UNIVERSITAT ZU LUBECK

Ozgiir L. Ozcep

Stream Processing 1

Lecture 12: Temporal OBDA, Relational Stream Processing
18 January, 2017

Foundations of Ontologies and Databases

for Information Systems
CS5130 (Winter 16/17)

Recap: Ontology Change

v

v

v

v

Considered ontology change from BR perspective

Required adaptations and extensions for BR

>

>
>
| 4

non-classical logics

revision of finite belief bases
multiple revision

iterated revision

Considered Infinite Iteration and Idea of Formal Learning
Theory

Stabilization/convergence conditions

End of Recap

2/83

This and Next Lecture

» Infinite sequences from stream processing perspective

» Additional aspects: temporality of data, recency,
data-driveness, velocity

» Resume OBDA and consider how to lift them to temporal
OBDA and streaming OBDA
» Temporal OBDA: Add time aspect (somewhere)
» Stream OBDA: Higher-level stream w.r.t. ontology (and
mappings)

3/83

Temporalized OBDA

A Confession

» Ontology-Based Data Access on temporal and Streaming
Data

» But: Streams are temporal streams and we talk about local
temporal reasoning

5/83

Adding a Temporal Dimension to OBDA

» Most conservative strategy: handle time as “ordinary” attribute
time
Zi(é’j(xgi\\ . SELECT £(MID) AS m, Mval AS y, MtimeStamp AS z
Y FROM MEASUREMENT
time(x, z)
» Classical Mapping
» Pro: Minimal (no) adaptation
» Contra:

» No control on “logic of time”
» Need reification
> sometimes necessary (because DLs provided only predicates up
to arity 2)
» but not that “natural”

6/83

Flow of Time

» Flow of time (T, <7) is a structure with a time domain T and
a binary relation <7 over it.

» Flow metaphor hints on directionality and dynamic aspect of
time

» But still different forms of flow are possible

» One can consider concrete structures of flow of (time), as
done here

» Or investigate them additionally axiomatically

» An early model-theoretic and axiomatic treatise:

7/83

The Family of Flows of Time

» Domain T
» points (atomic time instances)
» pairs of points (application time, transaction time)
» intervals etc.
» Properties of the time relation <t
» Non-branching (linear) vs. branching
Linearity:
> reflexive: Vte T: t <t t
> antisymmetric: Vti1,t> € T: (tl <t At <t tl) =t =0
> transitive: Vi1, to,t3 € T : (1 <t b Ao < t3) = t1 < t3.
> total: Vi, e T: i < bVt <t1 Vit = t.

8/83

The Family of Flows of Time

» Domain T
» points (atomic time instances)
» pairs of points (application time, transaction time)
» intervals etc.
» Properties of the time relation <t
» Non-branching (linear) vs. branching
Linearity:
> reflexive: Vte T: t <t t
> antisymmetric: Vti1,t> € T: (tl <t At <t tl) =t =0
> transitive: Vi1, to,t3 € T : (1 <t b Ao < t3) = t1 < t3.
> total: Vi, e T: i < bVt <t1 Vit = t.

9/83

The Family of Flows of Time

» Domain T
» points (atomic time instances)
» pairs of points (application time, transaction time)
» intervals etc.
» Properties of the time relation <t
» Non-branching (linear) vs. branching
Linearity:
> reflexive: Vte T: t <t t
> antisymmetric: Vti1,t> € T: (t1 <t At <t tl) =t =0
> transitive: Vi1, to,t3 € T : (1 <t b Ao < t3) = t1 < t3.
> total: Vi, e T: i < bVt <t1 Vit = t.

» Existence of first or last element

10/83

The Family of Flows of Time

» Domain T

» points (atomic time instances)

» pairs of points (application time, transaction time)

» intervals etc.
» Properties of the time relation <t

» Non-branching (linear) vs. branching

Linearity:
> reflexive: Vte T: t <t t

antisymmetric: Vi1, to € T: (t1 <t At <t tl) =t =0
transitive: Vty, to,t3 € T : (1t <t o At < t3) = 11 < t3.
total: Vi, e T: i < bVt <t1 Vit = t.

vvyy

» Existence of first or last element

» discreteness (Example: T = N); also used for modeling state
sequences;

» density (Example: T = Q);
» continuity (Example: T = R)

11/83

Temporalized OBDA: General Approach

» Semantics rests on family of interpretations (Z;)se 1

» Temporal ABox A: Finite set of T-tagged ABox axioms

val(sp,90°)(3s) holds in (Z;)ie T iff Z3s = val(sp, 90°)
“sensor sp has value 90° at time point 3s”

