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Recap of Lecture 5



Data Exchange
I Specific semantic integration scenario for two data sources

with possibly different schemata
I MappingM = (σ, τ,Mστ ,Mτ )

I σ: source schema
I τ : target schema
I Mστ : source target dependencies (mostly: st-tgds)
I Mτ : target dependencies

I Ultimate aim: For given σ instance find appropriate τ instance
(solution) to do query answering on it

I SOLEXISTENCEM: Is there a solution for a givenM
I Chase construction for finding solutions
I Chase construction gives sufficient and necessary condition if

termination is guaranteed
I Termination with weakly acyclic dependencies

End of Recap
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Universal Solutions



What are Good Solutions?

I We are seeking universal solutions: they represent all other
ones

I A solution T may contain NULLs
I A DB instance is complete iff it does not contain NULLs

I Rep(T) = all complete DBs instances that represent T
I Explicate “represent” by homomorphism notion
I Now formally define

Rep(T) = {T′ | There is h : T
hom−→ T′ for complete T′}
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Homomorphism

I Intuitively, homomorphisms are structure preserving mappings
I Defined here for DB instances but similarly definable for

arbitrary structures

Definition
A Homomorphism h : T

hom−→ T′ is a map

h : Var(T) ∪ CONST → VAR(T′) ∪ CONST

s.t.
I h(c) = c for all c ∈ CONST and
I if R(~t) ∈ T, then R(h(~t)) ∈ T′
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Wake-Up Exercise

Consider two instances that are graphs, namely
I G = cycle on 5 nodes with marked nulls ν1, . . . , ν5
I G′ = cycle on 3 nodes with marked nulls ν ′1, ν

′
2, ν
′
3.

Give examples of a mapping h : G→ G′ that is a homomorphism,
resp. not a homomorphism.
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Universal Solutions

I There are three equivalent characterizations of universal
solutions T; mainly work with third as definition

Definition (Universal Solution)

1. Solution T describing all others

{T′ ∈ SOLM(S) | T′ complete} ⊆ Rep(T)

2. Solution T as general as all others

Rep(T′) ⊆ Rep(T) for every T′ ∈ SOLM(S)

3. Solution T mapping homomorphically into others

For all T′ ∈ SOLM(S) there is h : T
hom−→ T′
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Example (Universal Solution)

Source DB

Flight ( src, dest, airl, dep )
paris sant. airFr 2320

Target DB

Routes( fno, src, dest )

Info( fno, dep, arr, airl )

I Dependencies Mστ

Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

I τ solutions

T = {Routes(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr)}
T′ = {Routes(⊥1, paris, sant), Info(⊥1, 2320,⊥1, airFr)}
T′′ = {Routes(123, paris, sant), Info(123, 2320, 930, airFr)}

I T is a universal solution, T′ and T′′ are not
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Example (Non-existence of Universal Solutions)

I Mστ = { E (x , y)→ G (x , y) }
I Mτ = { G (x , y)→ ∃z L(y , z), L(x , y)→ ∃z G (y , z) }
I Source instance S = {E (a, b)}

I T = {G (a, b), L(b, a)} is a solution
I But there is no universal solution

Proof sketch (by contradiction)
I A universal solution must have an infinite sequence

(S, {G (a, b), L(b, ν1),G (ν1, ν2), L(ν2, ν3),G (ν3, ν4) . . . })
I As T is finite there must be some identification of an νi with a

or b or with another νj
I In any case a contradiction follows (by constructing a solution

into which no homomorphic embedding of T is possible)
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Example (Non-existence of Universal Solutions)

I Mστ = { E (x , y)→ G (x , y) }
I Mτ = { G (x , y)→ ∃z L(y , z), L(x , y)→ ∃z G (y , z) }
I Source instance S = {E (a, b)}

I T = {G (a, b), L(b, a)} is a solution
I But there is no universal solution

Proof sketch (by contradiction)
I A universal solution must have an infinite sequence

(S, {G (a, b), L(b, ν1),G (ν1, ν2), L(ν2, ν3),G (ν3, ν4) . . . })
I Consider case where ν2i−1 = a and define solution

T′ = {G (a, b), L(b, c1),G (c1, c2), L(c2, c3), . . . ,G (cj , cj−1) for
2i < j and fresh ci

I There must be an h : T
hom−→ T′.

I But then h(νl) = cl and hence h(ν2i−1) = c2i−1, but also
h(ν2i−1) = h(a) = a. E
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Undecidability of Universal Solution Existence

UNISOLEXISTENCEM

I Input: A source instance S

I Output: Is there a universal solution for S underM?

