2 =: Aux4(SID, Mval) $criticalValue(Mval) \leftarrow$ m4: SELECT Myal FROM MEASUREMENT1 $=:Au \times 5(Mval)$ WHERE Mval > 300 Query $Q(x) \leftarrow Sens(x) \land hasVal(x, y) \land Critical(y)$

Unfolding for Measurement Scenario

Split mappings $Sens(f(SID)) \leftarrow$ m1.1: SELECT SID FROM SENSOR :=Aux(SID) m1.2 : $name(f(SID), y) \leftarrow$ SELECT SID, Sname as y FROM SENSOR =: Aux2(SID,y) $hasVal(f(SID), Mval) \leftarrow$ m2: SELECT SID, Mval FROM Measurement1 =: Aux3(SID, Mval) $hasVal(f(SID), Mval) \leftarrow$ m3: SELECT SID, Mval FROM Measurement2 =: Aux4(SID, Mval) $criticalValue(Mval) \leftarrow$ m4: SELECT Mval FROM MEASUREMENT1 $=:Au \times 5(Mval)$ WHERE Mval > 300

Query

$$Q(x) \leftarrow Sens(x) \land hasVal(x, y) \land Critical(y)$$

▶ Query Q_{Aux} with Aux-views

$$\begin{array}{cccc} Q_{Aux} & \longleftarrow & Aux1(SID), Aux3(SID, Mval), Aux5(Mval) \\ Q_{Aux} & \longleftarrow & Aux1(SID), Aux4(SID, Mval), Aux5(Mval) \end{array}$$

Unfolding for Measurement Scenario

```
SELECT 'Qunfold' || aux_1.SID || ')' FROM

(SELECT SID FROM SENSOR) as aux_1,

(SELECT SID, Mval FROM Measurement1) as aux_3,

(SELECT Mval FROM MEASUREMENT1 WHERE Mval > 300) as aux_5

WHERE aux_1.SID = aux_3.SID AND aux_3.Mval = aux_5.Mval

UNION

SELECT 'Qunfold' || aux_1.SID || ')' FROM

(SELECT SID FROM SENSOR) as aux_1,

(SELECT SID, Mval FROM Measurement2) as aux_4,

(SELECT Mval FROM MEASUREMENT1 WHERE Mval > 300) as aux_5

WHERE aux_1.SID = aux_4.SID AND aux_4.Mval = aux_5.Mval
```

► There are different forms of unfolding

Research on OBDA Mappings

- Recent research on classical OBDA reflects the insight of mappings' importance
- Adequateness conditions for mappings
 - consistency/coherency
 - redundancy
- Management of mappings
 - Repairing mappings (based on consistency notion)
 - Approximating ontologies and mappings

Lit: D. Lembo et al. Mapping analysis in ontology-based data access: Algorithms and complexity. In: ISWC 2015, volume 9366 of LNCS, pages 217–234, 2015.

Need for Opimizations

- UCQ-Rewritings may be exponentially larger than the original query
- Have to deal with this problem in practical systems
- Use different rewriting to ensure conciseness
- Use additional knowledge on the data: integrity constraints, (H)-completeness
- Have a look at OBDA framework ontop (http://ontop.inf.unibz.it/)
 - Open source
 - available as Protege plugin
 - ▶ implementing many optimizations

Exercise 6

Exercise 6.1 (2 Points)

Prove that DL-Lite $_{\mathcal{F}}$ can have ontologies having only infinite models (using, e.g., the example mentioned in the lecture)

Exercise 6.2 (3 Points)

The anonymization function in the PerfRew algorithm is allowed to be applied only to un-bound variables that are not distinguished (that is are not answer variables). Give an example why this restriction makes sense.

Exercise 6.3 (3 Points)

Explain the notion of reification, and show (with an example) why it is needed for (classical) OBDA.

Exercise 6.4 (4 Points)

Many relevant DL reasoning services can be reduced to ontology satisfiability in DL-Lite. Show that subsumption w.r.t. a DL-Lite TBox can be reduced to (un)satisfiability test of a DL-Lite ontology!

Hint: Use the general fact of entailment that $\psi \models \phi$ iff $\psi \land \neg \phi$ is unsatisfiable. Then think of how the latter can be formulated in a DL-Lite ontology (introducing perhaps new symbols).