
Özgür L. Özçep

INSTITUT FÜR INFORMATIONSSYSTEME

Stream Processing 1
Lecture 12: Temporal OBDA, Relational Stream Processing

18 January, 2017

Foundations of Ontologies and Databases
for Information Systems
CS5130 (Winter 16/17)

Recap: Ontology Change

I Considered ontology change from BR perspective
I Required adaptations and extensions for BR

I non-classical logics
I revision of finite belief bases
I multiple revision
I iterated revision

I Considered Infinite Iteration and Idea of Formal Learning
Theory

I Stabilization/convergence conditions

End of Recap

2 / 83

This and Next Lecture

I Infinite sequences from stream processing perspective
I Additional aspects: temporality of data, recency,

data-driveness, velocity

I Resume OBDA and consider how to lift them to temporal
OBDA and streaming OBDA

I Temporal OBDA: Add time aspect (somewhere)
I Stream OBDA: Higher-level stream w.r.t. ontology (and

mappings)

3 / 83

Temporalized OBDA

A Confession

I Ontology-Based Data Access on temporal and Streaming
Data

I But: Streams are temporal streams and we talk about local
temporal reasoning

5 / 83

Adding a Temporal Dimension to OBDA

I Most conservative strategy: handle time as “ordinary” attribute
time meas(x) ∧

val(x , y) ∧
time(x , z)

 ←− SELECT f(MID) AS m, Mval AS y, MtimeStamp AS z
FROM MEASUREMENT

I Classical Mapping
I Pro: Minimal (no) adaptation
I Contra:

I No control on “logic of time”
I Need reification

I sometimes necessary (because DLs provided only predicates up
to arity 2)

I but not that “natural”

6 / 83

Flow of Time

I Flow of time (T ,≤T) is a structure with a time domain T and
a binary relation ≤T over it.

I Flow metaphor hints on directionality and dynamic aspect of
time

I But still different forms of flow are possible

I One can consider concrete structures of flow of (time), as
done here

I Or investigate them additionally axiomatically
I An early model-theoretic and axiomatic treatise:

Lit: J. van Benthem. The Logic of Time: A Model-Theoretic Investigation into

the Varieties of Temporal Ontology and Temporal Discourse. Reidel, 2. edition,

1991.

7 / 83

The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)

8 / 83

The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)

9 / 83

The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)

10 / 83

The Family of Flows of Time
I Domain T

I points (atomic time instances)
I pairs of points (application time, transaction time)
I intervals etc.

I Properties of the time relation ≤T

I Non-branching (linear) vs. branching
Linearity:

I reflexive: ∀t ∈ T : t ≤T t
I antisymmetric: ∀t1, t2 ∈ T : (t1 ≤ t2 ∧ t2 ≤T t1)⇒ t1 = t2
I transitive: ∀t1, t2, t3 ∈ T : (t1 ≤T t2 ∧ t2 ≤ t3)⇒ t1 ≤ t3.
I total: ∀t1, t2 ∈ T : t1 ≤ t2 ∨ t2 ≤ t1 ∨ t1 = t2.

I Existence of first or last element
I discreteness (Example: T = N); also used for modeling state

sequences;
I density (Example: T = Q);
I continuity (Example: T = R)

11 / 83

Temporalized OBDA: General Approach

I Semantics rests on family of interpretations (It)t∈T
I Temporal ABox Ã: Finite set of T -tagged ABox axioms

Example

val(s0, 90◦)〈3s〉 holds in (It)t∈T iff I3s |= val(s0, 90◦)
“sensor s0 has value 90◦ at time point 3s”

I Alternative sequence representation of temporal ABox Ã
I (At)t∈T ′ (where T ′ are set of timestamps in T)
I At = {ax | ax〈t〉 ∈ Ã}

Definition (Adapted notion of OBDA rewriting)

cert(Q, (Sig , T , (At)t∈T ′) = ans(Qrew , (DB(At))t∈T ′)

12 / 83

Temporalized OBDA:TCQs
I Different approaches based on modal (temporal) operators
I LTL (linear temporal logic) operators only in QL (Borgwardt et

al. 13)

Example

Critical(x) = ∃y .Turbine(x) ∧ showsMessage(x , y) ∧
FailureMessage(y)

Q(x) = ©−1©−1©−1(3(Critical(x) ∧©3Critical(x)))

“turbine has been at least two times in a critical
situation in the last three time units”

I CQ embedded into LTL template
I Special operators taking care of endpoints of state sequencing
I Not well-suited for OBDA as non-safe
I Rewriting simple due to atemporal TBox

Lit: S. Borgwardt, M. Lippmann, and V. Thost. Temporal query answering in the

description logic dl-lite. In FroCs, volume 8152 of LNCS, pages 165–180, 2013.
13 / 83

Temporalized OBDA: TQL

I LTL operators in TBox and T argument in QL

Example

TBox axiom : showsAnomaly v 3UnplanedShutDown

“if turbine shows anomaly (now)
then sometime in the future it will shut down”

Query : ∃t.3s ≤ t ≤ 6s ∧ showsAnomaly(x , t)

I Can formulate rigidity assumptions
I Rewriting not trivial

Lit: A. Artale, R. Kontchakov, F. Wolter, and M. Zakharyaschev. Temporal description

logic for ontology- based data access. In IJCAI’13, pages 711–717. AAAI Press, 2013.