I Allowing arbitrary dependencies leads to undecidability
I Shown by of reduction of halting problem

Theorem
There exists a relational mappingM = (σ, τ,Mστ ,Mτ ) s.t.
UNISOLEXISTENCEM is undecidable

I Proof in book of Arenas et al. 5 pages long, so ... we do not
show it here
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By the way: There are Longer Proofs
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By the way: There are Longer Proofs
I Recent example: A computer aided proof for a particular case

(C = 3) of the Erdős Discrepancy Problem by Lisitsa/Konev
I File containing the proof about 13 GB

I Lit: B. Konev and A. Lisitsa. Computer-aided proof of erdos discrepancy

properties. Artif. Intell., 224(C):103–118, July 2015.

I Lit: https://rjlipton.wordpress.com/2014/02/28/practically-pnp/

Definition (Erdős Discrepancy Problem (EDP))

Let (xn) be a sequence of 1s and 0s and C be a constant. Can one
always find positive integers d , k s.t.:

|
k∑

i=1

xid |> C
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By the way: There are Longer Proofs

Definition (Erdős Discrepancy Problem (EDP))

Let (xn) be a sequence of 1s and 0s and C be a constant. Can one
always find positive integers d , k s.t.: |

∑k
i=1 xid |> C

Illustration:
“A precipice lies two paces to your left and a pit of vipers two paces to your right. Can

you devise a series of steps that will avoid the hazards, even if you are forced to take

every second, third or Nth step in your series?”

Lit:

https://www.quantamagazine.org/20151001-tao-erdos-discrepancy-problem/

I Update: There is now an elegant short proof for the full case
by mathematician Terence Tao

I Lit: The Erdős Discrepancy Problem. arXiv:1509.05363,

https://arxiv.org/abs/1509.05363
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Desiderata

I Due to the undecidabiltiy result one has to constrain
dependencies

I Constraints such that the following are fulfilled:
(C1) Existence of solutions entails existence of universal solutions

(C2) UNIVSOLEXISTENCE decidable and even tractable

(C3) If solutions exists, then universal solutions should be
constructible in polynomial time
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Chase Helps Again

Theorem
Results of successful chase sequences are universal solutions (and
these are sometimes called canonical universal solutions).

Proof Sketch

I Have to show only universality of chase T

I Use the third definition of universality
I Let T′ be any solution
I Lemma: Adding facts in chase step preserves homomorphism

(If T1
χ
; T2 by dependency χ, T3 fulfills χ and there is h : T1 hom−→ T3, then

there is h′ : T2 hom−→ T3)

I Argue inductively starting from empty homomorphism
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Nice Properties of Universal Solutions

Theorem
LetM = (σ, τ,Mστ ,Mτ ) be a mapping where Mτ is the union of
egds and weakly acyclic tgds. Then:
I UNISOLEXISTENCEM can be solved in PTIME (C2).
I And if solutions exist, then a universal solution exists (C1),
I and a canonical universal solution can be computed in

polynomial time (C3).
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Example (Non-uniqueness of Canonical Universal Solutions)

I Mστ = { P(x)→ ∃y∃w(E (x , y) ∧ E (x ,w)) }
I Mτ = { E (x , y)→ ∃z F (y , z)︸ ︷︷ ︸

χ1

,E (x , y) ∧ E (x , y ′)→ y = y ′︸ ︷︷ ︸
χ2

}

I Source instance S = {P(a)}

I First step: T = {E (a,⊥1),E (a,⊥2)}
I Two different solutions

I Apply χ1, then χ2:

T1 = {E (a,⊥1),F (⊥1,⊥3)),F (⊥1,⊥4)}

I Apply χ2, then χ1:

T2 = {E (a,⊥1),F (⊥1,⊥2)}
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Non-uniqueness

I Non-uniqueness no serious problem as all universal solutions
are good

I Nonetheless one can show

Proposition

LetM = (σ, τ,Mστ ,Mτ ) be a mapping s.t. Mτ consists of egds
only. Then every source instance S has a unique canonical solution
T (up to a renaming of NULLS) underM.
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The Core



Running Example: Flight Domain

Source DB σ

Geo( city, coun, pop )
paris, france, 2M

Flight ( src, dest, airl, dep )
paris amst. KLM 1410
paris amst. KLM 2230

Canonical Solution T

Routes( fno, src, dest )
⊥1, paris, amst.
⊥3, paris, amst.

