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Recap of Lecture 2: FOL



FOL as a Representation Language

I FOL provides expressive language with neat semantics to
represent assertions relevant for CS

I System descriptions
I Desired requirements
I System behavior description
I Domain constraints

I See Exercise 2.1 and Exercise 2.2
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Solving Algorithmic Problems in FOL
I Definitions for important semantical properties (satisfaction,

satisfiability, entailment) do not tell how to compute them

I Proof calculi to the rescue
I Various FOL calculi exist that have desired properties of being

correct and complete
I Prominent ones that are “directed” and hence well

implementable: Tableaux and Resolution

I Resolution calculi
I Refutation calculus (un-satisfiability tester)
I Data structure: Formula in Clausal Normal Form

(see Exercise 2.3)
I Resolution rule:

(A ∨ ¬B) ∧ (B ∨ C ) �res A ∨ C
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Solving Algorithmic Problems in FOL
I No decidability for validity (unsatisfiability, entailment) but

semi-decidability
I Hence we will have to consider different variants of FOL
I Undecidability stays when changing to finite model semantics

It becomes even worse

Theorem (Trakhtenbrot)

Validity of FOL sentences under finite model semantics is not
semi-decidable

I Nonetheless FOL has important role (for CS)
I FOL “open” (has parameters) for restrictions to more feasible

fragments: number of variables, predicates, arity of predicates,
complex formulae construction, quantifier nesting, quantifier
alternation etc.

I FOL (per se) is useful as a query language on DBs: constant
time in data complexity ( =⇒ to be discussed today)

End of Recap
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Literature Hints

I Lit: L. Libkin. The finite model theory toolbox of a database theoretician. In

PODS ’09: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pages 65–76, New York, NY,

USA, 2009. ACM.

I Lit: L. Libkin. Elements Of Finite Model Theory (Texts in Theoretical Computer

Science. An Eatcs Series). SpringerVerlag, 2004.

I Lit: H. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in

mathematical logic. Springer, 1999.
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Aim
Understand: “Finite Model Theory (FMT) is the backbone of
database theory”
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Finite Model Theory

I Fundamental ideas

1. Consider DBs as finite FOL structures
2. Consider FOL as query language over DBs

I Starting with FOL investigate all relevant (algorithmic)
problems with finite structure semantics

I These ideas make up an approximative but nonetheless very
fruitful theoretical approach to studying DB related problems

I Showing expressivity bounds for query languages
I Showing equivalence of DB query languages
I Showing the inherent complexity of DB query languages
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FOL as a Query Language

I FOL query formula φ(~x) (for ~x = x1 . . . , xn) over signature σ
I ~x = distinguished variables, answer variables.

Definition (Answers of a query on a structure)

ans(φ(~x),A) = Aφ(~x)

= { ~d = (d1, . . . , dn) | di ∈ A and A |= φ(~x/~d) }

I Set of answers can be considered as a structure with n-ary
predicate ans

I n-ary query induced by φ:

Qφ : STRUCT (σ) −→ STRUCT (ans)
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Boolean Queries

I Boolean FOL query formula = FOL formulae without free
variables (also called sentences)

I According to definition possible answers are {()} (stands for
true) and ∅ (false)

I Boolean queries can be identified with the class of σ structures
making them true
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Answering (Boolean) FOL queries

I Why is FOL so successful in DB theory?
I E.g., is model checking problem (A |= φ) feasible?

I Answer is NO if considering A, φ both as inputs
=⇒ Combined complexity

Theorem (Stockmeyer 74, Vardi 82)

Model-checking for FOL (and monadic second-order logic MSO) is
PSPACE complete.

Lit: L. J. Stockmeyer. The complexity of decision problems in automata theory and

logic. PhD thesis, MIT, 1974.

Lit: M. Y. Vardi. The complexity of relational query languages (extended abstract). In

Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,

STOC ’82, pages 137–146, New York, NY, USA, 1982. ACM.
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Reminder: Complexity Classes
I Encode algorithmic problem Π as a language Π ⊆ Σ∗, i.e.,

sets of words over an alphabet Σ.