14 / 83

Stream Basics

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It?s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

16 / 83

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It?s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

17 / 83

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It?s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

18 / 83

Streams

Definition (Stream)

A stream S is a potentially infinite sequence of objects d over some
domain D.

I “Streams are forever”
Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of

the EATCS, 109:70–106, 2013.

I “Order matters!”
Lit: E. D. Valle et al. Order matters! harnessing a world of orderings for

reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

I “It’s a streaming world!”
Lit: E. Della Valle, et al. It?s a streaming world! Reasoning upon rapidly

changing information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

19 / 83

Adding a Time Dimension

Definition (Temporal Stream)

A temporal stream S is a potentially infinite sequence of
timestamped objects d〈t〉 over some domain D and flow of time
(T ,≤T).

I Consider non-branching (or: linear) time, i.e., ≤T is
I We assume that there is no last element in T
I We do not restrict T further, so it may be

I discrete or
I dense or
I continuous

20 / 83

Adding a Time Dimension

Definition (Temporal Stream)

A temporal stream S is a potentially infinite sequence of
timestamped objects d〈t〉 over some domain D and flow of time
(T ,≤T).

I Consider non-branching (or: linear) time, i.e., ≤T is
I We assume that there is no last element in T
I We do not restrict T further, so it may be

I discrete or
I dense or
I continuous

21 / 83

Arrival Ordering

I Sequence fixed by arrival ordering fixed <ar

I <ar is a strict total ordering on the elements of S
I Synchronuous streams: ≤T compatible with <ar

I Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.

I Asynchronous streams: ≤T not necessarily compatible with
<ar

Convention for the following

I Consider only temporal streams
I Consider only synchronous streams =⇒ neglect <ar .
I Represent streams as a potentially infinite multi-set (bag) of

elements

22 / 83

Arrival Ordering

I Sequence fixed by arrival ordering fixed <ar

I <ar is a strict total ordering on the elements of S
I Synchronuous streams: ≤T compatible with <ar

I Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.

I Asynchronous streams: ≤T not necessarily compatible with
<ar

Convention for the following

I Consider only temporal streams
I Consider only synchronous streams =⇒ neglect <ar .
I Represent streams as a potentially infinite multi-set (bag) of

elements

23 / 83

Arrival Ordering

I Sequence fixed by arrival ordering fixed <ar

I <ar is a strict total ordering on the elements of S
I Synchronuous streams: ≤T compatible with <ar

I Compatibility: For all d1〈t1〉, d2〈t2〉 ∈ S : If d1〈t1〉 <ar d2〈t2〉,
then t1 ≤T t2.

I Asynchronous streams: ≤T not necessarily compatible with
<ar

Convention for the following

I Consider only temporal streams
I Consider only synchronous streams =⇒ neglect <ar .
I Represent streams as a potentially infinite multi-set (bag) of

elements

24 / 83

Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller and this lecture
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I this and next lecture

25 / 83

Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller and this lecture
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I this and next lecture

26 / 83

Stream Stack and Stream Research
I Low-level sensor perspective (semantic sensor networks)

I Develop fast algorithms on high-frequency streams with
minimal space consumption

I Considers approximate algorithms for aggregation functions
I See lecture “Non-standard DBs” by Ralf Möller

I Data stream management system (DSMS) perspective
I Provide whole DB systems for streams of structured

(relational) data
I Deals with all aspects relevant in static DBMS adapted to

stream scenario
I See lecture “Non-standard DBs” by Ralf Möller and this lecture
I Stream Query Language

I High-level and Ontology layer streams
I Processing stream of assertions (RDF triples) w.r.t. an

ontology
I Related: Complex Event Processing (CEP)
I this and next lecture

27 / 83

Local vs. Global Stream Processing

I Global aim: Learn about the whole by looking at the parts
I Examples: inductive learning, ontology change, iterated belief

revision (see slides before), robotics oriented stream processing
with plan generation

I May produce also an output stream
I But in the end the whole stream counts

I Local aim: Monitor window contents with time-local
I Examples: Real-time monitoring, simulation for reactive

diagnostics

I Categories not exclusive
I In learning one applies operation on (NOW)-window to learn

about stream
I In predictive analytics one monitors with window in order to

predict upcoming events

28 / 83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T).

Streamified OBDA has to deal with different types of domains

29 / 83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T).

Streamified OBDA has to deal with different types of domains

D1 = a set of typed relational tuples adhering to a relational
schema
I Streams at the backend sources
I Srel = {(s1, 90◦)〈1s〉, (s2, 92◦)〈2s〉, (s1, 94◦)〈3s〉, . . . }
I Schema: hasSensorRelation(Sensor:string, temperature:integer)

30 / 83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T).

Streamified OBDA has to deal with different types of domains

D2 = set of untyped tuples (of the same arity)
I Stream of tuples resulting as bindings for subqueries

31 / 83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T).

Streamified OBDA has to deal with different types of domains

D3 = set of assertions (RDF tuples).
I Srdf = { val(s0, 90◦)〈1s〉, val(s2, 92◦)〈2s〉, val(s1, 94◦)〈3s〉, . . . }

32 / 83

Domain Objects for Streams

Definition (Temporal Stream)

A stream S is a sequence of timestamped objects d〈t〉 over some
domain D and flow of time (T ,≤T).

Streamified OBDA has to deal with different types of domains

D4 = set of RDF graphs

33 / 83

Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

34 / 83

Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

I Stream query continuous,
not one-shot activity

I Window content continuosly
updated

35 / 83

Taming the Infinite

Nearly all stream processing approaches provide a fundamental
means to cope with potential infinity of streams, namely ...