Info( fno, dep, arr, airl )
⊥1, 1410, ⊥2 klm
⊥3, 2320, ⊥4 klm

Serves( airl, city, coun, phone )
klm, paris, france, ⊥5
klm, paris, france, ⊥6

Mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone(Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))
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Running Example: Flight Domain

Source DB σ

Geo( city, coun, pop )
paris, france, 2M

Flight ( src, dest, airl, dep )
paris amst. KLM 1410
paris amst. KLM 2230

Smallest Solution T∗

Routes( fno, src, dest )
⊥1, paris, amst.
⊥3, paris, amst.

Info( fno, dep, arr, airl )
⊥1, 1410, ⊥2 klm
⊥3, 2320, ⊥4 klm

Serves( airl, city, coun, phone )
klm, paris, france, ⊥5
klm, paris, france, ⊥6

Mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone(Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))
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Running Example: Flight Domain

Source DB σ

Geo( city, coun, pop )
paris, france, 2M

Flight ( src, dest, airl, dep )
paris amst. KLM 1410
paris amst. KLM 2230

Routes( fno, src, dest )
⊥1, paris, amst.
⊥3, paris, amst.

Info( fno, dep, arr, airl )
⊥1, 1410, ⊥2 klm
⊥3, 2320, ⊥4 klm

Serves( airl, city, coun, phone )
klm, paris, france, ⊥5
klm, paris, france, ⊥6

Wake-Up-Question

Why not delete similarly Routes(⊥3, paris, amst)?
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Running Example: Flight Domain

Source DB σ

Geo( city, coun, pop )
paris, france, 2M

Flight ( src, dest, airl, dep )
paris amst. KLM 1410
paris amst. KLM 2230

Routes( fno, src, dest )
⊥1, paris, amst.
⊥3, paris, amst.

Info( fno, dep, arr, airl )
⊥1, 1410, ⊥2 klm
⊥3, 2320, ⊥4 klm

Serves( airl, city, coun, phone )
klm, paris, france, ⊥5
klm, paris, france, ⊥6

Wake-Up-Question

Why not delete similarly Routes(⊥3, paris, amst)?

Answer: There are additional facts distinguishing ⊥1 and ⊥3
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Better than Universal? The Core!

I Universal solutions may still contain redundant information
I Seeking for smallest universal solutions: cores

I T′ is subinstance of T, for short T′ ⊆ T, iff
RT′ ⊆ RT for all relation symbols R

Definition
A subsinstance T′ ⊆ T is a core of T iff there is h : T

hom−→ T′ but
there is not a homomorphism from T to a proper subinstance of T′.

I Intuitively: An instance can be retracted (structure
preservingly) to its core but not further
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Properties of Cores

Definition
A subinstance T′ ⊆ T is a core of T iff there is h : T

hom−→ T′ but
there is not a homomorphism from T to a proper subinstance of T′.

Proposition

1. Every instance has a core.
2. All cores of the same instance are isomorphic (same up to

renaming of NULLs) (=⇒ Talk of the core justified)
3. Two instances are homomorphically equivalent iff their cores

are isomorphic

4. If T′ is core of T, then there is h : T
hom−→ T′ s.t. h(ν) = ν for

all ν ∈ DOM(T′)
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Main Theorem for Cores

Theorem

1. If T ∈ SOLM(S), then also core(T) ∈ SOLM(S)

2. If T ∈ UNIVSOLM(S) then also core(T) ∈ UNIVSOLM(S)

3. If UNIVSOLM(S) 6= ∅, then all T ∈ UNIVSOLM(S) have
same core (up to renaming of NULLs), and the core of any
universal solution is the smallest universal solution
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Computing the Core

I Easy Case: No tgds in Mτ

I Simple algorithm COMPUTECORE (M)
I Assume S has successful sequence with result T.
I If T = fail , then also the output fail
I Otherwise: remove facts as long as Mστ fulfilled.

Theorem
If chase not fails, then COMPUTECORE (M) outputs core of
universal solutions in polynomial time.

I Algorithm works as egds satisfactions preserved for
subinstances

I More sophisticated methods needed in presence of tgds in Mτ
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The Core

I Core has nice properties: Uniqueness
I But may be more costly to compute than universal canonical

solution
I In the end: We want to use solution for QA—and for this

canonical universal solutions suffice
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Query Answering



Certain Answers

I Given mappingM = (σ, τ,Mστ ,Mτ )

I Semantics of query answering specified as certain answer
semantics

Definition
The certain answers of query Q over τ for given instance S is
defined as

certM(Q,S) =
⋂
{ Q(T) | T ∈ SOLM(S) }
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Certain Answers
I Given mappingM = (σ, τ,Mστ ,Mτ )

