

Özgür L. Özçep

Data Exchange 2

Lecture 6: Universal Solutions, Core, Certain Answers 23 November, 2016

> Foundations of Ontologies and Databases for Information Systems CS5130 (Winter 16/17)

Recap of Lecture 5

Data Exchange

- Specific semantic integration scenario for two data sources with possibly different schemata
- Mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
 - σ: source schema
 - ▶ \(\tau\): target schema
 - $M_{\sigma\tau}$: source target dependencies (mostly: st-tgds)
 - M_{τ} : target dependencies
- Ultimate aim: For given σ instance find appropriate τ instance (solution) to do query answering on it
- SOLEXISTENCE_M: Is there a solution for a given M
- Chase construction for finding solutions
- Chase construction gives sufficient and necessary condition if termination is guaranteed
- Termination with weakly acyclic dependencies

End of Recap

Universal Solutions

What are Good Solutions?

- We are seeking universal solutions: they represent all other ones
- A solution \mathfrak{T} may contain NULLs
- A DB instance is **complete** iff it does not contain NULLs
- ▶ Rep(𝔅) = all complete DBs instances that represent 𝔅
- Explicate "represent" by homomorphism notion
- Now formally define

$$Rep(\mathfrak{T}) = \{\mathfrak{T}' \mid \text{There is } h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}' \text{ for complete } \mathfrak{T}'\}$$

Homomorphism

- Intuitively, homomorphisms are structure preserving mappings
- Defined here for DB instances but similarly definable for arbitrary structures

Definition

A Homomorphism $h: \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ is a map

$$h: \mathsf{Var}(\mathfrak{T}) \cup \mathsf{CONST} o \mathsf{VAR}(\mathfrak{T}') \cup \mathsf{CONST}$$

s.t.

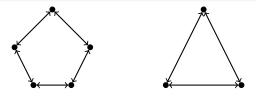
• h(c) = c for all $c \in CONST$ and • if $R(\vec{t}) \in \mathfrak{T}$, then $R(h(\vec{t})) \in \mathfrak{T}'$

Wake-Up Exercise

Consider two instances that are graphs, namely

- \mathfrak{G} = cycle on 5 nodes with marked nulls ν_1, \ldots, ν_5
- \mathfrak{G}' = cycle on 3 nodes with marked nulls ν'_1, ν'_2, ν'_3 .

Give examples of a mapping $h : \mathfrak{G} \to \mathfrak{G}'$ that is a homomorphism, resp. not a homomorphism.

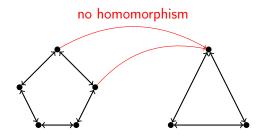


Wake-Up Exercise

Consider two instances that are graphs, namely

- \mathfrak{G} = cycle on 5 nodes with marked nulls ν_1, \ldots, ν_5
- \mathfrak{G}' = cycle on 3 nodes with marked nulls ν'_1, ν'_2, ν'_3 .

Give examples of a mapping $h: \mathfrak{G} \to \mathfrak{G}'$ that is a homomorphism, resp. not a homomorphism.

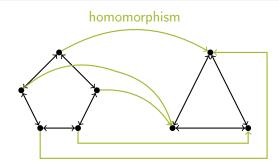


Wake-Up Exercise

Consider two instances that are graphs, namely

- \mathfrak{G} = cycle on 5 nodes with marked nulls ν_1, \ldots, ν_5
- \mathfrak{G}' = cycle on 3 nodes with marked nulls ν'_1, ν'_2, ν'_3 .

Give examples of a mapping $h : \mathfrak{G} \to \mathfrak{G}'$ that is a homomorphism, resp. not a homomorphism.



Universal Solutions

There are three equivalent characterizations of universal solutions S; mainly work with third as definition

Definition (Universal Solution)

1. Solution ${\mathfrak T}$ describing all others

$$\{\mathfrak{T}' \in \mathit{SOL}_\mathcal{M}(\mathfrak{S}) \mid \mathfrak{T}' \; \mathsf{complete}\} \subseteq \mathit{Rep}(\mathfrak{T})$$

2. Solution $\ensuremath{\mathfrak{T}}$ as general as all others

$$\mathit{Rep}(\mathfrak{T}')\subseteq \mathit{Rep}(\mathfrak{T})$$
 for every $\mathfrak{T}'\in \mathit{SOL}_\mathcal{M}(\mathfrak{S})$

3. Solution ${\mathfrak T}$ mapping homomorphically into others

For all
$$\mathfrak{T}' \in SOL_{\mathcal{M}}(\mathfrak{S})$$
 there is $h : \mathfrak{T} \stackrel{hom}{\longrightarrow} \mathfrak{T}'$

Example (Universal Solution)

Source DB			Target DB								
Flight (src, <mark>paris</mark>	dest, <mark>sant</mark> .	airl, <mark>airFr</mark>	dep 2320)	Routes	(<u>fnc</u>	<u>ə</u> , src	, des	st)	
						Info(<u>fno,</u>	dep,	arr,	airl)