» Alternative sequence representation of temporal ABox A
> (Ap)ier (where T’ are set of timestamps in T)

» A, = {ax | ax(t) € A}

Definition (Adapted notion of OBDA rewriting)

Cert(Q, (Slga T7 (At)tET') = ans(Qrew7 (DB(Af))tET')

12/83

Temporalized OBDA:TCQs

» Different approaches based on modal (temporal) operators
» LTL (linear temporal logic) operators only in QL (Borgwardt et
al. 13)

Critical(x) = 3y.Turbine(x) A showsMessage(x,y) A
FailureMessage(y)
Q(x) = O *O PO H(Critical(x) A OO Critical(x)))
“turbine has been at least two times in a critical

situation in the last three time units”

CQ embedded into LTL template

Special operators taking care of endpoints of state sequencing
Not well-suited for OBDA as non-safe

Rewriting simple due to atemporal TBox

vV vyYyYyywy

13/83

Temporalized OBDA: TQL

» LTL operators in TBox and T argument in QL

TBox axiom : showsAnomaly C < UnplanedShutDown
“if turbine shows anomaly (now)

then sometime in the future it will shut down"

Query : 3Jt.3s <t < 65 A showsAnomaly(x, t)

» Can formulate rigidity assumptions

» Rewriting not trivial

14/83

Stream Basics

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

16 /83

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

> “Streams are forever”

Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of
the EATCS, 109:70-106, 2013.

17/83

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

» “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of
the EATCS, 109:70-106, 2013.

» “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219-231, 2013.

18/83

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

» “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of
the EATCS, 109:70-106, 2013.

» “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219-231, 2013.

» “It's a streaming world!"
Lit: E. Della Valle, et al. It?s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83-89, nov.-dec. 20009.

19/83

Adding a Time Dimension

Definition (Temporal Stream)

A temporal stream S is a potentially infinite sequence of
timestamped objects d(t) over some domain D and flow of time
(Ta ST)

» Consider non-branching (or: linear) time, i.e., <7 is
» We assume that there is no last element in T

» We do not restrict T further, so it may be

» discrete or
» dense or
» continuous

20/83

Adding a Time Dimension

Definition (Temporal Stream)

A temporal stream S is a potentially infinite sequence of
timestamped objects d(t) over some domain D and flow of time
(Ta ST)

» Consider non-branching (or: linear) time, i.e., <7 is
» We assume that there is no last element in T

» We do not restrict T further, so it may be

» discrete or
» dense or
» continuous

21/83

Arrival Ordering

» Sequence fixed by arrival ordering fixed <.,

» <, is a strict total ordering on the elements of S

22/83

Arrival Ordering

» Sequence fixed by arrival ordering fixed <.,

» <, is a strict total ordering on the elements of S

» Synchronuous streams: <7 compatible with <,

» Compatibility: For all di(t1), da(t2) € S: If di{t1) <ar da(t2),
then t; <7 to.

» Asynchronous streams: <t not necessarily compatible with
<ar

23/83

Arrival Ordering

» Sequence fixed by arrival ordering fixed <.,

» <, is a strict total ordering on the elements of S

» Synchronuous streams: <7 compatible with <,

> Compatibility: For all d1<1.'1>,d2<1.’2> eS:|If d1<t1> <ar d2<t2>,
then t; <7 t.

» Asynchronous streams: <t not necessarily compatible with
<ar

Convention for the following

» Consider only temporal streams

» Consider only synchronous streams — neglect <,,.

> Represent streams as a potentially infinite multi-set (bag) of
elements

24/83

Stream Stack and Stream Research

» Low-level sensor perspective (semantic sensor networks)
» Develop fast algorithms on high-frequency streams with
minimal space consumption
» Considers approximate algorithms for aggregation functions
» See lecture “Non-standard DBs" by Ralf Méller

25/83

Stream Stack and Stream Research

» Low-level sensor perspective (semantic sensor networks)
» Develop fast algorithms on high-frequency streams with
minimal space consumption
» Considers approximate algorithms for aggregation functions
» See lecture “Non-standard DBs" by Ralf Méller

» Data stream management system (DSMS) perspective
» Provide whole DB systems for streams of structured
(relational) data
» Deals with all aspects relevant in static DBMS adapted to

stream scenario
» See lecture “Non-standard DBs” by Ralf Maller and this lecture

» Stream Query Language

26 /83

Stream Stack and Stream Research

» Low-level sensor perspective (semantic sensor networks)
» Develop fast algorithms on high-frequency streams with
minimal space consumption
» Considers approximate algorithms for aggregation functions
» See lecture “Non-standard DBs" by Ralf Méller

