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Recap

I Talked about higher-level declarative stream processing using
STARQL as example

I Declarative: streams have assertional status
I High-level: Have to incorporate (reason over) a background KB
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This Lecture
I Back to general topic of query rewriting

I Here we call it “Query reformulation”
I Examples from DB theory: Reformulating a query w.r.t. views

I Uses the “last significant property of FOL that has come to
light” namely interpolation (Benthem 2008)
Lit: J. van Benthem. The many faces of interpolation. Synthese,

164(3):451?460, 2008.

I Sources used for this lecture
I Mainly: Slides from an invited talk of M. Benedikt at DL 2014

with my annotations
I B. ten Cate: “Craig Interpolation Theorems and Database

Applications”, talk given at UC Berkeley - Logic Colloquium,
November 7, 2014

I M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura.
Generating Plans from Proofs: The interpolation-based
Approach to Query Reformulation. Synthesis Lectures on Data
Management, 2016.
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Example for Rewriting

Following Road Example from (tenCate 2014)
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First Example: View-Based Query Reformulation

• Road network database:  Road(x,y)!

• Views: !

- V2(x,y) = “∃ path of length 2 from x to y” = ∃u Road(x,u) ∧ Road(u,y)!

- V3(x,y) = “∃ path of length 3 from x to y” = ∃u,v Road(x,u) ∧ Road(u,v) ∧ Road(v,y)!

- …!

• Observation: V4  can be expressed in terms of V2.!

• Puzzle (Afrati’07): can V5 be expressed (in FO logic) in terms of V3 and V4?

5
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Solution to the puzzle

V5(x,y) ⇔ ∃u ( V4(x,u) ∧ ∀v ( V3(v,u) → V4(v,y) ) )!

!

Proof:!

[⟹]!

!

!

[⟸]
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Why this Example is Important

• A conjunctive query (CQ) is a FO formula built up using only ∧, ∃.!

- Conjunctive queries are the most common type of database queries.!

- Every positive-existential FO formula is equivalent to a union of CQs.!

!

• Remarkable fact:!

- V3, V4 and V5 are all defined by CQs over the base relation (Road). !

- V5 is definable in terms of V3 and V4 but not by means of a CQ.

7
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Classic Results

Querying using views has been around since the 1980s. E.g.,!

• Theorem (Levy Mendelzon Sagiv Srivastava ’95): there is an effective 
procedure to decide whether a conjunctive query is rewritable as a 
conjunctive query over a given set of conjunctive views.!

• Open problem (Nash, Segoufin, Vianu ‘10): is there an effective 
procedure to decide if a conjunctive query is answerable on the basis of 
a set of conjunctive views (a.k.a., is determined by the views)? if so, in 
what language can we express the rewriting?!

NB: The Beth definability theorem (1953) tell us that, if a FO query is 
answerable on the basis of a set of FO views, then, it has a FO rewriting.

8
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•  Overview the theory behind proof-driven querying, which takes:  

•  a conjunctive query query Q = 9 x1 … xm A1(x1 …) Æ … Æ Am(x
m …) 

•  metadata consisting of relation descriptions, access methods, first order 
constraints, and costs of access 

      and generates (if possible) a low cost plan that gives the same answer as Q 
      on every instance satisfying the constraints 
 
•  Give connections to: 

•  proof theory 
•  preservation theorems in model theory 
•  data integration 
•  work of other DL '14 invited speakers 

 

New Perspectives on Query 
Reformulation 

 Michael Benedikt, based on joint work with: 
Julien Leblay, Efi Tsamoura, Michael Vanden Boom (Oxford) 
Balder ten Cate (LogicBlox & UC-Santa Cruz) 
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William Craig's 
Approach to Query 

Reformulation 

•  Pick out a property that Q should possess in order to have the 
desired reformulation 
•  Write out the property as an implication/proof goal in logic 

•  Generate a reformulation from the proof using an interpolation 
algorithm 

•  Look for a proof fulfilling the proof goal 

In two papers from 1957, W. Craig developed a general  
methodology for reformulating a query Q in some restricted 
target language with respect to constraints: 

Meta-Algorithm

(E.g.:	Determinedness)
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Craig in Action 
Goal: given boolean conjunctive query Q find a first-order logic reformulation over 
some restricted signature T with respect to constraints §  (constraints also in FO) 