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Sin

Sout

I Here a time-based window of width 3 seconds
I and slide 1 second is applied

36 / 83

Window Operators: Classification

I Direction of movement of the endpoints
I Both endpoints fixed (needed for “historical” queries)
I Both moving/sliding
I One moving the other not

I Window size
I Temporal
I Tuple-based
I Partitioned window
I Predicate window

I Window update
I tumbling
I sampling
I overlapping

37 / 83

Window Operators: Classification

I Direction of movement of the endpoints
I Both endpoints fixed (needed for “historical” queries)
I Both moving/sliding
I One moving the other not

I Window size
I Temporal
I Tuple-based
I Partitioned window
I Predicate window

I Window update
I tumbling
I sampling
I overlapping

38 / 83

Window Operators: Classification

I Direction of movement of the endpoints
I Both endpoints fixed (needed for “historical” queries)
I Both moving/sliding
I One moving the other not

I Window size
I Temporal
I Tuple-based
I Partitioned window
I Predicate window

I Window update
I tumbling
I sampling
I overlapping

39 / 83

Why is the Window Concept so Important?

I We give an answer using the word perspective on stream
processing according to (Gurevich et al. 07)

I Streams = finite or infinite words over an alphabet (domain) D

I D∗ = finite words over D
I Dω = infinite (ω-) words over D
I D∞ = finite and infinite words over D
I ◦ = word concatenation (usually not mentioned)

I Stream operators Q are functions/queries of the form

Q : D∞1 −→ D∞2

I Assume w.l.o.g that D1 = D2 = D.

Lit: Y. Gurevich, D. Leinders, and J. Van Den Bussche. A theory of stream queries. In

Proceedings of the 11th International Conference on Database Programming

Languages, DBPL’07, pages 153–168, 2007.

40 / 83

Genuine Streams are Finite Prefix Determined

I Open ball around u:
B(u) := uD∞ = {s ∈ D∞ | There is s ′ ∈ D∞ s.t. s = u ◦ s ′}

Definition (Axiom of finite prefix determinedness (FP))

For all s ∈ D∞ and all u ∈ D∗:
If Q(s) ∈ uD∞, there is w ∈ D∗ s.t. s ∈ wD∞ ⊆ Q−1(uD∞)

I (FP) expresses a continuity condition w.r.t. a topology

41 / 83

Genuine Streams are Finite Prefix Determined

I Open ball around u:
B(u) := uD∞ = {s ∈ D∞ | There is s ′ ∈ D∞ s.t. s = u ◦ s ′}

Definition (Axiom of finite prefix determinedness (FP))

For all s ∈ D∞ and all u ∈ D∗:
If Q(s) ∈ uD∞, there is w ∈ D∗ s.t. s ∈ wD∞ ⊆ Q−1(uD∞)

I (FP) expresses a continuity condition w.r.t. a topology
I Reminder: A topology is a structure (X ,O) where

I O ⊆ Pow(X)
I ∅,X ∈ O
I O closed under finite intersections
I O closed under arbitrary unions

I A basis for O is a set B ⊆ Pow(X) s.t.: Every S ∈ O is a
union of elements of B.

42 / 83

Genuine Streams are Finite Prefix Determined

I Open ball around u:
B(u) := uD∞ = {s ∈ D∞ | There is s ′ ∈ D∞ s.t. s = u ◦ s ′}

Definition (Axiom of finite prefix determinedness (FP))

For all s ∈ D∞ and all u ∈ D∗:
If Q(s) ∈ uD∞, there is w ∈ D∗ s.t. s ∈ wD∞ ⊆ Q−1(uD∞)

I (FP) expresses a continuity condition w.r.t. a topology
I Gurevich topology
TG = (D∞, {AD∞ | A ⊆ D∗})

I B(u) for u ∈ D∗ are basis for TG .
I A function Q : D∞ −→ D∞ is continuous iff for every open

ball B: Q−1(B) is open.
I i.e., iff Q fulfills (FP)

43 / 83

Kernels

I For K : D∗ −→ D∗ define function Repeat(K) : D∞ −→ D∞

by
Repeat(K)(s) =©length(s)

i=0 K (s≤i)

Definition
A function K : D∗ −→ D∗ is called a kernel (alias: window) for
Q : D∞ −→ D∞ iff Q = Repeat(K).
Q is called abstract computable if it has a kernel.

I Fundamental insight

Theorem
The set of AC functions are exactly those stream functions fulfilling
FP (i.e. that are continuous) and mapping finite streams to finite
streams

44 / 83

Example for non-continuos stream functions

Example

Query CHECK
I a, b ∈ D

I CHECK(s) = (a) if b does not occur in s
I Otherwise CHECK (s) = () = empty stream

I CHECK is not continuous (and hence not an AC function):
I Consider open ball B(a).
I () ∈ CHECK−1(B(a))
I But the only open ball containing () is B(()) = D∞

I But B(()) 6⊆ CHECK−1(B(a)) because
I CHECK (b) = () /∈ B(a)

45 / 83

Relational Stream Processing with CQL

Relational Data Stream Processing
I Different groups working on DSMS around 2004

I Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

I Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

I Though well investigated and many similarities there is no
streaming SQL standard

I First try for standardization:
Lit: N. Jain et al. Towards a streaming sql standard. Proc. VLDB Endow.,

1(2):1379–1390, Aug. 2008.