I PTIME = Problems solvable in polynomial time (w.r.t. the
input size) by a deterministic Turing machine

I PSPACE = Problems solvable in polynomial space (w.r.t. the
input size) by a (deterministic) Turing machine

I We will come across different complexity classes
I Mostly, as computer scientist, you do not refer directly to TMs

for getting complexity results
I Instead you (should) train yourself in the art of reducing and

learning paradigmatic problems in complexity classes.

Lit: Complexity Zoo: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Lit: M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP- Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.
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Complete Problems

I “Paradigmatic” problems in a complexity class C called
C-complete problems

I C complete problems (w.r.t. C′ reductions)=
Most difficult problems in C =
{Π | Π ∈ C and all other C problems are C′-reducible to Π }

I Problem Π ⊆ Σ is C-reducible to problem Π′ ⊆ Σ′, for short:
Π ≤C Π′, iff there is a C-computable function such that for all
w ∈ Σ: w ∈ Π iff f (w) ∈ Π′

16 / 73



Example for PSPACE Complete Problem

I Quantified Boolean Formula (QBF)
I All propositional symbols pi are QBF
I All boolean combinations of QBFs are QBFs
I If φ is a QBF, then so are∀pφ and ∃pφ.
I Semantics: Structures here are truth value assignments

I Theorem: Satisfiability of QBFs is PSPACE complete

Example

I ∃p∃q p ∧ q is satisfiable, because
there is assignment ν(q) = 1 and ν(q) = 1 making p ∧ q true.

I ∃p p ∧ ¬p is not satisfiable
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FOL is in PSPACE

Complexity estimation for query answering

Time complexity for checking A |= φ is O(nk ), where
I n = size of input structure A and
I k = size of input query φ

Note: Size of query k is responsible for exponential blow up

Reminder (Landau-Notation)
I f ∈ O(g) means: f has function g as upper bound
I Formally: There are constants c > 0 and x0, s.t. for all x > x0:

|f (x)| ≤ c ∗ |g(x)|
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FOL is in PSPACE
Complexity estimation for query answering

Time complexity for checking A |= φ is O(nk ), where
I n = size of input structure A and
I k = size of input query φ

I Note: Size of query k is responsible for exponential blow up

I Naive recursive algorithm showing time complexity (O(nk ))
and space complexity (O(k ∗ log(n)))

I Atomic formula: Look up in structure
I Boolean cases: apply semantics of Boolean connectors
I ∃xφ(x): Check for all d ∈ A whether A |= φ(x/d)

I PSPACE hardness by reducing QBF satisfiability to FOL model
checking

19 / 73



FOL is in AC 0

I In practical scenarios DB size n much bigger than query size k

I Therefore: Consider only DB as input; query fixed
=⇒ data complexity

I This helps al lot, as only query size responsible for exponential
complexity, indeed:

Theorem
Data complexity for FOL query answering is in LOGSPACE
and even in AC 0.

I LOGSPACE = Problems solvable in logarithmic space on the
read-write tape by a deterministic 2-tape Turing machine

I AC 0 ( LOGSPACE .
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The Class AC 0

I Intuitively AC 0 = class of problems solvable in constant time
on polynomially many process (in parallel)

I Formally, AC 0 is defined using a computation model based on
boolean circuits

p or

and out

q or

Boolean circuit above computes (¬p ∨ q) ∧ (p ∧ ¬q)
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The class AC 0

I Encode problems as 0/1 vector inputs
I Computability by circuits: There is family of circuits (for every

possible size of input) computing desired boolean function

I In many cases: uniformity condition: family not arbitrarily
constructed but computable as output of single TM

Definition
AC 0 = Problems solvable by families of circuits with
I constant depth,
I polynomial size and
I using NOT gates, unlimited-fanin AND gates and OR gates.
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FOL is in AC 0 data complexity

Proof idea
I Query modelled as boolean circuit family for every possible

instance of given DB schema R and super-domain Dom
I Every ground atom R(d1, . . . , dn) is represented as

propositional input symbol
I Gates for every subexpression of query
I Boolean operators in subexpression modelled by corresponding

boolean gates
I ∃ (∀) quantifier modelled by unbounded fan-in OR (AND) gate

Lit: S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. 1995.
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Proving Expressivity Bounds for FOL



Expressivity of Languages

I We defined above the query Qφ induced by a formula φ
(syntax-> semantics direction)

I For expressivity considerations one goes the other way round
(semantics -> syntax):