Dependencies M_{στ}

 $\begin{array}{l} \textit{Flight(src, dest, airl, dep)} \longrightarrow \\ \exists \textit{fno } \exists \textit{arr(Routes(fno, src, dest) \land \textit{Info(fno, dep, arr, airl))}} \end{array}$

\mathfrak{T}	=	$\{Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr)\}$
\mathfrak{T}'	=	$\{Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_1, airFr)\}$
$\mathfrak{T}^{\prime\prime}$	=	{ <i>Routes</i> (123, <i>paris</i> , <i>sant</i>), <i>Info</i> (123, 2320, 930, <i>airFr</i>)}

 $\blacktriangleright~\mathfrak{T}$ is a universal solution, \mathfrak{T}' and \mathfrak{T}'' are not

•
$$M_{\sigma\tau} = \{ E(x, y) \rightarrow G(x, y) \}$$

$$\blacktriangleright M_{\tau} = \{ G(x,y) \rightarrow \exists z \ L(y,z), \quad L(x,y) \rightarrow \exists z \ G(y,z) \}$$

► Source instance 𝔅 = {E(a, b)}

•
$$\mathfrak{T} = \{G(a, b), L(b, a)\}$$
 is a solution

But there is no universal solution

- A universal solution must have an infinite sequence $(\mathfrak{S}, \{G(a, b), L(b, \nu_1), G(\nu_1, \nu_2), L(\nu_2, \nu_3), G(\nu_3, \nu_4) \dots \})$
- As ℑ is finite there must be some identification of an ν_i with a or b or with another ν_i
- ► In any case a contradiction follows (by constructing a solution into which no homomorphic embedding of 𝔅 is possible)

•
$$M_{\sigma\tau} = \{ E(x, y) \rightarrow G(x, y) \}$$

$$\blacktriangleright M_{\tau} = \{ G(x, y) \to \exists z \ L(y, z), \quad L(x, y) \to \exists z \ G(y, z) \}$$

- ► Source instance 𝔅 = {E(a, b)}
- $\mathfrak{T} = \{G(a, b), L(b, a)\}$ is a solution
- But there is no universal solution

- A universal solution must have an infinite sequence $(\mathfrak{S}, \{G(a, b), L(b, \nu_1), G(\nu_1, \nu_2), L(\nu_2, \nu_3), G(\nu_3, \nu_4) \dots \})$
- As ℑ is finite there must be some identification of an ν_i with a or b or with another ν_i
- In any case a contradiction follows (by constructing a solution into which no homomorphic embedding of 𝔅 is possible)

•
$$M_{\sigma\tau} = \{ E(x, y) \rightarrow G(x, y) \}$$

►
$$M_{\tau} = \{ G(x, y) \rightarrow \exists z \ L(y, z), \quad L(x, y) \rightarrow \exists z \ G(y, z) \}$$

- ► Source instance 𝔅 = {E(a, b)}
- $\mathfrak{T} = \{G(a, b), L(b, a)\}$ is a solution
- But there is no universal solution

- A universal solution must have an infinite sequence (𝔅, {G(a, b), L(b, ν₁), G(ν₁, ν₂), L(ν₂, ν₃), G(ν₃, ν₄)...})
- As ℑ is finite there must be some identification of an ν_i with a or b or with another ν_i
- ► In any case a contradiction follows (by constructing a solution into which no homomorphic embedding of 𝔅 is possible)

•
$$M_{\sigma\tau} = \{ E(x, y) \rightarrow G(x, y) \}$$

$$\blacktriangleright M_{\tau} = \{ G(x, y) \to \exists z \ L(y, z), \quad L(x, y) \to \exists z \ G(y, z) \}$$

- ► Source instance 𝔅 = {E(a, b)}
- $\mathfrak{T} = \{G(a, b), L(b, a)\}$ is a solution
- But there is no universal solution

- A universal solution must have an infinite sequence
 (𝔅, {G(a, b), L(b, ν₁), G(ν₁, ν₂), L(ν₂, ν₃), G(ν₃, ν₄)...})
- Consider case where $\nu_{2i-1} = a$ and define solution $\mathfrak{T}' = \{G(a, b), L(b, c_1), G(c_1, c_2), L(c_2, c_3), \dots, G(c_j, c_{j-1}) \text{ for } 2i < j \text{ and fresh } c_i$
- There must be an $h: \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$.
- ▶ But then $h(\nu_l) = c_l$ and hence $h(\nu_{2i-1}) = c_{2i-1}$, but also $h(\nu_{2i-1}) = h(a) = a$. *f*