I But if development speed similar to that for introducing
temporal dimension into SQL, then we have to wait...

47 / 83

Relational Data Stream Processing
I Different groups working on DSMS around 2004

I Academic prototypes: STREAM and CQL (Stanford);
TelgraphCQ (Berkeley) (extends PostGreSQL);
Aurora/Borealis (Brandeis, Brown and MIT); PIPES from
Marburg University

I Commercial systems: StreamBase, Truviso (Standalone),
extensions of commercial DBMS (MySQL, PostgreSQL, DB2
etc.)

I Though well investigated and many similarities there is no
streaming SQL standard

I First try for standardization:
Lit: N. Jain et al. Towards a streaming sql standard. Proc. VLDB Endow.,

1(2):1379–1390, Aug. 2008.

I But if development speed similar to that for introducing
temporal dimension into SQL, then we have to wait...

48 / 83

CQL (Continuous Query Language)
I Early relational stream query language extending SQL

I Developed in Stanford as part of a DSMS called STREAM

I Semantics theoretically specified by denotational semantics

I Practically, development of CQL was accompanied by the
development the Linear Road Benchmark (LRB)
(http://www.cs.brandeis.edu/~linearroad/)

I Had immense impact also on development of early RDF
streaming engines in RSP community
https://www.w3.org/community/rsp/)

Lit: A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:

semantic foundations and query execution. The VLDB Journal, 15:121–142, 2006.

Lit: A. Arasu et al. Linear road: A stream data management benchmark. In VLDB,

pages 480–491, 2004.
49 / 83

(http://www.cs.brandeis.edu/~linearroad/)
https://www.w3.org/community/rsp/

CQL Operators

I Special data structure next to streams: relations R
I R maps times t to ordinary (instantaneous) relations R(t)
I Motivation: Use of ordinary SQL operators on instantaneous

relations
I Operators

I Stream-to-relation = window operator
I Relation-to-relation = standard SQL operators at every single

time point
I relation-stream = for getting streams agains

I Non-predictability condition for operators op:
I If two inputs S1 , S2 are the same up to t, then

op(S1)(t) = op(S2)(t).
(This is related to (FP))

50 / 83

CQL Windows
I Window operators are stream-to-relation operators
I CQL knows tuple-based, partition based, and time-based

windows

Definition (Semantics of Window Operator)

R = S [Range wr Slide sl]
I with slide parameter sl and range wr
I tstart = bt/slc · sl
I tend = max{tstart − wr , 0}

R(t) =

{
∅ if t < sl
{s | s〈t ′〉 ∈ S and tend ≤ t ′ ≤ tstart} else

I Standard slide = 1: [RANGE wr]
I Left end fixed: [Range UNBOUND]
I Width 0: [NOW]

51 / 83

CQL Windows
I Window operators are stream-to-relation operators
I CQL knows tuple-based, partition based, and time-based

windows

Definition (Semantics of Window Operator)

R = S [Range wr Slide sl]
I with slide parameter sl and range wr
I tstart = bt/slc · sl
I tend = max{tstart − wr , 0}

R(t) =

{
∅ if t < sl
{s | s〈t ′〉 ∈ S and tend ≤ t ′ ≤ tstart} else

I Standard slide = 1: [RANGE wr]
I Left end fixed: [Range UNBOUND]
I Width 0: [NOW]

52 / 83

CQL Windows
I Window operators are stream-to-relation operators
I CQL knows tuple-based, partition based, and time-based

windows

Definition (Semantics of Window Operator)

R = S [Range wr Slide sl]
I with slide parameter sl and range wr
I tstart = bt/slc · sl
I tend = max{tstart − wr , 0}

R(t) =

{
∅ if t < sl
{s | s〈t ′〉 ∈ S and tend ≤ t ′ ≤ tstart} else

I Standard slide = 1: [RANGE wr]
I Left end fixed: [Range UNBOUND]
I Width 0: [NOW]

53 / 83

Sliding Window Example in CQL

I Flow of time (N,≤)
I Input stream

S = {(s0, 90◦)〈0〉, (s1, 94◦)〈0〉, (s0, 91◦)〈1〉, (s0, 92◦)〈2〉,
(s0, 93◦)〈3〉, (s0, 95◦)〈5〉, (s0, 94◦)〈6〉....}

I Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93),
(s0, 95)}

{(s0, 93),
(s0, 95),
(s0, 94)}

54 / 83

Sliding Window Example in CQL
S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}

55 / 83

Sliding Window Example in CQL
S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}

56 / 83

Sliding Window Example in CQL
S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}

57 / 83

Sliding Window Example in CQL
S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}

58 / 83

Sliding Window Example in CQL
S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}

59 / 83

Sliding Window Example in CQL
S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}

60 / 83

Sliding Window Example in CQL
S = {(s0, 90)〈0〉, (s1, 94)〈0〉, (s0, 91)〈1〉, (s0, 92)〈2〉, (s0, 93)〈3〉, (s0, 95)〈5〉, (s0, 94)〈6〉}

Time/sec

Temp/C◦

0.0 1.0 2.0 3.0 4.0 5.0 6.0

90.0
91.0
92.0
93.0
94.0
95.0

Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 93),
(s0, 95)}

{(s0, 95),
(s0, 94)}

61 / 83

Relation vs. Stream

S = {(s0, 90◦)〈0〉, (s1, 94◦)〈0〉, (s0, 91◦)〈1〉, (s0, 92◦)〈2〉,
(s0, 93◦)〈3〉, (s0, 95◦)〈5〉, (s0, 94◦)〈6〉....}