» Data stream management system (DSMS) perspective
» Provide whole DB systems for streams of structured
(relational) data
» Deals with all aspects relevant in static DBMS adapted to

stream scenario
» See lecture “Non-standard DBs” by Ralf Maller and this lecture

» Stream Query Language

» High-level and Ontology layer streams
» Processing stream of assertions (RDF triples) w.r.t. an

ontology
» Related: Complex Event Processing (CEP)

» this and next lecture
27/83

Local vs. Global Stream Processing

» Global aim: Learn about the whole by looking at the parts
» Examples: inductive learning, ontology change, iterated belief
revision (see slides before), robotics oriented stream processing
with plan generation
» May produce also an output stream
» But in the end the whole stream counts

» Local aim: Monitor window contents with time-local

» Examples: Real-time monitoring, simulation for reactive
diagnostics

» Categories not exclusive

» In learning one applies operation on (NOW)-window to learn
about stream

» In predictive analytics one monitors with window in order to
predict upcoming events

28 /83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d(t) over some
domain D and flow of time (T, <7).

Streamified OBDA has to deal with different types of domains

20/83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d(t) over some
domain D and flow of time (T, <7).

Streamified OBDA has to deal with different types of domains

D; = a set of typed relational tuples adhering to a relational
schema

» Streams at the backend sources
> Srer = {(51,90°)(1s), (s2,92°)(2s), (51,94°)(3s), ... }
» Schema: hasSensorRelation(Sensor:string, temperature:integer)

30/83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d(t) over some
domain D and flow of time (T, <7).

Streamified OBDA has to deal with different types of domains

D, = set of untyped tuples (of the same arity)
» Stream of tuples resulting as bindings for subqueries

31/83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d(t) over some
domain D and flow of time (T, <7).

Streamified OBDA has to deal with different types of domains

D3 = set of assertions (RDF tuples).
> Srar = { val(sp,90°)(1s), val(sp,92°)(2s), val(sy,94°)(3s),... }

32/83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d(t) over some
domain D and flow of time (T, <7).

Streamified OBDA has to deal with different types of domains

D, = set of RDF graphs

33/83

Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

34/83

Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

» Stream query continuous,
not one-shot activity

» Window content continuosly
updated

35/83

Taming the Infinite
Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

Time

<

« <« <« < < < < < <
f f

5.0 6.0

,’ ,’ Sout

36 /83

v v
v 4
4 4
v v
v v

» Here a time-based window of width 3 seconds

» and slide 1 second is applied

Window Operators: Classification

» Direction of movement of the endpoints

» Both endpoints fixed (needed for “historical” queries)
» Both moving/sliding
» One moving the other not

37/83

Window Operators: Classification

» Direction of movement of the endpoints
» Both endpoints fixed (needed for “historical” queries)
» Both moving/sliding
» One moving the other not

» Window size

» Temporal
Tuple-based
Partitioned window
Predicate window

v vVvYyy

38/83

Window Operators: Classification

» Direction of movement of the endpoints
» Both endpoints fixed (needed for “historical” queries)
» Both moving/sliding
» One moving the other not

» Window size

» Temporal
Tuple-based
Partitioned window
Predicate window

v vVvYyy

» Window update

» tumbling
» sampling
» overlapping

39/83

Why is the Window Concept so Important?

» We give an answer using the word perspective on stream
processing according to (Gurevich et al. 07)

» Streams = finite or infinite words over an alphabet (domain) D

D* = finite words over D

D% = infinite (w-) words over D

D*° = finite and infinite words over D

o = word concatenation (usually not mentioned)

vV vy vVvyy

» Stream operators @ are functions/queries of the form
Q: Dy — D3°

» Assume w.l.o.g that D; = D, = D.

40/83

Genuine Streams are Finite Prefix Determined

» Open ball around u:
B(u) := uD>® = {s € D> | Thereis s’ € D® s.t. s =uos'}

Definition (Axiom of finite prefix determinedness (FP))

For all s € D*° and all u € D*:
If Q(s) € uD™, there is w € D* s.t. s € wD™® C Q~}(uD™>)

» (FP) expresses a continuity condition w.r.t. a topology

41/83

Genuine Streams are Finite Prefix Determined

» Open ball around u:
B(u) :==uD>® ={s € D> | Thereis s’ € D® st.s=uos'}

Definition (Axiom of finite prefix determinedness (FP))