Undecidability of Universal Solution Existence

$\mathsf{UNISOLEXISTENCE}_{\mathcal{M}}$

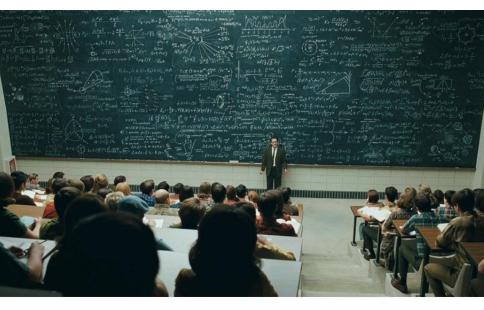
- ▶ Input: A source instance 𝔅
- Output: Is there a universal solution for \mathfrak{S} under \mathcal{M} ?
- Allowing arbitrary dependencies leads to undecidability
- Shown by of reduction of halting problem

Theorem

There exists a relational mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ s.t. UNISOLEXISTENCE_{\mathcal{M}} is undecidable

 Proof in book of Arenas et al. 5 pages long, so ... we do not show it here

By the way: There are Longer Proofs



By the way: There are Longer Proofs

- Recent example: A computer aided proof for a particular case (C = 3) of the Erdős Discrepancy Problem by Lisitsa/Konev
- ► File containing the proof about 13 GB
- Lit: B. Konev and A. Lisitsa. Computer-aided proof of erdos discrepancy properties. Artif. Intell., 224(C):103–118, July 2015.
- Lit: https://rjlipton.wordpress.com/2014/02/28/practically-pnp/

Definition (Erdős Discrepancy Problem (EDP))

Let (x_n) be a sequence of 1s and 0s and C be a constant. Can one always find positive integers d, k s.t.:

$$|\sum_{i=1}^{k} x_{id}| > C$$

By the way: There are Longer Proofs

Definition (Erdős Discrepancy Problem (EDP))

Let (x_n) be a sequence of 1s and 0s and C be a constant. Can one always find positive integers d, k s.t.: $|\sum_{i=1}^{k} x_{id}| > C$

Illustration:

"A precipice lies two paces to your left and a pit of vipers two paces to your right. Can you devise a series of steps that will avoid the hazards, even if you are forced to take every second, third or Nth step in your series?"

Lit:

https://www.quantamagazine.org/20151001-tao-erdos-discrepancy-problem/

- Update: There is now an elegant short proof for the full case by mathematician Terence Tao
- Lit: The Erdős Discrepancy Problem. arXiv:1509.05363, https://arxiv.org/abs/1509.05363

Desiderata

- Due to the undecidability result one has to constrain dependencies
- Constraints such that the following are fulfilled:
 (C1) Existence of solutions entails existence of universal solutions
 - (C2) UNIVSOLEXISTENCE decidable and even tractable
 - (C3) If solutions exists, then universal solutions should be constructible in polynomial time

Chase Helps Again

Theorem

Results of successful chase sequences are universal solutions (and these are sometimes called **canonical** universal solutions).

Proof Sketch

- \blacktriangleright Have to show only universality of chase ${\mathfrak T}$
- Use the third definition of universality
- \blacktriangleright Let \mathfrak{T}' be any solution
- ► Lemma: Adding facts in chase step preserves homomorphism (If $\mathfrak{T1} \stackrel{\chi}{\longrightarrow} \mathfrak{T2}$ by dependency χ , $\mathfrak{T3}$ fulfills χ and there is $h : \mathfrak{T1} \stackrel{hom}{\longrightarrow} \mathfrak{T3}$, then there is $h' : \mathfrak{T2} \stackrel{hom}{\longrightarrow} \mathfrak{T3}$)
- Argue inductively starting from empty homomorphism

Nice Properties of Universal Solutions

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds. Then:

- ▶ UNISOLEXISTENCE_M can be solved in PTIME (C2).
- ▶ And if solutions exist, then a universal solution exists (C1),
- ► and a canonical universal solution can be computed in polynomial time (C3).

►
$$M_{\sigma\tau} = \{ P(x) \rightarrow \exists y \exists w (E(x, y) \land E(x, w)) \}$$

► $M_{\tau} = \{ \underbrace{E(x, y) \rightarrow \exists z \ F(y, z)}_{\chi_1}, \underbrace{E(x, y) \land E(x, y') \rightarrow y = y'}_{\chi_2} \}$
► Source instance $\mathfrak{S} = \{ P(a) \}$

• First step:
$$\mathfrak{T} = \{E(a, \perp_1), E(a, \perp_2)\}$$

Two different solutions

• Apply χ_1 , then χ_2 :

 $\mathfrak{T}_1 = \{ E(a, \bot_1), F(\bot_1, \bot_3) \}, F(\bot_1, \bot_4) \}$

• Apply χ_2 , then χ_1 :

 $\mathfrak{T}_2 = \{ E(a, \bot_1), F(\bot_1, \bot_2) \}$

►
$$M_{\sigma\tau} = \{ P(x) \rightarrow \exists y \exists w (E(x, y) \land E(x, w)) \}$$

► $M_{\tau} = \{ \underbrace{E(x, y) \rightarrow \exists z \ F(y, z)}_{\chi_1}, \underbrace{E(x, y) \land E(x, y') \rightarrow y = y'}_{\chi_2} \}$
► Source instance $\mathfrak{S} = \{ P(a) \}$