I Output relation R = S [Range 2 Slide 1]

t : 0 1 2 3 4 5 6
R(t) : {(s0, 90),

(s1, 94)}
{(s0, 90),
(s1, 94),
(s0, 91)}

{(s0, 90),
(s1, 94),
(s0, 91),
(s0, 92)}

{(s0, 91),
(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93)}

{(s0, 92),
(s0, 93),
(s0, 95)}

{(s0, 93),
(s0, 95),
(s0, 94)}

I Note that there are also entries for second 4
I Note that timestamps are lost in the bags
I Slides are local to streams and may be different over different

streams

62 / 83

Relation-To-Stream Operators

I Output stream of input relation R :

Istream(R) =
⋃
t∈T

(R(t) \ R(t − 1))× {t}

stream of inserted elements
Dstream(R) =

⋃
t∈T

(R(t − 1) \ R(t))× {t}

stream of deleted elements
Rstream(R) =

⋃
t∈T

R(t)× {t}

stream of all elements

I In CQL IStream and DStream are syntactic sugar

63 / 83

Sensor Measurement CQL Example

Example

SELECT Rstream(m.sensorID)
FROM Msmt[Range 1] as m, Events[Range 2] as e
WHERE m.val > 30 AND

e.category = Alarm AND
m.sensorID = e.sensorID

I Stream join realized by join of window contents
I Output is a stream

64 / 83

Non-discrete Time Flows

I Taken literally, CQL window definitions work only for discrete
flows of times

I Time flow: (T ,≤) = (R,≤)
I Input stream: S = {i〈i〉 | i ∈ N}
I RStream(S [RANGE 1 SLIDE 1]) is “stream” with cardinality

of R
I “Solution” in CQL hidden in stream engine layer
I Heartbeat with smallest possible time granularity

65 / 83

Linear City

stanfordstreamdatamanager 52

Stream System Benchmark: “Linear Road”

100 segments of 1 mile each

Main Input Stream: Car Locations (CarLocStr)

Linear City
 10 Expressways

Reports every
30 seconds

car_id speed exp_way lane x_pos
1000 55 5 3 (Right) 12762
1035 30 1 0 (Ramp) 4539

… … …

(L: performance
measure)

66 / 83

Linear Road Benchmark

I 10 years old benchmark for stress testing relational DSMS

I Suite of continuous queries based on real traffic management
proposals.

I Stream car segments based on x-positions (easy)
I Identify probable accidents (medium)
I Compute toll whenever car enters segment (hard)

I Metric: Scale to as many expressways as possible without
falling behind
Lit: A. Arasu et al. Linear road: A stream data management benchmark. In M.

A. Nascimento et al., editors, VLDB, pages 480–491. Morgan Kaufmann, 2004.

67 / 83

Toll Query
I Preconditions and Postconditions

Trigger Position report, q
Preconditions q.Seg 6=←−q .Seg, l 6= EXIT
Output (Type: 0, VID: v, Time: t, Emit: t’, Spd: Lav(M(t),x,s,d),

Toll: Toll(M(t),x,s,d))
Recipient v
Response t’ - t ≤ 5 Sec

I Toll(M(t),x,s,d) = 0 if in last 5 minutes either
I congestion below 50 cars in the segment or
I average speed Lav(M(t),x,s,d) is below a given threshold or
I segment is in vicinity of an accident

I else Toll(M(t),x,s,d) = 2× (#(cars in x , s, d)− 50)2

I Requires identification of accidents
68 / 83

Toll Query

I Toll(M(t),x,s,d) = 0 if in last 5 minutes either
I congestion below 50 cars in the segment or
I average speed Lav(M(t),x,s,d) is below a given threshold or
I segment is in vicinity of an accident

I else Toll(M(t),x,s,d) = 2× (#(cars in x , s, d)− 50)2

The CQL continuous query language 129

Default windows When a stream is referenced in a CQL
query where a relation is expected (most commonly in the
From clause), an Unbounded window is applied to the
stream by default. While the default Unbounded window
usually produces appropriate behavior, there are cases where
a Now window is more appropriate, e.g., when a stream is
joined with a relation; see Query 6 in Sect. 7.

Default relation-to-stream operators There are two cases
in which it seems natural for authors to omit an intended
Istream operator from a CQL query: (1) on the outermost
query, even when streamed results rather than stored results
are desired [33]; and (2) on an inner subquery, even though
a window is specified on the subquery result.

For the first case we add an Istream operator by de-
fault whenever the query produces a relation that is mono-
tonic. A relation R is monotonic iff R(τ1) ⊆ R(τ2) when-
ever τ1 ≤ τ2. Since we cannot test monotonicity in the gen-
eral case, we use a conservative static monotonicity test.
For example, a base relation is monotonic if it is known
to be append-only, “S [Range Unbounded]” is mono-
tonic for any stream S, and the join of two monotonic re-
lations also is monotonic. If the result of a CQL query is
a monotonic relation, then it makes intuitive sense to con-
vert the relation into a stream using Istream. If it is not
monotonic, the author might intend Istream, Dstream,
or Rstream, so we do not add a relation-to-stream operator
by default.

For the second case we add an Istream operator by
default whenever the subquery is monotonic. If it is not,
then the intended meaning of a window specification on
the subquery result is somewhat ambiguous, so a semantic
(type) error is generated, and the author must add an explicit
relation-to-stream operator.