For all s € D*° and all u € D*:
If Q(s) € uD>, there is w € D* s.t. s € wD™ C Q= (uD>)

» (FP) expresses a continuity condition w.r.t. a topology
» Reminder: A topology is a structure (X, Q) where

O C Pow(X)

0,X €O

O closed under finite intersections

O closed under arbitrary unions

» A basis for O is a set B C Pow(X) s.t.: Every S€ Ois a
union of elements of B.

v vy

v

42/83

Genuine Streams are Finite Prefix Determined

» Open ball around u:
B(u) :==uD>® ={s € D> | Thereis s’ € D® st.s=uos'}

Definition (Axiom of finite prefix determinedness (FP))

For all s € D* and all v € D*:
If Q(s) € uD>, there is w € D* s.t. s € wD™ C Q= (uD>)

> (FP) expresses a continuity condition w.r.t. a topology

v

Gurevich topology
Te = (D>,{AD> | AC D*})
B(u) for u € D* are basis for 7.

A function Q : D*® — D is continuous iff for every open
ball B: Q~1(B) is open.
i.e., iff Q fulfills (FP)

\4

v

v

4383

Kernels

» For K : D* — D* define function Repeat(K) : D> — D*°
by
Repeat(K)(s) = Of"§" K (s=')

Definition

A function K : D* — D* is called a kernel (alias: window) for
Q : D> — D> iff @ = Repeat(K).

Q is called abstract computable if it has a kernel.

» Fundamental insight

Theorem

The set of AC functions are exactly those stream functions fulfilling
FP (i.e. that are continuous) and mapping finite streams to finite
streams

44 /83

Example for non-continuos stream functions

Query CHECK
» a,beD
» CHECK(s) = (a) if b does not occur in s
» Otherwise CHECK(s) = () = empty stream

» CHECK is not continuous (and hence not an AC function):
» Consider open ball B(a).
» () € CHECKY(B(a))
» But the only open ball containing () is B(()) = D>
» But B(()) £ CHECK—1(B(a)) because
» CHECK(b) = () ¢ B(a)

45 /83

Relational Stream Processing with CQL

Relational Data Stream Processing

» Different groups working on DSMS around 2004

» Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

» Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

» First try for standardization:

47 /83

Relational Data Stream Processing

» Different groups working on DSMS around 2004

» Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

» Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

» Though well investigated and many similarities there is no
streaming SQL standard

» First try for standardization:

» But if development speed similar to that for introducing
temporal dimension into SQL, then we have to wait...

48 /83

CQL (Continuous Query Language)

>

Early relational stream query language extending SQL
Developed in Stanford as part of a DSMS called STREAM
Semantics theoretically specified by denotational semantics
Practically, development of CQL was accompanied by the
development the Linear Road Benchmark (LRB)
(http://www.cs.brandeis.edu/"linearroad/)

Had immense impact also on development of early RDF

streaming engines in RSP community
https://www.w3.org/community/rsp/)

49 /83

(http://www.cs.brandeis.edu/~linearroad/)
https://www.w3.org/community/rsp/

CQL Operators

» Special data structure next to streams: relations R
» R maps times t to ordinary (instantaneous) relations R(t)
» Motivation: Use of ordinary SQL operators on instantaneous
relations
» Operators
» Stream-to-relation = window operator
» Relation-to-relation = standard SQL operators at every single
time point
» relation-stream = for getting streams agains

» Non-predictability condition for operators op:
» If two inputs S; , S, are the same up to t, then

op(S1)(t) = op(S2)(t).
(This is related to (FP))

50/83

CQL Windows

» Window operators are stream-to-relation operators

» CQL knows tuple-based, partition based, and time-based
windows

51/83

CQL Windows

» Window operators are stream-to-relation operators

» CQL knows tuple-based, partition based, and time-based
windows

Definition (Semantics of Window Operator)
R = S [Range wr Slide sl]

» with slide parameter sl and range wr
> tstarr = I_t/SIJ - sl
> teng = max{tsar — wr,0}

if t <sl

0
Rl = { {s|s(t') €S and teng < t' < tiar} else

52/83

CQL Windows

» Window operators are stream-to-relation operators
» CQL knows tuple-based, partition based, and time-based
windows

Definition (Semantics of Window Operator)
R = S [Range wr Slide sl]

» with slide parameter sl and range wr

> tstarr = I_t/SIJ - sl
> tend = max{tsta,t — wr, 0}

if t <sl

B 0
R(t) = { {5 | s<t/> €S and tg,g <t' < tstart} else

» Standard slide = 1: [RANGE wr]
» Left end fixed: [Range UNBOUND]
> Width 0: [NOW]