Show that Q is determined over T with respect to § : 
for any two instances I and I' satisfying the constraints § 
if I and I' have the same T facts, then Q(I)=Q(I') 

Do this by showing that the following implication, using two copies of relations, is valid:  
Q Æ § Æ § ' Æ [ÆR 2 T 8 x1… xn R(x1….xn) $ R'(x1 … xn)] ! Q' 
§ ' = copy of constraints on primed relations 
Q' = copy of query on Q primed relations 
 

 

Craig 1957 paper: from any interpolant for re-arranged proof goal, can obtain a 
first-order reformulation of Q over T with respect to § 

. Interpolant: If ½1 ` ½2 , an interpolant is a formula ½ such that ½1 ` ½ ` ½2, 
and ½ uses only relations common to ½1 and ½2 

To witness the validity, search for a proof that: 
Q Æ § Æ § 'Æ [ÆR 2 T 8 x1… xn R(x1….xn) $ R'(x1 … xn)] ` Q' 
 
 
Re-arranging: Q Æ §  ` [§ 'Æ ÆR 2 T 8 x1… xn R(x1….xn) $ R'(x1 … xn)] ! Q' 
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Craig's Reformulation 
Recipe 

To find a first-order reformulation of query Q over some restricted signature T 
with respect to constraints § . 
Show that Q is determined over T with respect to § : 
for any two instance I and I' satisfying the constraints § 
if I and I' have the same T facts, then Q(I)=Q(I') 

Craig '57: 
•  Gave a proof system complete for finding these implications 
•  Gave an interpolation algorithm: from a proof witnessing ½1 ` ½2 ,  
efficiently extracts a formula ½ such that ½1 ` ½ ` ½2, and ½ uses only relations  
common to ½1 and ½2 
•  Showed that any interpolant gives a reformulation, and if there is any first-order 
 reformulation, this process gives one 
 

This condition holds iff there is a proof that: 
 Q Æ § Æ § 'Æ  [ÆR 2 T 8 x1… xn R(x1….xn) $ R'(x1 … xn) )] ` Q' 
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First Order Tableau  
proofs 

Derive a contradiction from:  
9 x  A(x) Æ ¬ B(x) Æ C(x) ,  8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) Æ ¬ B(c) Æ C(c) ,  8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) ,  ¬ B(c) , C(c) ,  [ (¬ A(c) Æ E(c) ) Ç B(c)] 

 A(c) Æ ¬ B(c) Æ C(c) ,  [ (¬ A(c) Æ E(c) ) Ç B(c)] 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c)  Æ E(c)  A(c) , ¬ B(c) , C(c),  B(c) 

To Prove: 9 x  A(x) Æ ¬ B(x) Æ C(x)  `  ¬ 8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c) ,  E(c) 
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Tableau  
proofs 

Derive a contradiction from:  
9 x  A(x) Æ ¬ B(x) Æ C(x) ,   8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) Æ ¬ B(c) Æ C(c) , 8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) ,  ¬ B(c) , C(c) ,  [ (¬ A(c) Æ  E(c) ) Ç B(c)] 

 A(c) Æ ¬ B(c) Æ C(c) ,   [ (¬ A(c) Æ E(c) ) Ç B(c)] 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c) ,  E(c) 

 A(c) , ¬ B(c) , C(c),  B(c) 

To Prove: 9 x  A(x) Æ ¬ B(x) Æ C(x)  `  ¬ 8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c)  Æ E(c) 

15 / 45



9 x  A(x) Æ ¬ B(x) Æ C(x) ,  8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) Æ ¬ B(c) Æ C(c)  ,   8 y [ (¬ A(y) Æ E(y) )  Ç B(y)] 

 A(c) ,  ¬ B(c) , C(c),  [ (¬ A(c) Æ  E(c) ) Ç B(c)] 

 A(c) Æ ¬ B(c) Æ C(c) ,   [ (¬ A(c) Æ E(c) ) Ç B(c)] 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c) ,  E(c) 

 A(c) , ¬ B(c) , C(c),  B(c) 

9 x  A(x) Æ ¬ B(x) Æ C(x)  `  ¬ 8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

