
Özgür L. Özçep

INSTITUT FÜR INFORMATIONSSYSTEME

Data Exchange 1
Lecture 5: Motivation, Relational DE, Chase

16 November, 2016

Foundations of Ontologies and Databases
for Information Systems
CS5130 (Winter 16/17)

Recap of Lecture 4

One of these Lectures ...

I Last lecture was better than the one of last year. Nonetheless,
the following video is worth watching:

I https://www.youtube.com/watch?v=IQgAuBhlBT0
Owl video

3 / 71

https://www.youtube.com/watch?v=IQgAuBhlBT0

A Very General Notion of Query
I During the discussion of the reduction of LinORD to CONN we discussed a very

general notion of a FOL query. Here is the exact definition. (See Immerman:
Descriptive Complexity, p. 18)

Definition
Let τ, σ be any two signatures with τ = (Ra1

1 , . . . ,Rar
r , c1, . . . , cs) and k be a fixed

natural number. A k-ary first order query Q : STRUCT (σ) −→ STRUCT (τ) is
given by an r+s+1-tuple of σ-formulae φ0, φ1, . . . , φr , ψ1, . . . , ψs . For each σ
structure A ∈ STRUC(σ) the formulae describe a τ structure Q(A)

Q(A) = (dom(Q(A)),R
Q(A)
1 , . . . ,R

Q(A)
r , c

Q(A)
1 , . . . c

Q(A)
s)

with
I dom(Q(A)) = {(b1, . . . , bk) | A |= φ0(b1, . . . , bk)}
I R

Q(A)
i = {(b1

1 , . . . , b
k
1), . . . , (b

1
i , . . . , b

k
i) ∈ dom(Q(A))ai | A |= φi (b

1
1 , . . . , b

k
ai
)}

I c
Q(A)
j = the unique (b1, . . . , bk) ∈ dom(Q(A)) s.t. A |= ψj (b

1, . . . , bk)

Example: Reductio of linear order to connectivity
Qred : LinOrd → CONN
I τ = E , σ =<, r = 1, s = 0
I k = 1, φ0 = an arbitrary tautology
I φ1 = see Exercise 3.3

4 / 71

I Locality as a means for proving in-expressivity results for
logics

I Hanf Locality
Answers are the same on two structures which are point-wise
similar (Ex. 4.1)

I Gaifman locality
Query cannot distinguish between tuples which are locally the
same in the given structure

I Bounded number of Degree (BNDP)
Cannot produce more degrees in output w.r.t. a given bound
than in the input

I Relations: Hanf � Gaifman � BNDP

I 0-1 law
Almost all structures have property or almost all have not
property.

I 0-1 law works also for logics with recursion (Datalog) (Ex. 4.3)

End of Recap
5 / 71

Data Exchange: Motivation

References

I (Arenas et al., 2014)
M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations
of Data Exchange. Cambridge University Press, 2014.

I M. Arenas: Slides to “Data Exchange in the Relational and
RDF Worlds”, Fifth Workshop on Semantic Web Information
Management 2011

7 / 71

Data Exchange History

I Much research in DB community

I Incorporated into IBM Clio

I Formal treatment starts with 2003 paper by Fagin and
colleagues
Lit: R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and Y.

Velegrakis. Conceptual modeling: Foundations and applications. chapter Clio:

Schema Mapping Creation and Data Exchange, pages 198–236. Springer-Verlag,

Berlin, Heidelberg, 2009.

Lit: R. Fagin et al. Data exchange: Semantics and query answering. In:

Database Theory - ICDT 2003, 2003, Proceedings, volume 2572 of LNCS, pages

207–224. Springer, 2003.

8 / 71

Semantic Integration

I Data Exchange a form of semantic integration

I Research area semantic integration (SI)
Deals with issues related to ensuring interoperability of
possibly heterogeneous data sources.