• First step:
$$\mathfrak{T} = \{E(a, \perp_1), E(a, \perp_2)\}$$

- Two different solutions
 - Apply χ_1 , then χ_2 :

$$\mathfrak{T}_1 = \{ E(a, \bot_1), F(\bot_1, \bot_3) \}, F(\bot_1, \bot_4) \}$$

• Apply χ_2 , then χ_1 :

$$\mathfrak{T}_2 = \{ E(a, \bot_1), F(\bot_1, \bot_2) \}$$

►
$$M_{\sigma\tau} = \{ P(x) \rightarrow \exists y \exists w (E(x, y) \land E(x, w)) \}$$

► $M_{\tau} = \{ \underbrace{E(x, y) \rightarrow \exists z \ F(y, z)}_{\chi_1}, \underbrace{E(x, y) \land E(x, y') \rightarrow y = y'}_{\chi_2} \}$
► Source instance $\mathfrak{S} = \{ P(a) \}$

• First step:
$$\mathfrak{T} = \{E(a, \perp_1), E(a, \perp_2)\}$$

- Two different solutions
 - Apply χ_1 , then χ_2 :

$$\mathfrak{T}_1 = \{ E(\mathsf{a}, \bot_1), F(\bot_1, \bot_3)), F(\bot_1, \bot_4) \}$$

• Apply χ_2 , then χ_1 :

$$\mathfrak{T}_2 = \{ E(a, \bot_1), F(\bot_1, \bot_2) \}$$

►
$$M_{\sigma\tau} = \{ P(x) \rightarrow \exists y \exists w (E(x, y) \land E(x, w)) \}$$

► $M_{\tau} = \{ \underbrace{E(x, y) \rightarrow \exists z \ F(y, z)}_{\chi_1}, \underbrace{E(x, y) \land E(x, y') \rightarrow y = y'}_{\chi_2} \}$
► Source instance $\mathfrak{S} = \{ P(a) \}$

• First step:
$$\mathfrak{T} = \{E(a, \perp_1), E(a, \perp_2)\}$$

- Two different solutions
 - Apply χ_1 , then χ_2 :

$$\mathfrak{T}_1 = \{ E(\mathsf{a}, \bot_1), F(\bot_1, \bot_3)), F(\bot_1, \bot_4) \}$$

• Apply χ_2 , then χ_1 :

$$\mathfrak{T}_2 = \{ E(a, \bot_1), F(\bot_1, \bot_2) \}$$

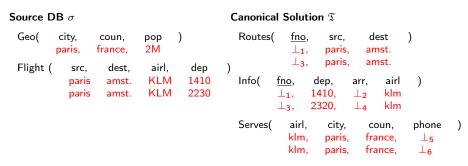
Non-uniqueness

- Non-uniqueness no serious problem as all universal solutions are good
- Nonetheless one can show

Proposition

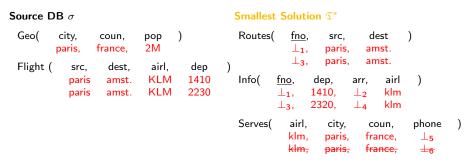
Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping s.t. M_{τ} consists of egds only. Then every source instance \mathfrak{S} has a unique canonical solution \mathfrak{T} (up to a renaming of NULLS) under \mathcal{M} .

The Core



Mapping rules $M_{\sigma\tau}$

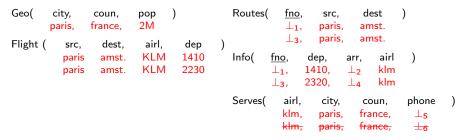
- 1. Flight(src, dest, airl, dep) \longrightarrow $\exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))$
- 2. Flight(city, dest, airl, dep) ∧ Geo(city, coun, pop) → ∃phone(Serves(airl, city, coun, phone))
- Flight(src, city, airl, dep) ∧ Geo(city, coun, pop) → ∃phone (Serves(airl, city, coun, phone))



Mapping rules $M_{\sigma\tau}$

- 1. Flight(src, dest, airl, dep) \longrightarrow $\exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl))$
- 2. Flight(city, dest, airl, dep) ∧ Geo(city, coun, pop) → ∃phone(Serves(airl, city, coun, phone))
- Flight(src, city, airl, dep) ∧ Geo(city, coun, pop) → ∃phone (Serves(airl, city, coun, phone))

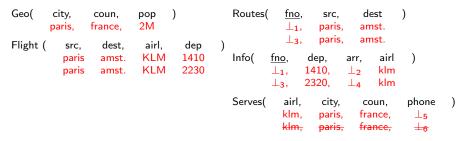
Source DB σ



Wake-Up-Question

Why not delete similarly $Routes(\perp_3, paris, amst)$?

Source DB σ



Wake-Up-Question

Why not delete similarly $Routes(\perp_3, paris, amst)$?