Example 12 Now we see why the filter query of Example 10
can be written in its most intuitive form:

Select *
From PosSpeedStr
Where speed > 65

Since PosSpeedStr is referenced without a window
specification, an Unbounded window is applied by de-
fault. Further, since the output relation of the window and
filter operators is monotonic, we add a default Istream
operator to the result.

7 Linear Road in CQL

Recall that Linear Road has one base input stream,
PosSpeedStr, containing speed-position measurements
of vehicles using the highway. The output is a single stream
TollStr(vehicleId,toll) specifying tolls for vehi-
cles. Whenever a vehicle with vehicleId v enters a con-
gested segment at time τ , TollStr contains the element
⟨(v,l), τ ⟩, where l denotes the toll for the congested seg-
ment at time τ .

We incorporate two assumptions suggested in the origi-
nal Linear Road specification [4] for computing tolls:

1. A vehicle is considered to have entered a segment when
the first speed–position measurement for the vehicle is
transmitted from that segment. The vehicle is considered
to remain in the segment until it exits (see Assumption 2
next) or enters another segment (i.e., a speed–position
measurement is transmitted from a different segment).

2. A vehicle is considered to have exited the highway when
no speed–position report for that vehicle is transmitted
for 30 s.

These assumptions are necessary given that each vehicle
transmits its speed–position measurement only once every
30 s.

Since the continuous query producing TollStr is
fairly complex, we express it using several named de-
rived relations and streams. Figure 4 shows the derived
relations and streams that we use and their interdependen-
cies. For example, TollStr is produced from derived
stream VehicleSegEntryStr and derived relations
CongestedSegRel and SegVolRel. Our one base
input stream PosSpeedStr naturally appears as the
source. We present specifications for the derived streams
and relations in topological order according to Fig. 4.
For each derived stream and relation, we first describe its
meaning, followed by the CQL (sub)query that produces it.

Query 1 SegSpeedStr (vehicleId, speed,
segNo): This stream is obtained from PosSpeedStr
by replacing the xPos attribute of each element with
the corresponding segment number. Since segments are
exactly 1 mile long, the segment number is computed by
(integer-)dividing xPos by 5,280, the number of feet in a
mile.

Select vehicleId, speed,
xPos/5280 as segNo

From PosSpeedStr

Note the use of a default Unbounded window and a default
Istream operator in this query.

PosSpeedStr

SegSpeedStr

ActiveVehicleSegRel

VehicleSegEntryStr SegVolRel

TollStr

CongestedSegRel

Fig. 4 Derived relations and streams for Linear Road queries

130 A. Arasu et al.

Query 2 ActiveVehicleSegRel(vehicleId,seg-
No): At any instant τ , this relation contains the current
segments of “active” vehicles, i.e., vehicles currently using
the highway system.

Select vehicleId, segNo
From SegSpeedStr [Range 30 Seconds]

Informally, the query uses a time-based window to identify
currently active vehicles based on Assumption 2 above.8

Query 3 VehicleSegEntryStr(vehicleId,seg-
No): A vehicle v entering a segment s at time τ produces
an element ⟨(v,s), τ ⟩ on this stream.

Select Istream(*)
From ActiveVehicleSegRel

VehicleSegEntryStr is produced by applying the
Istream operator to ActiveVehicleSegRel. A ve-
hicle v entering a segment s at time τ causes a new tuple
to appear in ActiveVehicleSegRel at τ , which causes
the Istream operator to produce an element ⟨(v,s), τ ⟩ in
VehicleSegEntryStr.

Query 4 CongestedSegRel(segNo): At any instant
τ , this relation contains the current set of congested seg-
ments. Recall from Sect. 3 that a segment is considered con-
gested if the average speed of vehicles in the segment in the
previous 5 min is less than 40 mph.

Select segNo
From SegSpeedStr [Range 5 Minutes]
Group By segNo
Having Avg(speed) < 40

Query 5 SegVolRel(segNo,numVehicles): This
relation was introduced in Example 2. At any instant τ
this relation contains the current count of vehicles in each
segment.

Select segNo,
count(vehicleId) as numVehicles

From ActiveVehicleSegRel
Group By segNo

Query 6 TollStr(vehicleId,toll): This is the
final output toll stream.

Select Rstream(E.vehicleId,
2 * (V.numVehicles-50)

* (V.numVehicles-50)
as toll)

From VehicleSegEntryStr [Now] as E,
CongestedSegRel as C,
SegVolRel as V

Where E.segNo = C.segNo and
C.segNo = V.segNo

8 In this query, we assume that a vehicle does not exit the highway
and reenter within 30 s. We could handle this case by using an addi-
tional Partition By window.

At any instant τ the Now window on the stream
VehicleSegEntryStr identifies the set of vehicles that
have entered new segments at τ . This set of vehicles is
joined with CongestedSegRel and SegVolRel to de-
termine which vehicles have entered congested segments and
to compute tolls for such vehicles. Recall from Sect. 3 that
the toll for a congested segment is given by the formula
2 × (numvehicles − 50)2, where numvehicles is the number
of vehicles currently in the segment.

This query provides an example where the default
Unbounded window would not yield the intended behav-
ior if a window specification were omitted. In general, if a
stream is joined with a relation in order to add attributes to
and/or filter the stream, then a Now window on the stream
coupled with an Rstream operator usually provides the de-
sired behavior.