I Lecture 5 and 6: Data Exchange: Directed DB-level SI for
source and target DB

I Following lectures
I OBDA: Bridging the DB and ontology world
I Ontology-level integration

9 / 71

Data Exchange (DE)
I DE deals in a specific way with the integration of DBs
I Heterogeneity: Two DBs on the same domain but different

schemata, σ (source) and τ (target)

I Interoperability: Relationship specifications Mτσ for σ and τ

I Relevant service: Query answering over τ

I Challenges
I Consistency: Is there a corresponding τ instance for a given σ

instance?
I Materialization: If yes, construct and materialize exactly one

instance for τ
I Query answering: Answer query on this instance (using

rewriting)
I Maintenance: How to construct/maintain mappings

10 / 71

Data Exchange (DE)
I DE deals in a specific way with the integration of DBs
I Heterogeneity: Two DBs on the same domain but different

schemata, σ (source) and τ (target)

I Interoperability: Relationship specifications Mτσ for σ and τ

I Relevant service: Query answering over τ

I Challenges
I Consistency: Is there a corresponding τ instance for a given σ

instance?
I Materialization: If yes, construct and materialize exactly one

instance for τ
I Query answering: Answer query on this instance (using

rewriting)
I Maintenance: How to construct/maintain mappings

11 / 71

Relational DE

I Going to deal mainly with relational DBs

I Language for specifying Mστ : Specific FOL formulas called
tuple generating dependencies (tgds)

I Allow for constraints on the target schema (such as foreign
keys)

I Explicate criteria for goodness of solutions by universal
model and core notion

I Query answering w.r.t. certain answer semantics and using
rewriting

12 / 71

Running Example: Flight Domain

Source schema σ

Geo(city, coun, pop)

Flight (src, dest, airl, dep)

Target DB τ

Routes(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)

I Instead of changing the source schema σ, invent own (target)
schema τ

I Query over target schema

13 / 71

Running Example: Flight Domain

Source schema σ

Geo(city, coun, pop)

Flight (src, dest, airl, dep)

Target DB τ

Routes(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)

I Find “corresponding” τ DB instances for given σ instances
I Correspondence ensured by mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

14 / 71

Running Example: Flight Domain

Source schema σ and instance

Geo(city, coun, pop)

Flight (src, dest, airl, dep)
paris sant. airFr 2320

Target DB τ

Routes(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)

I Find “corresponding” τ DB instances for given σ instances
I Correspondence ensured by mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

15 / 71

Running Example: Flight Domain

Source schema σ and instance

Geo(city, coun, pop)

Flight (src, dest, airl, dep)
paris sant. airFr 2320

Target DB τ

Routes(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)

I Find “corresponding” τ DB instances for given σ instances
I Correspondence ensured by mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

16 / 71

Running Example: Flight Domain

Source schema σ and instance

Geo(city, coun, pop)

Flight (src, dest, airl, dep)
paris sant. airFr 2320

Target DB τ and instance

Routes(fno, src, dest)
⊥1, paris, sant.

Info(fno, dep, arr, airl)
⊥1, 2320, ⊥2 airFr

Serves(airl, city, coun, phone)

I Find “corresponding” τ DB instances for given σ instances
I Correspondence ensured by mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

17 / 71

Running Example: Flight Domain

Source schema σ and instance

Geo(city, coun, pop)

Flight (src, dest, airl, dep)
paris sant. airFr 2320

Target DB τ and instance

Routes(fno, src, dest)
⊥1, paris, sant.

Info(fno, dep, arr, airl)
⊥1, 2320, ⊥2 airFr

Serves(airl, city, coun, phone)

I σ-instance
S = {Flight(paris, sant, airFr , 2320)}

I τ solution
T = {Routes(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr)}

I In general there may be more than one solution:
T′ = {Routes(123, paris, sant), Info(123, 2320,⊥2, airFr)}

I Have to answer queries w.r.t. all solutions: certain answers
18 / 71

Running Example: Flight Domain

Source schema σ and instance

Geo(city, coun, pop)

Flight (src, dest, airl, dep)

Target DB τ and instance

Routes(fno, src, dest)

Info(fno, dep, arr, airl)

Serves(airl, city, coun, phone)

I σ-instance
S = {Flight(paris, sant, airFr , 2320)

I Boolean query Q1 = ∃fno Routes(fno, paris, sant)
I Certain answers is yes, because in all solutions there is a route

form Paris to Santiago
I Boolean query Q2 = Routes(123, paris, sant)

I Certain answer is no

19 / 71

Relational Mappings
I Going to deal mainly with relational mappings
I Relational DB (Codd 1970) very successful and still highly

relevant
I There were other opinions...