Answer: There are additional facts distinguishing \perp_1 and \perp_3

Better than Universal? The Core!

- Universal solutions may still contain redundant information
- Seeking for smallest universal solutions: cores

•
$$\mathfrak{T}'$$
 is subinstance of \mathfrak{T} , for short $\mathfrak{T}' \subseteq \mathfrak{T}$, iff $R^{\mathfrak{T}'} \subseteq R^{\mathfrak{T}}$ for all relation symbols R

Definition

A subsinstance $\mathfrak{T}' \subseteq \mathfrak{T}$ is a **core** of \mathfrak{T} iff there is $h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ but there is not a homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}' .

Intuitively: An instance can be retracted (structure preservingly) to its core but not further

Properties of Cores

Definition

A subinstance $\mathfrak{T}' \subseteq \mathfrak{T}$ is a **core** of \mathfrak{T} iff there is $h : \mathfrak{T} \xrightarrow{hom} \mathfrak{T}'$ but there is not a homomorphism from \mathfrak{T} to a proper subinstance of \mathfrak{T}' .

Proposition

- 1. Every instance has a core.
- All cores of the same instance are isomorphic (same up to renaming of NULLs) (⇒ Talk of <u>the</u> core justified)
- 3. Two instances are homomorphically equivalent iff their cores are isomorphic
- If ℑ' is core of ℑ, then there is h : ℑ → ℑ' s.t. h(ν) = ν for all ν ∈ DOM(ℑ')

Main Theorem for Cores

Theorem

- 1. If $\mathfrak{T} \in SOL_{\mathcal{M}}(\mathfrak{S})$, then also $core(\mathfrak{T}) \in SOL_{\mathcal{M}}(\mathfrak{S})$
- 2. If $\mathfrak{T} \in UNIVSOL_{\mathcal{M}}(\mathfrak{S})$ then also $core(\mathfrak{T}) \in UNIVSOL_{\mathcal{M}}(\mathfrak{S})$
- If UNIVSOL_M(𝔅) ≠ Ø, then all 𝔅 ∈ UNIVSOL_M(𝔅) have same core (up to renaming of NULLs), and the core of any universal solution is the smallest universal solution

Computing the Core

- Easy Case: No tgds in M_{τ}
- ► Simple algorithm *COMPUTECORE*(*M*)
 - Assume \mathfrak{S} has successful sequence with result \mathfrak{T} .
 - If $\mathfrak{T} = fail$, then also the output fail
 - Otherwise: remove facts as long as $M_{\sigma\tau}$ fulfilled.

Theorem

If chase not fails, then $COMPUTECORE(\mathcal{M})$ outputs core of universal solutions in polynomial time.

- Algorithm works as egds satisfactions preserved for subinstances
- More sophisticated methods needed in presence of tgds in $M_{ au}$

The Core

- Core has nice properties: Uniqueness
- But may be more costly to compute than universal canonical solution
- In the end: We want to use solution for QA—and for this canonical universal solutions suffice

Query Answering

• Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$

 Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$${\sf cert}_{\mathcal{M}}({\mathcal Q},{\mathfrak S}) = igcap_{\{} {\mathcal Q}({\mathfrak T}) \mid {\mathfrak T} \in {\sf SOL}_{\mathcal{M}}({\mathfrak S}) \; \}$$

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$${\it cert}_{\mathcal{M}}(\mathcal{Q},\mathfrak{S}) = igcap_{\{} \mathcal{Q}(\mathfrak{T}) \mid \mathfrak{T} \in {\it SOL}_{\mathcal{M}}(\mathfrak{S}) \ \}$$

- Definition does not tell how to actually compute the certain answers
- In many cases it is not necessary to compute all solutions to get certain answers

• Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$

 Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$$cert_{\mathcal{M}}(\mathcal{Q},\mathfrak{S}) = \bigcap \{ \mathcal{Q}(\mathfrak{T}) \mid \mathfrak{T} \in SOL_{\mathcal{M}}(\mathfrak{S}) \}$$

Wake-up Question

Could it be the case that the certain answer set contains NULLS?

- Given mapping $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$
- Semantics of query answering specified as certain answer semantics

Definition

The certain answers of query Q over τ for given instance \mathfrak{S} is defined as

$${\sf cert}_{\mathcal{M}}({\mathcal Q},{\mathfrak S}) = igcap_{\{} {\mathcal Q}({\mathfrak T}) \mid {\mathfrak T} \in {\sf SOL}_{\mathcal{M}}({\mathfrak S}) \; \}$$

Wake-up Question

Could it be the case that the certain answer set contains NULLS?

Answer: No, because one can construct for any solution another with different NULLs, but in the certain answer set you have only tuples in all solutions.