Recall that the Linear Road specification in this paper
is a simplified version of the original [4]. A CQL speci-
fication of the complete Linear Road benchmark as well
as a number of other stream applications, such as net-
work monitoring and online auctions [42], is available at
http://www-db.stanford.edu/stream/sqr/.

8 Time management

Recall from Sects. 4 and 5 that our abstract semantics as-
sumes a discrete, ordered time domain T . Specifically, our
continuous semantics is based on time logically advancing
within domain T . Conceptually, at time τ ∈ T all inputs up
to τ are processed and the output corresponding to τ (stream
elements with timestamp τ or instantaneous relation at τ) is
produced. In this section we briefly discuss how a DSMS
might implement this semantics under realistic conditions.
The topic is covered in much more depth in [37].

For exposition, in the remainder of this section let us as-
sume that relations are updated via timestamped relational
update requests that arrive on a stream. Thus, without loss
of generality we can focus on streams only. For a DSMS to
produce output corresponding to a time τ ∈ T , it must have
processed all input stream elements at least through τ . In
other words, it must know at some “real” (wall-clock) time t
that no new input stream elements with timestamp ≤ τ will
arrive after t . Making this determination is straightforward
when all of the input streams are “alive” and their elements
arrive in timestamp order. However, in many stream applica-
tions (including the Linear Road), input streams may be gen-
erated by remote sources, the network conveying the stream
elements to the DSMS may not guarantee in-order transmis-
sion, particularly across sources, and streams may pause and
restart.

In the STREAM prototype, our approach is to assume
an additional “metainput” to the system called heartbeats.
A heartbeat consists simply of a timestamp τ ∈ T and has
the semantics that after arrival of the heartbeat the system
will receive no future stream elements with timestamp ≤ τ .

69 / 83

High-Level Declarative Stream Processing

Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

I Need to apply calculation/reasoning CRloc locally, e.g.
I arithmetics, timeseries analysis operations
I SELECT querying, CONSTRUCT querying, abduction,

revision, planning

71 / 83

High-Level and Declarative

I Declarative:
Stream elements have “assertional status” and allow for
symbolic processing

Example (Relational data streams)

Stream element (sensor , val)〈3sec〉 “asserts” that sensor shows
some value at second 3

I High-Level:
Streams are processed with respect to some background
knowledge base such as a set of rules or an ontology.

Example (Streams of time-tagged ABox assertions)

Streams elements of form val(sensor , val)〈3sec〉 evaluated w.r.t. to
an ontology containing, e.g., axiom tempVal v val

72 / 83

High-Level and Declarative

I Declarative:
Stream elements have “assertional status” and allow for
symbolic processing

Example (Relational data streams)

Stream element (sensor , val)〈3sec〉 “asserts” that sensor shows
some value at second 3

I High-Level:
Streams are processed with respect to some background
knowledge base such as a set of rules or an ontology.

Example (Streams of time-tagged ABox assertions)

Streams elements of form val(sensor , val)〈3sec〉 evaluated w.r.t. to
an ontology containing, e.g., axiom tempVal v val

73 / 83

Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

KB

I Need to apply calculation/reasoning CRloc locally, e.g.
I arithmetics, timeseries analysis operations
I SELECT querying, CONSTRUCT querying, abduction,

revision, planning (=⇒ high-level & declarative)

74 / 83

Streamified OBDA

I Nearly ontology layer stream processing
I CEP (Complex event processing)
I EP-SPARQL/ETALIS, T-REX/ TESLA, Commonsens/ESPER

I RDF-ontology layer stream processing
I C-SPARQL (della Valle et al. 09), CQELS

I Classical OBDA stream processing
I SPARQLStream (Calbimonte et al. 12) and MorphStream

I All approaches rely on CQL window semantics
I extend SPARQL or use some derivative of it
I Treat timestamped RDF triples but use reification

75 / 83

Example of Reified Handling

Example

SELECT ?windspeed ?tidespeed
FROM NAMED STREAM <http://swiss-experiment.ch/

data#WannengratSensors.srdf>
[NOW-10 MINUTES TO NOW-0 MINUTES]
WHERE

?WaveObs a ssn:Observation;
ssn:observationResult ?windspeed;
ssn:observedProperty sweetSpeed:WindSpeed.

?TideObs a ssn:Observation;
ssn:observationResult ?tidespeed;
ssn:observedProperty sweetSpeed:TideSpeed.

FILTER (?tidespeed<?windspeed)

76 / 83

SRBench (Zhang et al. 2012)
I Benchmark for RDF/SPARQL Stream Engines
I Contains data from LinkedSensorData, GeoNames, DBPedia
I Mainly queries for functionality tests, with eye on SPARQL

1.1. functionalities

Example (Example Query (to test basic pattern matching))

Q1. Get the rainfall observed once in an hour.