“Some of the ideas presented in the paper are interesting and may be of some

use, but, in general, this very preliminary work fails to make a convincing point

as to their implementation, performance, and practical usefulness. The paper’s

general point is that the tabular form presented should be suitable for general

data access, but I see two problems with this statement: expressivity and

efficiency. [...] The formalism is needlessly complex and mathematical, using

concepts and notation with which the average data bank practitioner is

unfamiliar.” Cited according to (Santini 2005)

Lit: E. F. Codd. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, June 1970.

Lit: S. Santini. We are sorry to inform you ... Computer, December 2005.

20 / 71

Relational Mappings Formally

Definition
A relational mapping M is a tuple of the form

M = (σ, τ,Mστ ,Mτ)

where
I σ is the source schema
I τ is the target schema with all relation symbols different from

those in σ
I Mστ is a finite set of FOL formulae over σ ∪ τ called

source-to-target dependencies
I Mτ is a set of constraints on the target schema called target

dependencies

21 / 71

DB Instances of Schemata

I Schemata are relational signatures
I Concrete database instance

I For a given schema σ a concrete DB instance is a σ FOL
structure with active domain

I Active domain: Domain contains all and only individuals (also
called constants) occurring in relations

I Usually: All source instances are concrete DBs

I Generalized DB instances
I For some attributes in target schema (Example: flight number

fno) no corresponding attribute in source may exist
I Next to constants CONST allow disjoint set of marked NULLs,

denoted VAR
I A generalized DB instance may contain elements from CONST
∪ VAR

22 / 71

DB Instances of Schemata

I Schemata are relational signatures
I Concrete database instance

I For a given schema σ a concrete DB instance is a σ FOL
structure with active domain

I Active domain: Domain contains all and only individuals (also
called constants) occurring in relations

I Usually: All source instances are concrete DBs

I Generalized DB instances
I For some attributes in target schema (Example: flight number

fno) no corresponding attribute in source may exist
I Next to constants CONST allow disjoint set of marked NULLs,

denoted VAR
I A generalized DB instance may contain elements from CONST
∪ VAR

23 / 71

Source-Target-Dependencies Mστ

I Source-Target-Dependencies may be arbitrary FOL formula
I But usually they have a simple directed form

I required to ensure decidability

I Here: source-to-target tuple-generating dependencies (st-tgds)

Definition
A source-to-target tuple-generating dependencies (st-tgds) is
a FOL formula of the form

∀~x~y(φσ(~x , ~y) −→ ∃~z ψτ (~x , ~z))

where
I φσ is a conjunction of atoms over source schema σ
I ψτ is a conjunction of atoms over target schema τ

24 / 71

Reminder: Conjunctive Queries (CQs)

I Class of sufficiently expressive and feasible FOL queries of form

Q(~x) = ∃~y
(
α1(~x1, ~y1) ∧ · · · ∧ αn(~xn, ~yn)

)
where

I αi (~xi , ~yi) are atomic FOL formula and
I ~xi variable vectors among ~x and ~yi variables among ~y

I Corresponds to SELECT-PROJECT-JOIN Fragment of SQL

25 / 71

Reminder: Conjunctive Queries (CQs)

Theorem

I Answering CQs is NP-complete w.r.t. combined complexity
(Chandra,Merlin 1977)

I Subsumption test for CQs is NP complete
I Answering CQs is in AC0 (and thus in P) w.r.t. data complexity

Lit: A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In: Proceedings of the Ninth Annual ACM Symposium on

Theory of Computing, STOC’77, pages 77–90, New York, NY, USA, 1977. ACM.

26 / 71

Wake-Up Question

Are st-tgds Datalog rules?

27 / 71

Wake-Up Question

Are st-tgds Datalog rules?