Tableaux and Craig's 
Interpolation Algorithm 

 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c)  Æ E(c) 
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9 x  A(x) Æ ¬ B(x) Æ C(x) ,   8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

 A(c) Æ ¬ B(c) Æ C(c) ,  8 y [ (¬ A(y) Æ E(y) )  Ç B(y)] 

 A(c) ,  ¬ B(c) , C(c),  [ (¬ A(c) Æ  E(c) ) Ç B(c)] 

 A(c) Æ ¬ B(c) Æ C(c) ,   [ (¬ A(c) Æ E(c) ) Ç B(c)] 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c) ,  E(c) 

 A(c) , ¬ B(c) , C(c),  B(c) 

9 x  A(x) Æ ¬ B(x) Æ C(x)  `  ¬ 8 y [ (¬ A(y) Æ E(y) ) Ç B(y)] 

¬ B(c) 

A(c)  

9 x A(x) Æ ¬ B(x) 

Tableaux and Craig's 
Interpolation Algorithm 

 

... ... 

... ... 

 A(c) ,  ¬ B(c) , C(c),  ¬ A(c)  Æ E(c) 

Interpolant	(in	red)	construc2on	by	

bo5om	up	strategy

A(c)

A(c)		&	�B(c)

A(c)		&	�B(c)

Exists	x	A(x)		&	�B(x)

17 / 45



Summary: Craig's Methodology 
Episode 1 

 
To find a first-order reformulation of query Q over some restricted signature T 
with respect to constraints § . 
Show that Q is determined over T with respect to § : 
for any two instance I and I' satisfying the constraints § 
if I and I' have the same T facts, then Q(I)=Q(I') 

Apply Craig's interpolation algorithm to any tableau proof witnessing the 
re-arranged version of this: it will give a reformulation. 

This condition holds iff: 
Q Æ § Æ § ' Æ  [ÆR 2 T 8 x1… xn R(x1….xn) $ R'(x1 … xn)] ` Q' 
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But wait...
I Craig’s Lemma works for FOL where we have natural domain

semantics and allow for infinite structures
I In DB one normally has active domain semantics and is

interested in finite structures (but in the finite interpolation
does not hold for FOL)

I Idea
I Consider fragments of FOL where natural domain semantics

(alias classical FOL semantics) = active domain semantics
(alias DB semantics) =) RQFO

I Consider further restrictions on constraints (Guarded fragment
logics)

I RQFO = FOL with relativized quantifiers

I 9~xR(~y , ~x) ^ �(~y , ~x ,~t))
I 8~xR(~y , ~x) ! �(~y , ~x ,~t))

where � again a RQFO
I Note that RQFO are not necessarily safe (A(x) _ B(y) still

allowed).
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Interpolation does not hold in the Finite for FOL
I L a logic; K = class of ⌧ structures
I Call K good iff for class

K< := {(A, <) | A 2 K , < an ordering on A}

there is sentence � in vocabulary ⌧ [< such that

K< = Mod(�)

I L is closed under order-invariant sentences in the finite

iff every good structure K is axiomatizable by a ⌧ sentence  

Observation
Logics with interpolation property are closed under order-invariant
sentences in the finite.

I Proof: Consider � = �(<) with Mod(K ) = �. Then
�(<) |=fin (“ <0 is an ordering00 ! �(<0)). If  is interpolant,
then Mod(K ) =  .
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Interpolation does not hold in the Finite for FOL
I L a logic; K = class of ⌧ structures
I Call K good iff for class

K< := {(A, <) | A 2 K , < an ordering on A}
there is sentence � in vocabulary ⌧ [< s.t. K< = Mod(�)

I L is closed under order-invariant sentences in the finite

iff every good structure K is axiomatizable by a ⌧ sentence  

Proposition

1. FOL is not closed under order-invariant sentences in the finite
2. FOL does not have interpolation property in the finite

I Proof of 1.:
I

K = boolean algebras with even number of atoms.
I

K not axiomatizable in FOL (use Fraissee game)
I But K< is axiomatizable by �:
I � = boolean algebra axioms + order axioms + sentence A
I A = there is an element covering exactly atoms in even

position and the last atom. 21 / 45



Craig works 
for database-style 

queries + constraints 
To find a relational algebra reformulation of conjunctive query Q over 
subschema T with respect to relational algebra constraints §  
equivalently, constraints and reformulation built up via relative quantifiers: 
9 x1.... xm R(x1... xm , y1 ... yn ) Æ Á 
8 x1 ... xm R(x1... xm ,  y1 ... yn ) ! Á 