Algorithmic Problems for Certain Answers

Problem: $CERTAIN_{\mathcal{M}}(Q, \mathfrak{S})$

Input: Source instance \mathfrak{S} and tuple of elements $\vec{t} \in DOM(\mathfrak{S})$ Output: Answer whether $\vec{t} \in certain_{\mathcal{M}}(Q,\mathfrak{S})$

- Again, to guarantee tractability or even decidability one has to restrict the involved components
 - Constrain query language (e.g., from FOL to CQs)
 - Constrain dependencies (e.g., to weakly acyclic TGDs)

Proposition

There is an FOL query Q and a $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau})$ s.t. CERTAIN_{\mathcal{M}}(Q) is undecidable. Answering Conjunctive Queries (CQs)

Conjunctive queries (CQs)

$$Q(\vec{x}) = \exists \vec{y} (\alpha_1(\vec{x_1}, \vec{y_1}) \land \dots \land \alpha_n(\vec{x_n}, \vec{y_n}))$$

Unions of conjunctive queries (UCQs)

$$Q(\vec{x}) = CQ_1(\vec{x}) \lor \cdots \lor CQ_n(\vec{x})$$

Crucial Property: (U)CQs are preserved under homomorphisms

Proposition

Let $h : \mathfrak{S} \xrightarrow{hom} \mathfrak{S}'$ and Q be a UCQ. Then: For all tuples \vec{a} from the domain of \mathfrak{S} : If $\vec{a} \in Q(\mathfrak{S})$, then $h(\vec{a}) \in Q(\mathfrak{S}')$

If \mathfrak{S} is complete, then the condition boils down to $Q(\mathfrak{S})\subseteq Q(\mathfrak{S}')$

Follows easily from homomorphism definition (see Exercise)

As a corollary one immediately gets also preservation for certain query answering.

Proposition

Let $h: \mathfrak{S} \xrightarrow{hom} \mathfrak{S}'$ and Q be a UCQ. Then:

$$cert(Q,\mathfrak{S})\subseteq cert(Q,\mathfrak{S}')$$

 Here we use a notion of certain answering for general DBs (independently from a DE scenario)

Definition

$$cert(Q, \mathfrak{S}) = \bigcap \{Q(\mathfrak{S}') \in Rep(\mathfrak{S})\}$$

Certain Answering UCQs

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is a union of egds and weakly acyclic tgds and let Q be a UCQ.

Then $CERTAIN_{\mathcal{M}}(Q, \mathfrak{S})$ can be solved in PTIME.

Proof Sketch

- Consider naive evaluation strategy Q_{naive}
 - \blacktriangleright Let ${\mathfrak T}$ arbitrarily chosen universal solution
 - Treat marked NULLS in \mathfrak{T} as constants
 - (i.e. $\bot = \bot$ is true but not $\bot = c$ or $\bot = \bot'$)
 - Calculate $Q(\mathfrak{T})$ under this perspective
 - ▶ and then eliminate all tuples from $Q(\mathfrak{T})$ containing a NULL
- Now one can show $certain_{\mathcal{M}}(Q,\mathfrak{S}) = Q_{naive}(\mathfrak{T}).$

Showing $certain_{\mathcal{M}}(Q,\mathfrak{S}) = Q_{naive}(\mathfrak{T})$

- We know that a universal solution S can be constructed in polynomial time.
- For every $\mathfrak{T}' \in SOL_{\mathcal{M}}$ there is $\mathfrak{T} \stackrel{hom}{\longrightarrow} \mathfrak{T}'$
- ▶ NULL-free tuples in $Q(\mathfrak{T}) \subseteq \bigcap_{\mathfrak{T}' \in SOL_{\mathcal{M}}}$ NULL-free tuples in $Q(\mathfrak{T}')$
- Answering FOL queries (and so of UCQs) computable in PTIME data complexity

QA for Other Classes of Queries

 Proof above used a simple strategy for certain answering by naive evaluation

Naive Evaluation Strategy

$$cert(\mathfrak{S}, Q) = Q_{naive}(\mathfrak{T})$$

where \mathfrak{T} is a (universal) solution

- \blacktriangleright This strategy works also for Datalog programs as constraints for the target schema τ
 - ► Reason: Datalog programs are preserved under homomorphisms
 - Even if one adds inequalities, naive evaluation works
 - Hence certain answering is here in PTime

Rewritability

- Naive evaluation is a form of rewriting
- ► Fundamental method that re-appears in different areas of CS
- Rewrite a query w.r.t. a given KB into a new query that "contains" the knowledge of KB
- Challenges
 - Preserve the semantics in the rewriting process: ensure correctness (easy) and completeness (difficult)
 - The language of the output query is constraint to a "simple language" (so rewritability not always guaranteed)

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^{C} such that

$$\mathit{certain}_\mathcal{M}(Q,\mathfrak{S}) = \mathit{Q}_{\mathit{rew}}(\mathfrak{T})$$

Works like a type predicate

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^{C} such that

$$\mathit{certain}_\mathcal{M}(Q,\mathfrak{S}) = \mathit{Q}_{\mathit{rew}}(\mathfrak{T})$$

There is one rewriting for any given pair of source $\mathfrak S$ and universal solution $\mathfrak T$

- \blacktriangleright The known component is the mapping ${\cal M}$
- The unknown components are all pairs $(\mathfrak{S},\mathfrak{T})$

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^{C} such that

$$\mathit{certain}_\mathcal{M}(Q,\mathfrak{S}) = \mathit{Q}_{\mathit{rew}}(\mathfrak{T})$$

If, in the definition, one talks about cores $\mathfrak T$ instead of universal solutions then Q is said to be FOL rewritable over cores

Theorem

FOL rewrit. over core ⊨ FOL rewrit. over universal solution, but not vice versa.