I No, as Datalog rules do not allow existentials in the head of
the query

I But there is the extended logic called Datalog+/−
I Has been investigated in last years also in context of

ontology-based data access (see net lectures)
I Provides many interesting sub-fragments

Lit: A. Calì, G. Gottlob, and T. Lukasiewicz. Datalog+/-: A unified approach to

ontologies and integrity constraints. In Proceedings of the 12th International

Conference on Database Theory, pages 14–30. ACM Press, 2009.

28 / 71

Target Dependencies Mτ

I These define constraints on target schema known also from
classical DB theory

I Two different types of dependencies are sufficiently general to
capture the classical DB constraints

Definition
A tuple-generating dependency (tgd) is a FOL formula of the
form

∀~x~y(φ(~x , ~y) −→ ∃~z ψ(~x , ~z))

where φ, ψ are conjunctions of atoms over τ .

An equality-generating (egd) is a FOL formula of the form

∀~x(φ(~x) −→ xi = xj)

where φ(~x) is a conjunction of atoms over τ and xi , xj occur in ~x .

29 / 71

Semantics: Solutions

Definition
Given: a mappingM and a σ instance S

A τ instance T is called a solution for S underM iff
(S,T) satisfies all rules in Mστ (for short: (S,T) |= Mστ) and T
satisfies all rules in Mτ .

I (S,T) |= Mστ iff S ∪ T |= Mστ where
I S ∪ T is the union of the instances S,T: Structure containing

all relations from S and T with domain the union of domains
of S and T

I well defined because schemata are disjoint

I SolM(S): Set of solutions for S underM

30 / 71

First Key Problem: Existence of Solutions

Problem: SOLEXISTENCEM
Input: Source instance S
Output: Answer whether there exists a solution for S underM

I Note:M is assumed to be fixed =⇒ data complexity
I This problem is going to be approached with a well known

proof tool: chase

31 / 71

Trivial Case: No Target Dependencies

I Without target constraints there is always a solution

Proposition

LetM = (σ, τ,Mστ) with Mστ consisting of st-tgds. Then for any
source instance S there are infinitely many solutions and at least
one solution can be constructed in polynomial time.

Proof Idea
I For every rule and every tuple ~a fulfilling the head generate

facts according to the body (using fresh named nulls for the
existentially quantified variables)

I Resulting τ instance T is a solution
I Polynomial: Testing whether ~a fulfills the head (a conjunctive

query) can be done in polynomial time
I Infinity: From T can build any other solution by extension

32 / 71

Trivial Case: No Target Dependencies

I Without target constraints there is always a solution

Proposition

LetM = (σ, τ,Mστ) with Mστ consisting of st-tgds. Then for any
source instance S there are infinitely many solutions and at least
one solution can be constructed in polynomial time.

Proof Idea
I For every rule and every tuple ~a fulfilling the head generate

facts according to the body (using fresh named nulls for the
existentially quantified variables)

I Resulting τ instance T is a solution
I Polynomial: Testing whether ~a fulfills the head (a conjunctive

query) can be done in polynomial time
I Infinity: From T can build any other solution by extension

33 / 71

Undecidability for General Constraints

Theorem
There is a relational mappingM = (σ, τ,Mστ ,Mτ) such that
SOLEXISTENCEM is undecidable.

I Proof by reduction from embedding problem for finite
semigroups which is known to be undecidable (Arenas et al.
2014, Thm 5.3)

I As a consequence: Further restrict mapping rules
I But note that the following chase construction defined for

arbitrary st-tgds

34 / 71

Undecidability for General Constraints

Theorem
There is a relational mappingM = (σ, τ,Mστ ,Mτ) such that
SOLEXISTENCEM is undecidable.

Wake-Up Question

As another exercise in reduction prove the following corollary:
There is a relational mappingM = (σ, τ,Mστ) with a single FOL
dependency in Mστ s.t. SOLEXISTENCEM is undecidable

35 / 71

Undecidability for General Constraints

Theorem
There is a relational mappingM = (σ, τ,Mστ ,Mτ) such that
SOLEXISTENCEM is undecidable.