Show that Q is determined over T with respect to § : 
for any two instance I and I' satisfying the constraints § 
if I and I' have the same T facts, then Q(I)=Q(I') 
 
To do this, need to show: 
Q Æ §  Æ § ' Æ [ÆR 2 T 8 x1… xn R(x1….xn) $ R'(x1 … xn)] ` Q' 

Apply Craig's interpolation algorithm to any tableau proof of re-arranged proof 
goal to extract a reformulation. Observe that if all formulas involved are 
relativized, the resulting interpolant can be put in relativized form as well. 

„Safe	quan2fica2on	for	domain	independence“		
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Based on a true story 
This is a reconstruction of Craig's work. 
 
The exposition of interpolation comes from Fitting's 1996 textbook. 

The fact that interpolation can be used to generate reformulations 
constructively has been observed several places: 
•  Toman and Weddell, Fundamentals of Physical Design and Query 
Reformulation 
•  Franconi, Kerhet and Ngo, JAIR 2013 

The connection between interpolation and query reformulation 
was discovered by Segoufin and Vianu [PODS 2005] and explored 
more fully in Nash, Segoufin, Vianu [TODS 2010]. They make 
use of interpolation results of Otto [BSL 2000]. 

L.	Segoufin	and	V.	Vianu.	Views	and	queries:	determinacy	and	rewri2ng.	

PODS	2005,	pages	49–60.	ACM,	2005.

(Book)

E.	Franconi,	V.	Kerhet,	and	N.	Ngo.Exact	query	reformula2on	over	

databases	with	first-order	and	descrip2on	logics	ontologies.

	J.	Ar2f.	Intell.	Res.	(JAIR),	48:885–922,	2013.

A.	Nash,	L.	Segoufin,	and	V.	Vianu.	Views	and	queries:	Determinacy	and	rewri2ng.	

ACM	Trans.	Database	Syst.,	35(3):21:1–21:41,	2010.

M.	O5o.	An	interpola2on	theorem.	Bulle2n	Symbolic	Logic,	6(4):447–462,	12	2000.
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Craig works 
for finding USPJ 
Reformulations 

To find a positive existential (i.e. UCQ/USPJ with inequalities) reformulation of  
conjunctive query Q over subschema T with respect to (relativized FO) constraints 
§ . 
Show that Q is monotone over T with respect to § : 
  
for any two instances I and I' satisfying the constraints § 
if T facts of I are contained in the T facts of I', then Q(I) µ Q(I') 

To do this need to show: 
Q Æ § Æ § ' Æ [ÆR 2 T 8 x1… xn R(x1….xn) ! R'(x1 … xn)] `  Q' 

Interpolants produced by Craig's algorithm "respect positivity of relations": 
Lyndon Interpolation Theorem  

Apply Craig's interpolation algorithm to a tableau proof of the re-arranged proof 
goal and extract a  reformulation. Argue that the resulting reformulation will be 
positive existential. (Lyndon:	There	is	posi0ve	(nega0ve)	occurrence	of	rela0on	symbol	in	interpolant	iff	

is	posi0ve	(nega0ve)	occurrence	in	premise	and	conclusion)
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Craig works 
for Existential 

Reformulations 
To find an existential (UCQ with atomic negation) reformulation of conjunctive 
query Q over some restricted signature T with respect to constraints § . 

Show that Q is induced-subinstance monotone with respect to § : 
 
for any two instances I and I' satisfying the constraints § 
if T facts of I contained in the T facts of I', and I' has no T fact using elements from I, 
then Q(I) µ Q(I') 

 
To do this, need to show: 
Q Æ § Æ § 'Æ [ÆR 2 T 8 x1… xn R(x1….xn) ! R'(x1 … xn) Æ .... ] ` Q' 

Rewrite and apply Craig's interpolation algorithm to tableau proof of re-arranged goal. 
Argue that this gives the desired existential reformulation. 