53/83

Sliding Window Example in CQL

» Flow of time (N, <)

» Input stream

S = {(0,90°)(0), (s1,94°)(0), (s0,91°)(1), (50, 92°)(2),
(50,93°)(3), (50, 95°)(5), (50, 94°)(6).....}

» Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,92), {(s0,93),
(s1,94)} (s1,94), (s1,94), (s0,92), (s0,93)} (s0,93), (s0,95),
(s0,91)} ((507321% (s0,93)} (s0,95)} (s0,94)}
%0,

54 /83

Sliding Window Example in CQL

S = {(50,90)(0), (s1,94)(0), (s0,91)(1), (s0,92)(2), (S0,93)(3), (50, 95)(5), (s0,94){6) }

Temp/C°

95.0 + .
94.0 + ° .
93.0 + .
92.0 + .
91.0 + .
900 + e
t t t t t t t Time/sec
00 1.0 20 3.0 40 50 6.0

Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,93), {(s0,95),
(s1,94)} (51,94), (s1,94), (s0,92), (s0,93)} (s0,95)} (s0,94)}
(s0,91)} (s0,91), (s0,93)}
(s0,92)}

55/83

Sliding Window Example in CQL

S = {(50,90)(0), (s1,94)(0), (s0,91)(1), (s0,92)(2), (S0,93)(3), (50, 95)(5), (s0,94){6) }

Temp/C°

95.0 + .
94.0 + ° .
93.0 o
92.0 + .
91.0 + °
90.0 + e
t t t t t t t Time/sec
00 10 20 3.0 40 50 6.0

Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,93), {(s0,95),
(s1,94)} (51,94), (s1,94), (s0,92), (s0,93)} (s0,95)} (s0,94)}
(s0,91)} (s0,91), (s0,93)}
(s0,92)}

56 /83

Sliding Window Example in CQL

S = {(50,90)(0), (s1,94)(0), (s0,91)(1), (s0,92)(2), (S0,93)(3), (50, 95)(5), (s0,94){6) }

Temp/C°

95.0 + .
94.0 + ° .
93.0 + .
92.0 + °
91.0 + °
90.0 + e
t t t t t t t Time/sec
00 1.0 20 3.0 40 50 6.0

Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,93), {(s0,95),
(s1,94)} (51,94), (s1,94), (s0,92), (s0,93)} (s0,95)} (s0,94)}
(s0,91)} (s0,91), (s0,93)}
(s0,92)}

57 /83

Sliding Window Example in CQL

S = {(50,90)(0), (s1,94)(0), (s0,91)(1), (s0,92)(2), (S0,93)(3), (50, 95)(5), (s0,94){6) }

Temp/C°

95.0 + .
94.0 + . .
93.0 + °
92.0 + °
91.0 + °
90.0 + e
t t t t t t t Time/sec
00 1.0 20 30 40 50 6.0

Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,93), {(s0,95),
(s1,94)} (51,94), (s1,94), (s0,92), (s0,93)} (s0,95)} (s0,94)}
(s0,91)} (s0,91), (s0,93)}
(s0,92)}

58 /83

Sliding Window Example in CQL

S = {(50,90)(0), (s1,94)(0), (s0,91)(1), (s0,92)(2), (S0,93)(3), (50, 95)(5), (s0,94){6) }

Temp/C°

95.0 + .
94.0 + . .
93.0 o
92.0 + °
91.0 + .
90.0 T o
t t t t t t t Time/sec
00 10 20 3.0 40 50 6.0

Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,93), {(s0,95),
(s1,94)} (51,94), (s1,94), (s0,92), (s0,93)} (s0,95)} (s0,94)}
(s0,91)} (s0,91), (s0,93)}
(s0,92)}

59/83

Sliding Window Example in CQL

S = {(50,90)(0), (s1,94)(0), (s0,91)(1), (s0,92)(2), (S0,93)(3), (50, 95)(5), (s0,94){6) }

Temp/C°

95.0 + °

94.0 + . .

93.0 o

92.0 + .

91.0 + .

90.0 T o

t t t t t t t Time/sec

T T T

00 10 20 30 40 50 6.0

Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,93), {(s0,95),
(s1,94)} (51,94), (s1,94), (s0,92), (s0,93)} (s0,95)} (s0,94)}
(s0,91)} (s0,91), (s0,93)}
(s0,92)}

60 /83

Sliding Window Example in CQL

S = {(50,90)(0), (s1,94)(0), (s0,91)(1), (s0,92)(2), (S0,93)(3), (50, 95)(5), (s0,94){6) }

Temp/C°

95.0 + °

94.0 + . o

93.0 o

92.0 + .