Wake-Up Question

As another exercise in reduction prove the following corollary:
There is a relational mappingM = (σ, τ,Mστ) with a single FOL
dependency in Mστ s.t. SOLEXISTENCEM is undecidable

Proof
I Assume otherwise
I GivenM = (σ, τ,Mστ ,Mτ)

I constructM′ = (σ, τ, {χ}) with
I χ =

∧
(Mστ ∪Mτ)

36 / 71

Existence Proof vs. Construction

I Proposition above showed existence of solution
I Showing existence 6= construction a verifier
I Actually we are going to construct a solution using the chase

I Interesting debate in philosophy of mathematics whether
non-constructive proofs are acceptable

I Mathematical Intuitionism: field allowing only constructive
proofs

I truth = provable = constructively provable
I Classical logical inference rules s.a. ¬¬A � A not allowed
I Main inventor: L.E.J. Brouwer (1881 to 1966)

Irony: Has many interesting results in classical
(non-constructive) mathematics (Brouwer’s fixed point
theorem)

37 / 71

Chase Construction

I A widely used tool in DB theory
I Original use: Calculating entailments of DB constraints

Lit: D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data

dependencies. ACM Trans. Database Syst., 4(4):455–469, Dec. 1979.

I General idea
I Apply tgds as completion/repair rules in a bottom-up strategy
I until no tgds can be applied anymore
I Chase construction mail fail if one of the egds is violated

I The chase leads to an instance with desirable properties
I It produces not too many redundant facts
I Universality

38 / 71

Example (Terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti)

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (termination)

39 / 71

Example (Terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti)

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (termination)

40 / 71

Example (Terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti)

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (termination)

41 / 71

Example (Terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti)

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (termination)

42 / 71

Example (Terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti)

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (termination)

43 / 71

Example (Terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti)

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (termination)

44 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

45 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

46 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

47 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

48 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

49 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

50 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

51 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

52 / 71

Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1)
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2)
I . . . (non-termination)

53 / 71

Chase Definition
I Let S be a σ instance and dom(S) its domain

Definition (Chase steps)

S
χ,~a
; S′ iff

1. χ a tgd of form φ(~x)→ ∃~yψ(~x , ~y) and
I S |= φ(~a) for some elements ~a from dom(S)
I S′ extends S with all atoms occurring in ψ(~a, ~⊥).

2. or χ is an egd of form φ(~x)→ xi = xj and
I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj and
I (ai is constant or null, aj is null and S′ = S[aj/ai] or
I ai is null, aj is constant and S′ = S[ai/aj])

S
χ,~a
; fail iff

I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj
I and both ai , aj are constants.

54 / 71

Chase Definition
I Let S be a σ instance and dom(S) its domain

Definition (Chase steps)

S
χ,~a
; S′ iff

1. χ a tgd of form φ(~x)→ ∃~yψ(~x , ~y) and
I S |= φ(~a) for some elements ~a from dom(S)
I S′ extends S with all atoms occurring in ψ(~a, ~⊥).

2. or χ is an egd of form φ(~x)→ xi = xj and
I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj and
I (ai is constant or null, aj is null and S′ = S[aj/ai] or
I ai is null, aj is constant and S′ = S[ai/aj])

S
χ,~a
; fail iff

I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj
I and both ai , aj are constants.

55 / 71

Chase Definition
I Let S be a σ instance and dom(S) its domain

Definition (Chase steps)

S
χ,~a
; S′ iff

1. χ a tgd of form φ(~x)→ ∃~yψ(~x , ~y) and
I S |= φ(~a) for some elements ~a from dom(S)
I S′ extends S with all atoms occurring in ψ(~a, ~⊥).

2. or χ is an egd of form φ(~x)→ xi = xj and
I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj and
I (ai is constant or null, aj is null and S′ = S[aj/ai] or
I ai is null, aj is constant and S′ = S[ai/aj])

S
χ,~a
; fail iff

I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj
I and both ai , aj are constants.

56 / 71

Chase Definition
I Let S be a σ instance and dom(S) its domain

Definition (Chase steps)

S
χ,~a
; S′ iff

1. χ a tgd of form φ(~x)→ ∃~yψ(~x , ~y) and
I S |= φ(~a) for some elements ~a from dom(S)
I S′ extends S with all atoms occurring in ψ(~a, ~⊥).