Definition (FOL Rewritability)

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping and Q be a query over τ .

Then Q is said to be **FOL-rewritable** over the canonical universal solution under \mathcal{M} if there is a FOL query Q_{rew} over τ^{C} such that

$$\mathit{certain}_\mathcal{M}(\mathcal{Q},\mathfrak{S}) = \mathcal{Q}_{\mathit{rew}}(\mathfrak{T})$$

Example

- $Q(\vec{x})$: a conjunctive query
- ► Q_{rew} : $Q(\vec{x}) \land C(x_1) \land \cdots \land C(x_n)$ This is actually the syntactic form of Q_{naive}
- \blacktriangleright The rewriting is even independent of ${\cal M}$
- So: (U)CQs are rewritable for any mapping

Adding Negations to Query Language

- Negations in query languages lead to lose of naive rewriting technique
- Even if one allows only negation in inequalities

Definition (Conjunctive Queries with inequalities CQ^{\neq})

A conjunctive query with inequalities is a query of the form

$$Q(\vec{x}) = \exists \vec{y} (\alpha_1(\vec{x_1}, \vec{y_1}) \land \cdots \land \alpha_n(\vec{x_n}, \vec{y_n}))$$

where α_i is either an atomic relational formula or an inequality $z_i \neq z_j$.

Source DB

Target DB

Flight (src,	dest,	airl,	dep)	Routes	(<u>fno</u>	, src,	des	t)	
	paris	sant.	airFr	2320							
	paris	sant.	lan	2200		Info(<u>1110</u> ,	uep,	arr,	diri)

• Dependencies $M_{\sigma\tau}$

 $\begin{array}{l} \textit{Flight(src, dest, airl, dep)} \longrightarrow \\ \exists \textit{fno} \exists \textit{arr(Routes(fno, src, dest) \land \textit{Info(fno, dep, arr, airl))}} \end{array}$

Any universal solution \mathfrak{T}' contains solution au solutions

 $\mathfrak{T} = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr),$ $Routes(\bot_3, paris, sant), Info(\bot_3, 2320, \bot_4, lan) \}$

- Query $Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$
- *Q_{naive}*(ℑ') = {(*paris, sant*)} (for any universal solution ℑ')
 But: *cert*(*Q*(*x, z*), 𝔅)_M = Ø because there is a solution

$$\mathfrak{T}'' = \{ Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr), \\ Info(\perp_1, 2320, \perp_2, lan) \}$$

Source DB

Target DB

Flight (src,	dest,	airl,	dep)	Routes	(<u>fno</u>	, src,	des	t)	
	paris	sant.	airFr	2320							
	paris	sant.	lan	2200		Info(<u>1110</u> ,	uep,	arr,	diri)

• Dependencies $M_{\sigma\tau}$

 $\begin{array}{l} \textit{Flight(src, dest, airl, dep)} \longrightarrow \\ \exists \textit{fno} \exists \textit{arr(Routes(fno, src, dest) \land \textit{Info(fno, dep, arr, airl))}} \end{array}$

Any universal solution \$\mathcal{T}'\$ contains solution \$\tau\$ solutions

$$\mathfrak{T} = \{ Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr), \\ Routes(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_4, lan) \}$$

- Query $Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$
- $Q_{naive}(\mathfrak{T}') = \{(paris, sant)\}$ (for any universal solution \mathfrak{T}')
- ▶ But: $cert(Q(x, z), \mathfrak{S})_{\mathcal{M}} = \emptyset$ because there is a solution

$$\mathfrak{T}'' = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), \\ Info(\bot_1, 2320, \bot_2, lan) \}$$

Source DB

Target DB

Flight (src,	dest,	airl,	dep)	Routes	(<u>fnc</u>	, src	, des	t)	
	paris	sant.	airFr	2320							
	paris	sant.	lan	2200		Info(<u>mo</u> ,	uep,	arr,	airi)

• Dependencies $M_{\sigma\tau}$

 $\begin{array}{l} \textit{Flight(src, dest, airl, dep)} \longrightarrow \\ \exists \textit{fno} \exists \textit{arr(Routes(fno, src, dest) \land \textit{Info(fno, dep, arr, airl))}} \end{array}$

• Any universal solution \mathfrak{T}' contains solution τ solutions

$$\mathfrak{T} = \{ Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr), \\ Routes(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_4, lan) \}$$