91.0 + .

90.0 T o

t t t t t t t Time/sec

T T

00 10 20 3.0 40 50 6.0

Output relation R =S [Range 2 Slide 1]

t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,93), {(s0,95),
(s1,94)} (51,94), (s1,94), (s0,92), (s0,93)} (s0,95)} (s0,94)}
(s0,91)} (s0,91), (s0,93)}
(s0,92)}

61/83

Relation vs. Stream

S = {(s0,90°)(0), (s1,94°)(0), (s0,91°)(1), (s0,92°)(2),
(50,93°)(3), (50, 95°)(5), (50, 94°)(6)....}

» Output relation R =S [Range 2 Slide 1]
t: 0 1 2 3 4 5 6
R(t) : {(s0,90), {(s0,90), {(s0,90), {(s0,91), {(s0,92), {(s0,92), {(s0,93),
(51,94} (51,94), (51,94), (%,92), (0,93)} (%,93), (s0,95),
(50,91)} (s0,91), (s0,93)} (s0,95)} (s0,94)}
(s0,92)}
» Note that there are also entries for second 4
» Note that timestamps are lost in the bags
» Slides are local to streams and may be different over different

streams

62/83

Relation-To-Stream Operators

» Output stream of input relation R:

Istream(R) = | J(R(t) \ R(t — 1)) x {t}

teT

stream of inserted elements
Dstream(R) = | J(R(t—1)\ R(t)) x {t}

teT

stream of deleted elements
Rstream(R) = U R(t) x {t}

teT

stream of all elements

» In CQL /Stream and DStream are syntactic sugar

63/83

Sensor Measurement CQL Example

SELECT Rstream(m.sensorID)
FROM Msmt[Range 1] as m, Events[Range 2] as e
WHERE m.val > 30 AND

e.category = Alarm AND

m.sensorID = e.sensorlID

» Stream join realized by join of window contents

» Output is a stream

64 /83

Non-discrete Time Flows

v

Taken literally, CQL window definitions work only for discrete
flows of times

Time flow: (T, <) = (R, <)

Input stream: S = {i(i) | i € N}

RStream(S[RANGE 1 SLIDE 1]) is “stream” with cardinality
of R

“Solution” in CQL hidden in stream engine layer

Heartbeat with smallest possible time granularity

65/83

Linear City

_ hA0 Reports every
Linear City | | 30 seconds
10 Expressways ARt

(L: performanc 8%y Ve
measure) I ! ;%
A eee 1)

~
100 segments of 1 mile each

Main Input Stream: Car Locations (CarLocStr)

car_id speed exp_way lane X_pos
1000 55 5 3 (Right) 12762
1035 30 1 0 (Ramp) 4539

66 /83

Linear Road Benchmark

» 10 years old benchmark for stress testing relational DSMS

» Suite of continuous queries based on real traffic management
proposals.
» Stream car segments based on x-positions (easy)
» Identify probable accidents (medium)
» Compute toll whenever car enters segment (hard)

» Metric: Scale to as many expressways as possible without
falling behind

67 /83

Toll Query

» Preconditions and Postconditions

Trigger Position report, g

Preconditions q.Seg # <E.Seg, 1# EXIT

Output (Type: 0, VID: v, Time: t, Emit: t’, Spd: Lav(M(t),x,s,d),
Toll: Toll(M(t),x,s,d))

Recipient v

Response t'-t <5 Sec

» Toll(M(t),x,s,d) = 0 if in last 5 minutes either
» congestion below 50 cars in the segment or

» average speed Lav(M(t),x,s,d) is below a given threshold or
» segment is in vicinity of an accident

> else Toll(M(t),x,s,d) = 2 x (#(cars in x,s,d) — 50)?

» Requires identification of accidents

68 /83

Toll Query

» Toll(M(t),x,s,d) = 0 if in last 5 minutes either

» congestion below 50 cars in the segment or
» average speed Lav(M(t),x,s,d) is below a given threshold or
» segment is in vicinity of an accident

» else Toll(M(t),x,s,d) = 2 x (#(cars in x, s, d) — 50)?