2. or χ is an egd of form φ(~x)→ xi = xj and
I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj and
I (ai is constant or null, aj is null and S′ = S[aj/ai] or
I ai is null, aj is constant and S′ = S[ai/aj])

S
χ,~a
; fail iff

I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj
I and both ai , aj are constants.

57 / 71

Chase

Definition
A chase sequence for S under M is a sequence of chase steps

Si
χi ,~ai; Si+1 such that
I S0 = S

I each χi is in M

I for each distinct i , j also (χi , ~ai) 6= (χj , ~aj)

For a finite chase sequence the last instance is called its result.
I If the result is fail , then the sequence is said to be a failing

sequence
I If no further dependency from M can be applied to a result,

then the sequence is called successful.

58 / 71

Indeterminism

I Indeterminism regarding choice of nulls (no problem)
I Indeterminism regarding order of chosen tgds and egds

This may lead to different chase results

59 / 71

Use of Chases in Data Exchange

I A chase sequence for S under aM is a chase sequence for
(S, ∅) under Mστ ∪Mτ

I If (S,T) result of a finite sequence, call just T the result

I Chase is the right tool for finding solutions

Proposition

GivenM and source instance S.
I If there is a successful chase sequence for S with result T,

then T is a solution.
I If there is a failing chase sequence for S, then S has no

solution.

60 / 71

Use of Chases in Data Exchange
I A chase sequence for S under aM is a chase sequence for

(S, ∅) under Mστ ∪Mτ

I If (S,T) result of a finite sequence, call just T the result

I Chase is the right tool for finding solutions

Proposition

GivenM and source instance S.
I If there is a successful chase sequence for S with result T,

then T is a solution.
I If there is a failing chase sequence for S, then S has no

solution.

I The proposition does no cover all cases: non-terminating chase
I In this case still there still may be a solution

61 / 71

Weak Acyclicity

I In order to guarantee termination restrict target constraints
I Reason for non-termination: generation of new nulls with same

dependencies

Example (Cycle in Dependencies)

I χ1 = G (x , y)→ ∃z L(y , z)
I χ2 = L(x , y)→ ∃z G (y , z)

Possible infinite generation

G (a, b)
χ1; L(b,⊥1)

χ2; G (⊥1,⊥2)
χ1; L(⊥2,⊥3) . . .

I Problem caused by cycle in dependencies

62 / 71

Weak Acyclicity

I In order to guarantee termination restrict target constraints
I Reason for non-termination: generation of new nulls with same

dependencies

Example (Cycle in Dependencies)

I χ1 = G (x , y)→ ∃z L(y , z)
I χ2 = L(x , y)→ ∃z G (y , z)

Possible infinite generation

G (a, b)
χ1; L(b,⊥1)

χ2; G (⊥1,⊥2)
χ1; L(⊥2,⊥3) . . .

I Problem caused by cycle in dependencies

63 / 71

Simple Dependency Graphs
I Nodes: pairs (R, i) of predicate R and argument-position i
I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
∀~x∀~yφ(~x , ~y)→ ∃~zψ(~x , ~z) and
1. Rh occurs in ψ and Rb occurs in φ and
2. for all x ∈ ~x in i-position in Rb

I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified

Example (Simple Dependency Graph)

I χ1 = G (y , x)→ ∃z L(x , z)

I χ2 = L(y , x)→ ∃z G (x , z)

(L,1)

(G,1)

(L,2)

(G,2)

Set of tgds called acyclic if simple dependency graph is acyclic.
64 / 71

Dependency Graphs (DG)
I Nodes: pairs (R, i) of predicate R and argument-position i
I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
∀~x∀~yφ(~x , ~y)→ ∃~zψ(~x , ~z) and
1. Rh occurs in ψ and Rb occurs in φ and
2. for all x ∈ ~x in i-position in Rb

I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified
and and these are labelled by *

Example (Dependency Graph)

I χ1 = G (y , x)→ ∃z L(x , z)

I χ2 = L(y , x)→ ∃z G (x , z)

(L,1)

(G,1)

(L,2)

(G,2)

* *

TGDs weakly acyclic iff DG has no cycle with a * edge.
65 / 71

Termination for weakly acyclic tgds

Theorem
LetM = (σ, τ,Mστ ,Mτ) be a mapping where Mτ is the union of
egds and weakly acyclic tgds. Then the length of every chase
sequence for a source S is polynomially bounded w.r.t. the size of
S.