I Semantics of query answering specified as certain answer
semantics

Definition
The certain answers of query Q over τ for given instance S is
defined as

certM(Q,S) =
⋂
{ Q(T) | T ∈ SOLM(S) }

I Definition does not tell how to actually compute the certain
answers

I In many cases it is not necessary to compute all solutions to
get certain answers
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Certain Answers

I Given mappingM = (σ, τ,Mστ ,Mτ )

I Semantics of query answering specified as certain answer
semantics

Definition
The certain answers of query Q over τ for given instance S is
defined as

certM(Q,S) =
⋂
{ Q(T) | T ∈ SOLM(S) }

Wake-up Question

Could it be the case that the certain answer set contains NULLS?
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Certain Answers
I Given mappingM = (σ, τ,Mστ ,Mτ )

I Semantics of query answering specified as certain answer
semantics

Definition
The certain answers of query Q over τ for given instance S is
defined as

certM(Q,S) =
⋂
{ Q(T) | T ∈ SOLM(S) }

Wake-up Question

Could it be the case that the certain answer set contains NULLS?

Answer: No, because one can construct for any solution
another with different NULLs, but in the certain answer set
you have only tuples in all solutions.
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Algorithmic Problems for Certain Answers

Problem: CERTAINM(Q,S)

Input: Source instance S and tuple of elements ~t ∈ DOM(S)
Output: Answer whether ~t ∈ certainM(Q,S)

I Again, to guarantee tractability or even decidability one has to
restrict the involved components

I Constrain query language (e.g., from FOL to CQs)
I Constrain dependencies (e.g., to weakly acyclic TGDs)

Proposition

There is an FOL query Q and aM = (σ, τ,Mστ ) s.t.
CERTAINM(Q) is undecidable.
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Answering Conjunctive Queries (CQs)
I Conjunctive queries (CQs)

Q(~x) = ∃~y
(
α1(~x1, ~y1) ∧ · · · ∧ αn(~xn, ~yn)

)
I Unions of conjunctive queries (UCQs)

Q(~x) = CQ1(~x) ∨ · · · ∨ CQn(~x)

I Crucial Property: (U)CQs are preserved under homomorphisms

Proposition

Let h : S
hom−→ S′ and Q be a UCQ. Then: For all tuples ~a from the

domain of S: If ~a ∈ Q(S), then h(~a) ∈ Q(S′)

If S is complete, then the condition boils down to Q(S) ⊆ Q(S′)

Follows easily from homomorphism definition (see Exercise)
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As a corollary one immediately gets also preservation for certain
query answering.

Proposition

Let h : S
hom−→ S′ and Q be a UCQ. Then:

cert(Q,S) ⊆ cert(Q,S′)

I Here we use a notion of certain answering for general DBs
(independently from a DE scenario)

Definition

cert(Q,S) =
⋂
{Q(S′) ∈ Rep(S)}
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Certain Answering UCQs

Theorem
LetM = (σ, τ,Mστ ,Mτ ) be a mapping where Mτ is a union of
egds and weakly acyclic tgds and let Q be a UCQ.

Then CERTAINM(Q,S) can be solved in PTIME.

Proof Sketch
I Consider naive evaluation strategy Qnaive

I Let T arbitrarily chosen universal solution
I Treat marked NULLS in T as constants

(i.e. ⊥ = ⊥ is true but not ⊥ = c or ⊥ = ⊥′)
I Calculate Q(T) under this perspective
I and then eliminate all tuples from Q(T) containing a NULL

I Now one can show certainM(Q,S) = Qnaive(T).
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Showing certainM(Q,S) = Qnaive(T)

I We know that a universal solution T can be constructed in
polynomial time.

I For every T′ ∈ SOLM there is T hom−→ T′

I NULL-free tuples in Q(T) ⊆⋂
T′∈SOLM

NULL-free tuples in Q(T′)

I Answering FOL queries (and so of UCQs) computable in
PTIME data complexity
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QA for Other Classes of Queries

I Proof above used a simple strategy for certain answering by
naive evaluation

Naive Evaluation Strategy

cert(S,Q) = Qnaive(T)

where T is a (universal) solution

I This strategy works also for Datalog programs as constraints
for the target schema τ

I Reason: Datalog programs are preserved under homomorphisms
I Even if one adds inequalities, naive evaluation works
I Hence certain answering is here in PTime
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Rewritability

I Naive evaluation is a form of rewriting
I Fundamental method that re-appears in different areas of CS
I Rewrite a query w.r.t. a given KB into a new query that

“contains” the knowledge of KB

I Challenges
I Preserve the semantics in the rewriting process:

ensure correctness (easy) and completeness (difficult)
I The language of the output query is constraint to a “simple

language” (so rewritability not always guaranteed)
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Rewritability for DE