TollStr
Query 6 TollStr (vehicleId, toll): This is the
final output toll stream.
Select Rstream(E.vehicleld,
VehicleSegEntryStr SegVolRel CongestedSegRel 2 * (V.numVehicles-50)
* (V.numVehicles-50)
as toll)
ActiveVehicleSegRel From VehicleSegEntryStr [Now] as E,

CongestedSegRel as C,

SegSpeedsStr SegVolRel as V

Where E.segNo C.segNo and
C.segNo V.segNo

PosSpeedStr

69 /83

High-Level Declarative Stream Processing

Local Reasoning Service

C/Rloc

<« <« « <« <« <« <« €<« <« « <« <« < |«< <

T T T T T T T T Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

» Need to apply calculation/reasoning CR)oc locally, e.g.

» arithmetics, timeseries analysis operations
» SELECT querying, CONSTRUCT querying, abduction,
revision, planning

71/83

High-Level and Declarative

» Declarative:
Stream elements have “assertional status’ and allow for
symbolic processing

Stream element (sensor, val)(3sec) “asserts” that sensor shows
some value at second 3

72/83

High-Level and Declarative

» Declarative:
Stream elements have “assertional status’ and allow for
symbolic processing

Stream element (sensor, val)(3sec) “asserts” that sensor shows
some value at second 3

» High-Level:
Streams are processed with respect to some background
knowledge base such as a set of rules or an ontology.

Streams elements of form val(sensor, val)(3sec) evaluated w.r.t. to
an ontology containing, e.g., axiom tempVal C val

73/83

Local Reasoning Service

C/Rloc

<« <« {« <« <« <« <« <« < « <« €« € |«< <

T T T T T T T f Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

» Need to apply calculation/reasoning CR), locally, e.g.

» arithmetics, timeseries analysis operations
» SELECT querying, CONSTRUCT querying, abduction,
revision, planning (= high-level & declarative)

74/83

Streamified OBDA

v

Nearly ontology layer stream processing

» CEP (Complex event processing)
» EP-SPARQL/ETALIS, T-REX/ TESLA, Commonsens/ESPER

RDF-ontology layer stream processing
» C-SPARQL (della Valle et al. 09), CQELS
Classical OBDA stream processing
» SPARQLsteam (Calbimonte et al. 12) and MorphStream

All approaches rely on CQL window semantics

v

v

v

extend SPARQL or use some derivative of it

v

v

Treat timestamped RDF triples but use reification

75/83

Example of Reified Handling

SELECT ?windspeed 7tidespeed
FROM NAMED STREAM <http://swiss-experiment.ch/
data#WannengratSensors.srdf>
[NOW-10 MINUTES TO NOW-O MINUTES]
WHERE
?WaveObs a ssn:0bservation;
ssn:observationResult ?7windspeed;
ssn:observedProperty sweetSpeed:WindSpeed.
?TideObs a ssn:0bservation;
ssn:observationResult 7tidespeed;
ssn:observedProperty sweetSpeed:TideSpeed.
FILTER (?tidespeed<?windspeed)

76 /83

SRBench (Zhang et al. 2012)

» Benchmark for RDF/SPARQL Stream Engines
» Contains data from LinkedSensorData, GeoNames, DBPedia

» Mainly queries for functionality tests, with eye on SPARQL
1.1. functionalities

Q1. Get the rainfall observed once in an hour.

» Tested on CQELS, SPARQLstream and C-SPARQL

» Test results (for engine versions as of 2012)

Basic SPARQL features supported

» SPARQL 1.1 features (property paths) rather not supported
Only C-SPARQL supports reasoning (on RDFS level)
(tested subsumption and sameAs)

Combined treatment of static data plus streaming data only

for CQELS and C-SPARQL

v

v

v

77/83

Language Comparison of SOTA Stream Engines

» Update in 2016

» We also mention Liibecks contribution STARQL

(to be discussed in more detail in next lecture)

Name

Streaming
SPARQL
C-SPARQL
CQELS
SPARQLStream
EP-SPARQL
TEF-SPARQL
STARQL

Name

Streaming
SPARQL
C-SPARQL
CQELS
SPARQLStream
EP-SPARQL
TEF-SPARQL
STARQL

Data Model
RDF streams

RDF streams
RDF streams
virt. RDF streams
RDF streams
RDF streams
virt. RDF streams

W-to-S Op.
RStream

RStream
RStream
R-,l-,D-Stream
RStream
RStream
RStream

Union, Join IF Aggregate Property
Optional, Filter Paths
Yes No No No
Yes Yes Yes Yes
Yes No Yes No
Yes Yes Yes Yes
Yes No Yes No
Yes No Yes No
Yes Yes Yes No