Tex

Second	condi2on	
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Summary: Craig's Recipe for Restricted 
Vocabulary Reformulations 

Q is FO-rewritable  
over T 
w.r.t. constraints  

Q is determined 
by T w.r.t  
constraints 

Q is 9+-rewritable  
over T 
w.r.t constraints  

Q is monotone in 
T w.r.t.  
constraints 

Q  9-rewritable  
over T w.r.t. 
constraints  

Q induced-subinst. 
monotone in T 
w.r.t constraints 

Q Æ § Æ ÆT Ri= R'i 
` § ' ! Q' 

Q Æ § Æ ÆT R µ R'i 
` § ' ! Q' 

Q Æ § Æ ÆT Ri µ R'i 
Æ … ` § ' ! Q' 

Reformulation  
Goal 

Semantic Property Search for proof  
of this entailment, 
apply interpolation 

Projective Beth 
Definability 

Rough analogy: 
Lyndon  
Preservation 
Theorem/ 
Hom. Pres. Thm 
(Projective) 
Los-Tarski 
Preservation 
Theorem  

Parallel with 
Theorem in 
Model Theory 
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To find a relational algebra plan using a fixed set of 
access methods equivalent to query Q with respect to constraints § . 

Craig works 
for Access 
Patterns 
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Access Methods

• Access method: a pair (R,X) where R is an n-ary relation and X⊆{1, …, n} is 
a set of “input positions”!

- Relation R can be accessed if specific values are provided for the positions in X.!

• Examples: !

- (Yellowpages(name,city,address,phone#), {1,2})!

- (R,∅) means free (unrestricted) access to R.!

- (R,{1, …, n}) means only membership tests for specific tuples.!

• There may be any number of access methods for a given relation. The 
allowed access methods for a relation can be assumed to be an upwards 
closed set.

10
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To find a relational algebra plan using a fixed set of 
access methods equivalent to query Q with respect to constraints § . 

Show that Q is access-determined with respect to access methods and § : 
for any two instances I and I' satisfying the constraints § 
if I and I' have the same accessible data, then Q(I) = Q(I') 

Need to prove: 
Q Æ § Æ § 'Æ  ["Accessibility Axioms"] ` Q' 

Example accessibility axiom: 
Suppose R(x1, x2) has an access method on the first position. 
 

Craig works 
for Access 
Patterns 

Instead of previous "transfer axiom" 8 x1 x2
 R(x1 ,x2) ! R'(x1 , x2)  

We have, for any n-ary relation F in the signature, for every position in F, an axiom: 
 
8 x1 x2 .... xn F'(.... x1 ...) Æ R(x1 , x2) ! R'(x1 , x2)  
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To find a relational algebra plan using a fixed set of 
access methods equivalent to query Q with respect to constraints § . 

Show that Q is access-determined with respect to access methods and  § : 
for any two instances I and I' satisfying the constraints § 
if I and I' have the same accessible data, then Q(I) = Q(I') 

Need to prove: 
Q Æ § Æ § 'Æ  ["Accessibility Axioms"] ` Q' 
Re-arrange and apply Craig's interpolation algorithm to the proof to extract a 
reformulation. Argue that this can be converted to a plan that fits the access 
methods. 

Interpolants produced by Craig's algorithm "reflect the quantification patterns on 
the left and right of the proof symbol": Access Interpolation Theorem 

Craig works 
for Access 
Patterns 
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To find a negation-free (USPJ) plan using a fixed set of access methods  
equivalent to query Q  with respect to constraints § . 

Show that Q is access-monotone with respect to methods and § : 
for any two instances I and I' satisfying the constraints § 
the accessible data in I is contained in the accessible data of I'  
then Q(I) µ Q(I') 

Need to show: 
Q Æ § Æ§ 'Æ  ["Uni-directional Accessibility Axioms"]  ` Q' 

Re-arrange and apply Craig's interpolation algorithm to any proof to extract a  
reformulation. Argue using Access Interpolation Theorem that this gives a plan of the 
desired shape. 