I In particular: Every chase sequence terminates
I Moreover: SOLEXISTENCEM can be solved in polynomial

time
I a solution can be constructed in polynomial time

66 / 71

Solutions to Exercise 4 (16 Points)

67 / 71

Solution to Exercise 4.1 (6 Points)
Use Hanf locality in order to proof that the following boolean
queries are not FOL-definable: 1. graph acyclicity, 2. tree.

Solution
Graph Acyclicity (GA).
I For contradiction assume GA is Hanf-local with parameter r ′. Choose

r = 2r ′ + 2
I Let G be the disjoint union of a circle of length r and a linear order of length r
I Let G′ be an order of length 2r .
I Take a bijection f : G→ G′ where

I the circle is unravelled to the middle of G′.
I The lower half part of the order in G is mapped to the lower

part of G′

I The upper half part of the order in G is mapped to the upper
part of G′

I an r ′-neighbourhood of any a in G and f (a) ∈ G′ is the same: if a is from the
circle in G then the r ′-neighbourhood is a 2r’-line and the same for f (a). If a is
an element from the line in G then in its r ′-neighbourhood it has to the left and
to right the same number of elements as has f (a) in its r’-neigbourhood in G′.

I Hence G�r′ G
′, but: G is cyclic and G is not. E

Tree
I Same construction (as G′ is tree whereas G is not)

68 / 71

Solution to Exercise 4.2 (4 Points)
Show that EVEN(σ) can be defined within second-order logic for
any σ.

Hint: formalize “There is a binary relation which is an equivalence
relation having only equivalence classes with exactly two elements”
and argue why this shows the axiomatizability.

Solution

∃R ∀xR(x , x) ∧
∀x∀yR(x , y)→ R(y , x) ∧
∀x∀y∀z((R(x , y) ∧ R(y , z))→ R(x , z)) ∧
∀x∃y(R(x , y) ∧ x 6= y ∧ ∀z(R(x , z)→ z = x ∨ z = y))

Note that R is a quantified variable (!). So we have shown that
EVEN[∅] can be defined.

69 / 71

Solution to Exercise 4.3 (2 Points)

Argue why (in particular within the DB community) one imposes
safety conditions for Datalog rules.

Solution

I Unsafe negation would lead to infinite answer sets (if domain
is infinite.)

I Variables occurring only in head would lead to domain
dependance. For example, for ans(x)← R(a) all bindings for x
in the domain of a DB where R(a) is contained, would have to
be in the set of answers. So the answer would not depend only
on R(a), i.e., only on the query, but also on the domain of the
variables one allows.

70 / 71

Solution to Exercise 4.4 (4 points)

Give examples of general program rules for which
1. No fixed point exists at all (Hint: “This sentence is not true”)
2. Has two minimal fixed points (Hint: “The following sentence is

false. The previous sentence is true.”)
Solution We consider propositional variables as 0-ary predicates. An extension of a
propositional variable is then either the empty set ∅ which is interpreted as the truth
value false, for short 0, or is the set consisting of the empty tuple {()} which is
interpreted as the truth value true, for short 1. Truthvalue assignments ν can be
identified by the set of propositional variables which are assigned the value 1. So, e.g.,
ν(p) = 1, ν(q) is represented by {p}, whereas ν(p) = 1, ν(q) = 1 is represented by
{p, q}. So minimality on models becomes minimality w.r.t. set inclusion.
I No fixed point: p ← ¬p
I Two minimal fixed points.

q ← ¬p
p ← ¬q

Has minimal fixed points {p} and {q}.

71 / 71

	Recap of Lecture 4
	Data Exchange: Motivation