C di Intra d S ing
Streams time

No No No

No Yes No

No No No

No Yes No

No No Yes

No No Yes

Yes Yes Yes

Time
Windows
Yes

Yes
Yes
Yes
No

Yes
Yes

Pulse Historic data

No No
No No
No No
No No
No No
No No
Yes Yes

Triple
Windows
Yes

Yes

No
No
Yes
No

78/83

Architecture Comparison of SOTA Stream Engines

Streaming RDF streams physical stream algebra Static plan optimization Yes No
SPARQL
C-SPARQL RDF streams DSMS based evaluation Static plan optimization Internal triple store RDF entailment
with triple store
CQELS RDF streams RDF stream processor Adaptive query Stored linked data No
processing operators
SPARQLStream Relational streams ~external query processing ~ Static algebra optimizati Data source dt d No
host evaluator specific
EP-SPARQL RDF streams logic programming No No RDFS, Prolog equivalent
backward chaining rules
TEF-SPARQL RDF streams Yes No Yes Yes
STARQL Relational streams ~external query processing ~ Static algebra optimizations Datasource dependent ~ Yes (DL-Lite 4)

Lit: A. Bolles, M. Grawunder, and J. Jacobi. Streaming sparql - extending sparql to
process data streams. In S. Bechhofer et al., editors, The Semantic Web: Research and
Applications, vol. 5021 of LNCS, p. 448-462, 2008.

Lit: D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked data. In L. Aroyo

et al., editors, The Semantic Web - ISWC 2011, vol. 7031 LNCS, p. 370-388, 2011.
Lit: J.-P. Calbimonte, H. Jeung, O. Corcho, and K. Aberer. Enabling query
technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst., 8(1):43-63,

Jan. 2012.
Lit: D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning and

complex event processing in Etalis. Semantic Web, 3(4):397-407, 2012.

Lit: J.-U. Kietz, T. Scharrenbach, L. Fischer, M. K. Nguyen, and A. Bernstein.
Tef-sparql: The ddis query- language for time annotated event and fact triple-streams.
Technical Report IFI-2013.07, 2013.

Lit: O. Ozcep, R. Méller, and C. Neuenstadt. A stream-temporal query language for
ontology based data access. In Kl 2014, vol. 8736 of LNCS, p. 183-194, 2014.

79/83

Solutions to Exercise 8 (12 Points)

Solution for Exercise 8.1 (4 points)

Belief Revision has strong connections to Non-monotonic reasoning: For any (say
consistent) belief set K one can define an entailment relation Fy as follows:

aFk Biff € Kxa

Answer the question whether Fx is a monotonic entailment relation, i.e., whether it
fulfills:
If XEx aand Y CVY, then Y Fg a

Solution: Clearly the entailment relation is non-monotonic. Consider K = Cn(p — q),

X ={p}, X' ={p,—q). We have X Ex g, but not X' Ex q.

81/83

Exercise 8.2 (4 points)

An alleged weakness of AGM belief revision is dealt under the term “Ramsey Test".
Inform yourself on this test and explain how it works.

Solution: Define counterfactual conditionals o 1> 3 using the above entailment
relation. The Ramsey test gives an acceptability criterion for the acceptance of
counterfactual condition stating: counterfactual o > 3 is accepted in K iff 3 belongs
to revision result with «. If the language in which the belief sets and the triggers are
described contains a connective for the counterfactual—i.e. if the counterfactual is
part of the object language, then the Ramsey test reads as

a>peKIffBe Kxa

Gardenfors showed that in this case there cannot be a non-trivial AGM belief revision
operator fulfilling the Ramsey test. More concretely: There is no non-trivial scenario
(i.e. there exists a beliefset K and three disjoint sentences which are not in K) for
which a revision operator fulfills the Ramsey condition and the AGM postulates (even
a subset of the AGM postulates is sufficient for this triviality result.) This is mainly
due to the fact that the Ramsey condition entails the monotonicity of the revision

operator for the left argument.

82/83

Exercise 8.3 (4 points)

Consider the following postulate for belief bases B:

(R) If B € B and 8 ¢ Bxa, then there is some B’ with
1. BxaCB CBU{a}
2. B’ is consistent
3. B’ U{B} is inconsistent

First describe this postulates in natural language. What would be a good name for this
postulate (which was invented following a criticisms of AGM revision)?

Solution: If a sentence (3) does not survive the revision, then this is because it would
lead to an inconsistency with a consistent subset of the belief base and the trigger.
This says that only sentences of the belief base that are relevant for the

(inconsistency with the) trigger, are allowed to be eliminated.

83/83

	Temporalized OBDA
	Stream Basics
	Relational Stream Processing with CQL
	High-Level Declarative Stream Processing