• Query
$$Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$$

 $Q_{naive}(\mathfrak{T}') = \{(paris, sant)\}$ (for any universal solution \mathfrak{T}')

▶ But: $cert(Q(x, z), \mathfrak{S})_{\mathcal{M}} = \emptyset$ because there is a solution

$$\mathfrak{T}'' = \{ Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr), Info(\perp_1, 2320, \perp_2, lan) \}$$

Source DB

Target DB

Flight (src,	dest,	airl,	dep)	Routes	(<u>fnc</u>	, src	, des	t)	
	paris	sant.	airFr	2320							
	paris	sant.	lan	2200		Info(<u>mo</u> ,	uep,	arr,	airi)

• Dependencies $M_{\sigma\tau}$

 $\begin{array}{l} \textit{Flight(src, dest, airl, dep)} \longrightarrow \\ \exists \textit{fno} \exists \textit{arr(Routes(fno, src, dest) \land \textit{Info(fno, dep, arr, airl))}} \end{array}$

• Any universal solution \mathfrak{T}' contains solution τ solutions

$$\mathfrak{T} = \{ Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr), \\ Routes(\perp_3, paris, sant), Info(\perp_3, 2320, \perp_4, lan) \}$$

• Query
$$Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$$

• $Q_{naive}(\mathfrak{T}') = \{(paris, sant)\}$ (for any universal solution \mathfrak{T}')

But: $cert(Q(x, z), \mathfrak{S})_{\mathcal{M}} = \emptyset$ because there is a solution

$$\mathfrak{T}'' = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), Info(\bot_1, 2320, \bot_2, lan) \}$$

Source DB

Target DB

Flight (src,	dest,	airl,	dep)	Routes	(<u>fnc</u>	, src	, des	t)	
	paris	sant.	airFr	2320							
	paris	sant.	lan	2200		Info(<u>mo</u> ,	uep,	arr,	airi)

• Dependencies $M_{\sigma\tau}$

 $\begin{array}{l} Flight(src, dest, airl, dep) \longrightarrow \\ \exists fno \exists arr(Routes(fno, src, dest) \land Info(fno, dep, arr, airl)) \end{array}$

• Any universal solution \mathfrak{T}' contains solution τ solutions

$$\mathfrak{T} = \{ Routes(\bot_1, paris, sant), Info(\bot_1, 2320, \bot_2, airFr), Routes(\bot_3, paris, sant), Info(\bot_3, 2320, \bot_4, lan) \}$$

• Query
$$Q(x,z) = \exists y \exists y' (Routes(y,x,z) \land Routes(y',x,z) \land y \neq y')$$

Q_{naive}(𝔅') = {(paris, sant)} (for any universal solution 𝔅')
 But: cert(Q(x, z), 𝔅)_M = Ø because there is a solution
 𝔅'' = √ Routes(↓, paris sant) lnfo(↓, 2320 ↓ a airFr)

$$= \{ Routes(\perp_1, paris, sant), Info(\perp_1, 2320, \perp_2, airFr), \\ Info(\perp_1, 2320, \perp_2, lan) \}$$
 59/60

CQ^{\neq} is in coNP

In case of CQ[≠] one cannot even find a tractable means to answer them w.r.t. certain answer semantics

Theorem

Let $\mathcal{M} = (\sigma, \tau, M_{\sigma\tau}, M_{\tau})$ be a mapping where M_{τ} is the union of egds and weakly acyclic tgds, and let Q be a UCQ^{\neq} query. Then:

 $CERTAIN_{\mathcal{M}}(Q)$ is in coNP

Non-rewritability

Generally it is not possible to decide whether rewritability holds

Theorem

For mappings without target constraints one can not decide whether a given FOL query is rewritable over the canonical solutions (over the core).

- Showing Non-FOL-rewritability can be done with locality tools
- Actually: One uses Hanf-locality of FOL
- Adaptation to DE setting

Not Covered

- Different semantics for query answering
 - Combinations of open-world (certain answers) and closed-word semantics
- Whole sub-field of mapping management
 - How to compose mappings
 - How to maintain mappings (e.g., w.r.t. consistency)
 - ► How to invert mappings: Get back source DB from target DB
- DE for non-relational DBs
 - e.g., DE for semi-structured data (XML)
 - different techniques needed

Exercise 5

Prove the folklore proposition that conjunctive queries are preserved under homomorphisms, i.e., show that if there is a homomorphism *h* from a DB instance \mathfrak{T} to a DB instance \mathfrak{T}' , then for any CQ $\phi(\vec{x})$:

 $\{h(\vec{d}) \mid \vec{d} \in ans(\phi(\vec{x}), \mathfrak{T})\} \subseteq ans(\phi(\vec{x}), \mathfrak{T}')$

Exercise 5.2 (6 Points)

- 1. Prove that every finite graph has a core (2 points)
- 2. Prove that two cores of the same graph are isomorphic. (4 points)