Craig works for 
Access-Pattern 

based Restrictions 
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Binding Patterns 
Consider first order logic built up from equalities and true/false 
via relative quantifiers: 
8 y1 …yn R(x1 … xm , y1 … yn) ! Á 
9 y1 … yn  R( x1 … xm , y1 … yn) Æ Á(x1 …xm, y1 ..yn) 

The binding pattern of a formula tells where in each relation we have free variables in 
relative quantifications. 
 
bindpatt(8 y1 y2 R(x1, y1, y2) ! S(x1,y2))= {(R, {1}), (S,{1,2})} 
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Access Methods “Used” by a Formula

BindPatt(φ) is the set of access methods “used” by φ.

11

• For example BindPatt(∀y(Rxy → Sxy)) = { (R,{1}), (S,{1,2}) }!

• A FO formula φ is executable if BindPatt(φ) consists of allowed access methods.!

• Fact: Each executable FO formula admits a query plan, and, conversely, every 
formula that admits a query plan is equivalent to an executable FO formula.!

• Query plan = sequence of allowed accesses and/or relational algebra operations.
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Craig  
gives decision 

procedures 
To find a positive existential reformulation of query Q over restricted signature T 
with respect to Tuple-generating Dependencies (TGDs) § 
 
8 x1 ... xm  [R1(x1... ) Æ ... Æ Rm(x1...) ! 9 y1 ... ym S1(x1.... y1...) Æ ...] 
 
Very common in databases: e.g. inclusion dependencies (referential constraints),  
data integration mappings 
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Craig  
gives decision 

procedures 
To find a positive existential reformulation of query Q over restricted signature T 
with respect to Tuple-generating Dependencies § . 

Show that Q is monotone with respect to § : 
for any two instance I and I' satisfying § if I and I' have the same T facts,  
then Q(I)=Q(I') 

Search for proof that: 
Q Æ § Æ § 'Æ  [ÆR 2 T 8 x1… xn R(x1….xn) ! R'(x1 … xn)] ` Q' 

Specialized proof procedures have been developed for proving implications of 
this form: the chase 

Q contained in Q' with respect to an augmented set of TGDs 

8 x1 ... xm  [R1(x1... ) Æ ... Æ Rm(x1...) ! 9 y1 ... ym S1(x1.... y1...) Æ ...] 

Note:	This	is	the	same	as	

above;	

the	only	point	is	that	we	can	

use	special	proof	procedures
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Craig  
gives decision 

procedures 
To find a positive existential reformulation of query Q over restricted signature T 
with respect to Tuple-generating Dependencies § . 

Show that Q is monotone with respect to § : 
for any two instance I and I' satisfying § if I and I' have the same T facts,  
then Q(I)=Q(I') 

Search for proof that: 
Q Æ § Æ § 'Æ  [ÆR 2 T 8 x1… xn R(x1….xn) ! R'(x1 … xn)] ` Q' 

Apply Craig's algorithm to a chase proof (which is a tableau proof!) 
to extract a positive existential reformulation 

Q contained in Q' with respect to an augmented set of TGDs 
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Chase again
I Remember the chase construction from our lecture on data

exchange
I Use TGDs as firing rules.
I Chase procedure complete and correct; termination under

some constraints für TGDs
I Here for testing Q ^ ⌃ |= Q

⇤, where Q a CQ
I Canonical database DB(Q) for input Q:

instance with elements all constants in Q and additional
distinct constants for variables; fact in DB(Q) iff it is
contained in Q (modulo substituting new constants with
variables)

I Chase procedure
1. start with DB(Q)
2. iteratively apply TGDs
3. Stop if some fact contained (via a homomorphism) in Q

⇤

I Chase derivation can be transformed into a tableau derivation
37 / 45



To find a positive existential reformulation of query Q over restricted signature T 
with respect to some set of TGD constraints §  where the chase terminates 
(i.e. there is a maximal tableau). 

Apply Craig's interpolation algorithm to the proof to extract a reformulation. 

Show that Q is monotone over T with respect to § : 
for any two instances I and I' satisfying the constraints § 
if T facts of I are contained in the T facts of I', then Q(I) µ Q(I') 

Perform the chase effectively to determine if there is a proof that: 
Q Æ § Æ § 'Æ  [ÆR 2 T 8 x1… xn R(x1….xn) ! R'(x1 … xn)] ` Q' 

This yields many prior results in the database literature. 

End-to-end 
reformulation algorithms via 

Craig's technique 
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Apply Craig's interpolation algorithm to the proof to extract a reformulation. 