I Tested on CQELS, SPARQLStream and C-SPARQL

I Test results (for engine versions as of 2012)
I Basic SPARQL features supported
I SPARQL 1.1 features (property paths) rather not supported
I Only C-SPARQL supports reasoning (on RDFS level)

(tested subsumption and sameAs)
I Combined treatment of static data plus streaming data only

for CQELS and C-SPARQL

77 / 83

Language Comparison of SOTA Stream Engines

I Update in 2016
I We also mention Lübecks contribution STARQL

(to be discussed in more detail in next lecture)

Name Data Model Union, Join IF Aggregate Property Time Triple
Optional, Filter Paths Windows Windows

Streaming RDF streams Yes No No No Yes Yes
SPARQL
C-SPARQL RDF streams Yes Yes Yes Yes Yes Yes
CQELS RDF streams Yes No Yes No Yes No
SPARQLStream virt. RDF streams Yes Yes Yes Yes Yes No
EP-SPARQL RDF streams Yes No Yes No No No
TEF-SPARQL RDF streams Yes No Yes No Yes Yes
STARQL virt. RDF streams Yes Yes Yes No Yes No

Name W-to-S Op. Cascading Intra window Sequencing Pulse Historic data
Streams time

Streaming RStream No No No No No
SPARQL
C-SPARQL RStream No Yes No No No
CQELS RStream No No No No No
SPARQLStream R-,I-,D-Stream No Yes No No No
EP-SPARQL RStream No No Yes No No
TEF-SPARQL RStream No No Yes No No
STARQL RStream Yes Yes Yes Yes Yes

78 / 83

Architecture Comparison of SOTA Stream Engines
Used Language Input Execution Query Optimization Stored Data Reasoning
Streaming RDF streams physical stream algebra Static plan optimization Yes No
SPARQL
C-SPARQL RDF streams DSMS based evaluation Static plan optimization Internal triple store RDF entailment

with triple store
CQELS RDF streams RDF stream processor Adaptive query Stored linked data No

processing operators
SPARQLStream Relational streams external query processing Static algebra optimizations Data source dependent No

host evaluator specific
EP-SPARQL RDF streams logic programming No No RDFS, Prolog equivalent

backward chaining rules
TEF-SPARQL RDF streams Yes No Yes Yes
STARQL Relational streams external query processing Static algebra optimizations Datasource dependent Yes (DL-LiteA)

Lit: A. Bolles, M. Grawunder, and J. Jacobi. Streaming sparql - extending sparql to
process data streams. In S. Bechhofer et al., editors, The Semantic Web: Research and
Applications, vol. 5021 of LNCS, p. 448–462, 2008.
Lit: D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked data. In L. Aroyo
et al., editors, The Semantic Web - ISWC 2011, vol. 7031 LNCS, p. 370–388, 2011.
Lit: J.-P. Calbimonte, H. Jeung, O. Corcho, and K. Aberer. Enabling query
technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst., 8(1):43–63,
Jan. 2012.
Lit: D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning and
complex event processing in Etalis. Semantic Web, 3(4):397–407, 2012.
Lit: J.-U. Kietz, T. Scharrenbach, L. Fischer, M. K. Nguyen, and A. Bernstein.
Tef-sparql: The ddis query- language for time annotated event and fact triple-streams.
Technical Report IFI-2013.07, 2013.
Lit: Ö. Özçep, R. Möller, and C. Neuenstadt. A stream-temporal query language for
ontology based data access. In KI 2014, vol. 8736 of LNCS, p. 183–194, 2014.

79 / 83

Solutions to Exercise 8 (12 Points)

Solution for Exercise 8.1 (4 points)

Belief Revision has strong connections to Non-monotonic reasoning: For any (say
consistent) belief set K one can define an entailment relation �K as follows:

α �K β iff β ∈ K ∗ α

Answer the question whether �K is a monotonic entailment relation, i.e., whether it
fulfills:

If X �K α and Y ⊆ Y , then Y �K α

Solution: Clearly the entailment relation is non-monotonic. Consider K = Cn(p → q),

X = {p}, X ′ = {p,¬q). We have X �K q, but not X ′ �K q.

81 / 83

Exercise 8.2 (4 points)

An alleged weakness of AGM belief revision is dealt under the term “Ramsey Test”.
Inform yourself on this test and explain how it works.

Solution: Define counterfactual conditionals α B β using the above entailment
relation. The Ramsey test gives an acceptability criterion for the acceptance of
counterfactual condition stating: counterfactual α B β is accepted in K iff β belongs
to revision result with α. If the language in which the belief sets and the triggers are
described contains a connective for the counterfactual—i.e. if the counterfactual is
part of the object language, then the Ramsey test reads as

α B β ∈ K iff β ∈ K ∗ α

Gärdenfors showed that in this case there cannot be a non-trivial AGM belief revision

operator fulfilling the Ramsey test. More concretely: There is no non-trivial scenario

(i.e. there exists a beliefset K and three disjoint sentences which are not in K) for

which a revision operator fulfills the Ramsey condition and the AGM postulates (even

a subset of the AGM postulates is sufficient for this triviality result.) This is mainly

due to the fact that the Ramsey condition entails the monotonicity of the revision

operator for the left argument.

82 / 83

Exercise 8.3 (4 points)

Consider the following postulate for belief bases B:

(R) If β ∈ B and β /∈ B ∗ α, then there is some B′ with
1. B ∗ α ⊆ B′ ⊆ B ∪ {α}
2. B′ is consistent
3. B′ ∪ {β} is inconsistent

First describe this postulates in natural language. What would be a good name for this
postulate (which was invented following a criticisms of AGM revision)?

Solution: If a sentence (β) does not survive the revision, then this is because it would

lead to an inconsistency with a consistent subset of the belief base and the trigger.

This says that only sentences of the belief base that are relevant for the

(inconsistency with the) trigger, are allowed to be eliminated.

83 / 83

	Temporalized OBDA
	Stream Basics
	Relational Stream Processing with CQL
	High-Level Declarative Stream Processing