Definition (FOL Rewritability)

LetM = (σ, τ,Mστ ,Mτ ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over the canonical universal
solution underM if there is a FOL query Qrew over τC such that

certainM(Q,S) = Qrew (T)

I Here τC = τ ∪ {C} where
unary predicate C depicts all constants (not NULLs) in targets

I Works like a type predicate
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Rewritability for DE

Definition (FOL Rewritability)

LetM = (σ, τ,Mστ ,Mτ ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over the canonical universal
solution underM if there is a FOL query Qrew over τC such that

certainM(Q,S) = Qrew (T)

There is one rewriting for any given pair of source S and universal
solution T

I The known component is the mappingM
I The unknown components are all pairs (S,T)
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Rewritability for DE

Definition (FOL Rewritability)

LetM = (σ, τ,Mστ ,Mτ ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over the canonical universal
solution underM if there is a FOL query Qrew over τC such that

certainM(Q,S) = Qrew (T)

If, in the definition, one talks about cores T instead of universal
solutions then Q is said to be FOL rewritable over cores

Theorem
FOL rewrit. over core � FOL rewrit. over universal solution,
but not vice versa.

52 / 65



Rewritability for DE

Definition (FOL Rewritability)

LetM = (σ, τ,Mστ ,Mτ ) be a mapping and Q be a query over τ .

Then Q is said to be FOL-rewritable over the canonical universal
solution underM if there is a FOL query Qrew over τC such that

certainM(Q,S) = Qrew (T)

Example
I Q(~x): a conjunctive query
I Qrew : Q(~x) ∧ C (x1) ∧ · · · ∧ C (xn)

This is actually the syntactic form of Qnaive

I The rewriting is even independent ofM
I So: (U)CQs are rewritable for any mapping
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Adding Negations to Query Language

I Negations in query languages lead to lose of naive rewriting
technique

I Even if one allows only negation in inequalities

Definition (Conjunctive Queries with inequalities CQ 6=)

A conjunctive query with inequalities is a query of the form

Q(~x) = ∃~y
(
α1(~x1, ~y1) ∧ · · · ∧ αn(~xn, ~yn)

)
where αi is either an atomic relational formula or an inequality
zi 6= zj .
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Example (No Naive Evaluation Possible)

Source DB

Flight ( src, dest, airl, dep )
paris sant. airFr 2320
paris sant. lan 2200

Target DB

Routes( fno, src, dest )

Info( fno, dep, arr, airl )

I Dependencies Mστ

Flight(src, dest, airl , dep) −→
∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))

I Any universal solution T′ contains solution τ solutions

T = { Routes(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr),

Routes(⊥3, paris, sant), Info(⊥3, 2320,⊥4, lan) }

I Query Q(x , z) = ∃y∃y ′(Routes(y , x , z) ∧ Routes(y ′, x , z) ∧ y 6= y ′)

I Qnaive(T
′) = {(paris, sant)} (for any universal solution T′)

I But: cert(Q(x , z),S)M = ∅ because there is a solution

T′′ = { Routes(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr),
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CQ 6= is in coNP

I In case of CQ6= one cannot even find a tractable means to
answer them w.r.t. certain answer semantics

Theorem
LetM = (σ, τ,Mστ ,Mτ ) be a mapping where Mτ is the union of
egds and weakly acyclic tgds, and let Q be a UCQ6= query. Then:

CERTAINM(Q) is in coNP
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Non-rewritability

I Generally it is not possible to decide whether rewritability holds

Theorem
For mappings without target constraints one can not decide
whether a given FOL query is rewritable over the canonical
solutions (over the core).

I Showing Non-FOL-rewritability can be done with locality tools
I Actually: One uses Hanf-locality of FOL
I Adaptation to DE setting
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Not Covered

I Different semantics for query answering
I Combinations of open-world (certain answers) and closed-word

semantics

I Whole sub-field of mapping management
I How to compose mappings
I How to maintain mappings (e.g., w.r.t. consistency)
I How to invert mappings: Get back source DB from target DB

I DE for non-relational DBs
I e.g., DE for semi-structured data (XML)
I different techniques needed
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Exercise 5



Exercise 5.1 (4 Points)

Prove the folklore proposition that conjunctive queries are preserved
under homomorphisms, i.e., show that if there is a homomorphism
h from a DB instance T to a DB instance T′, then for any CQ φ(~x):

{h(~d) | ~d ∈ ans(φ(~x),T)} ⊆ ans(φ(~x),T′)
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Exercise 5.2 (6 Points)

1. Prove that every finite graph has a core (2 points)
2. Prove that two cores of the same graph are isomorphic. (4

points)
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