Perform the chase effectively to determine if there is a proof that: 
Q Æ § Æ § 'Æ  [ÆR 2 T 8 x1… xn R(x1….xn) ! R'(x1 … xn)] ` Q' 

Theorem  [Levy Mendelzon Sagiv Srivistava PODS 95]: 
 
If the constraints only say that each R in T is defined by a conjunctive view definition 
over another set of relations B: 
 
8 x1 ... xn R(x1...xn)  $ QR(x1... xn),  
 
QR a conjunctive query using a set of base relations B disjoint from T. 
 
One can decide whether a query Q written over B 
can be rewritten as a conjunctive query using only the view relations. 

End-to-end 
reformulation algorithms via 

Craig's technique 

Compare	the	road	example	from	the	very	beginning	
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New end-to-end 
reformulation algorithms via 

Craig's technique 
To find a FO reformulation (resp. positive existential, existential reformulation,  
RA-plan ... ) of query Q with respect  to some set of  TGD constraints § where the  
chase is well-behaved. e.g. Inclusion dependencies, LAV schema mappings, 
Guarded TGDs. 

Show that Q is determined over T (resp. monotone overt T, induced-subinst. monotone, 
access-determined over the access methods. ..) with respect to § : 

Effectively determine whether there is a chase proof that: 
Q Æ § Æ § 'Æ [........ ] ` Q' 

Apply an interpolation algorithm to the proof to extract a reformulation. 

Gives first effective reformulation algorithms for very expressive constraint languages 
(Guarded TGDs, Guarded Fragment, ...) 
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Craig gives completeness 
over finite instances 

To find a first-order reformulation (resp. positive existential reformulation, RA-plan...)  
that is equivalent to Q over every finite instance, with respect to some "well-
behaved" class of constraints § 

Apply Craig's interpolation algorithm to the proof to extract a reformulation 

Show that Q is determined (resp. monotone....)  with respect to §.: 

Search for a proof effectively to determine if: 
Q Æ § Æ § 'Æ  [...]  ` Q' 

Use finite controllability results to argue that this process is complete for finding  
plans that work over all finite instances. 
E.g. for Guarded TGDs, Guarded Fragment constraints, terminating chase classes.... 

Text
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Craig can find  
interesting 

plans 
To search for a USPJ plan using a fixed set of 
access methods equivalent to query Q with respect to constraints § . 
Search for a proof that Q is access-monotone with respect to § : 
for any two instances I and I' satisfying the constraints § 
the accessible data in I is contained in the accessible data of I'  
then Q(I) µ Q(I') 

Do this by searching the space of proofs showing that: 
Q Æ § Æ § 'Æ  ["Uni-directional Accessibility Axioms"]  ` Q' 

The plans produced by applying Craig's interpolation algorithm to 
the proofs will include many natural optimizations used in plan 
search. 
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Craig can find  
low-cost  

plans 
To search for a low-cost USPJ plan using a fixed set of 
access methods equivalent to query Q with respect to constraints § . 
Search for a proof that Q is access-monotone with respect to § : 
for any two instances I and I' satisfying the constraints § 
the accessible data in I is contained in the accessible data of I'  
then Q(I) µ Q(I') 

Do this by searching the space of proofs showing that: 
Q Æ § Æ § 'Æ  ["Uni-directional Accessibility Axioms"]  ` Q' 

While searching, apply Craig's interpolation algorithm to the proofs, 
and measure the cost of the resulting plan on-the-fly. 

43 / 45



Proof/Plan 
Search 

Assumption Q 

Calculate 
Cost 

Fire some  
§ rules 

Calc 
Cost 

Fire axiom 
gen command 3 

Proof config: Match for Q' 
Calc Successful Plan Cost 

Fire 
transfer/generate 
 command 2 

Fire transfer/generate 
command 3 

Fire axiom 
gen. command 2 

Fire transfer axiom/   
generate plan command 1 

Fire § ' 
Rules 

Proof 
Config. 

Proof 
Config. 
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Craig can find  
low-cost  

plans 

See PDQ: Proof-Driven Querying over Web-based 
Datasources 
(B., Leblay, Tsamoura)  in VLDB 2014. 
 
API/examples; http://www.cs.ox.ac.uk/pdq/ 
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