I Given a query

Q : STRUC (σ) −→ STRUC (ans)

test whether there is formula φ in the given logic s.t. Q = Qφ

I In this case one says that Q is definable in the logic (for the
given set of structures STRUC (σ))

I For Boolean queries definability amounts to:
Given a class X ⊆ STRUC (σ) of structures over a signature σ:
there is a sentence φ (over the given logic) s.t. Mod(φ) = X
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Need for New Proof Techniques

I Main classical techniques used for classical FOL do not work
I Because corresponding theorems do not hold for FMT

I Reminder: Main properties of FOL
I Compactness (Comp)
I Löwenheim-Skolem (Lösko)

I These properties characterize FOL for arbitrary structures:
Lindström theorems

28 / 73



Finite Compactness Pendant?

Fin-Comp

If every finite subset of Φ has a finite model, then Φ has a finite
model.

I The finite version of compactness (Fin-Comp) does not hold
for FOL.

I Falsifier
I λn := ∃x1, . . . , xn

∧
i 6=j ¬(xi = xj )

(says: “There are at least n elements”)
I {λn | n ∈ N} has not finite model though every subset has

(Compare Exercise 2.2.3)
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What’s the right “proof technique”?
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We Prefer to Proof/Argue ... without Being a Poser ...

Pinguin Video
URL: https://www.youtube.com/watch?v=7iDn5d9q9Y8
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Convention for the Following

Assume all structures are relational, i.e., there are no function
symbols other than constants—unless stated otherwise
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Games



Games as Essence of Being a Human

“Der Mensch spielt nur, wo er in voller Bedeutung des Wortes Mensch ist,
und er ist nur da ganz Mensch, wo er spielt”

(F. Schiller, Briefe über die ästhetische Erziehung des Menschen (1795))



Games as a CS Tool

I In logic, Fraïssé games are an important proof tool
I Different variations (w.r.t. rules, winning strategies)
I We will consider a basic game type and show how to use it.

I But: games have high “cognitive complexity” even for
non-trivial problems

I Therefore: Use games for simple but generic problems and
reduce others to these
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Ehrenfeucht-Fraïssé Games

I Notation: Gn(A,B)
n-round game played for structures on same signature

I Input: structures A,B

I Players: spoiler and duplicator

I Output: a function relating elements from A,B

I Rules: see next slide

I Spoiler’s aim: show A,B are “different”
I Duplicator’s aim: show A,B are “same”
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Rules of the Game

I In turn, spoiler choose structure and element i in it and
I duplicator chooses other structure and element in it

I After n rounds: n elements a1, . . . , an from A and n elements
b1, . . . , bn from B are chosen.

Winning condition
Duplicator wins iff
(a1, . . . , an) plays in A the same role as (b1, . . . , bn) in B
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Partial Isomorphism
Formalize sameness of tuples’ roles by notion of partial
isomorphism

Definition (Partial Isomorphism)

For structures A, B over signature σ, let f : A −→ B a function
with domain dom(f ). f is called a partial isomorphism iff

I f is injective
I For every constant c : cA ∈ dom(f ) and f (cA) = cB

I For all relation symbols R (including identity) and
a1, . . . , an ∈ dom(f )
RA(a1, . . . , an) iff RB(f (a1), . . . , f (an))

If f is total and bijective, then f is called an isomorphism, and
A,B are said to be isomorphic, for short A ' B
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Winning Condition Formalized

I After n rounds: n elements a1, . . . , an from A and n elements
b1, . . . , bn from B are chosen.

I Winning condition
Duplicator wins iff
f : ai 7→ bi is a partial isomorphism of A and B.

I Game equivalence
A ∼Gn B iff: Duplicator has a winning strategy in Gn(A,B)
(A and B are the same w.r.t. n-round games)
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Quantifier Rank

I How do we use games for proving in-expressivity?

I We need two more technical notions
I to capture nesting depth of quantifiers
I to capture property that two structures model the same

sentences (up to some syntactical complexity)
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Quantifier Rank
I How do we use games for proving in-expressivity?

I We need two more technical notions
I to capture nesting depth of quantifiers
I to capture property that two structures model the same

sentences (up to some syntactical complexity)

Definition (Quantifier Rank qr(φ))

I qr(φ) = 0 for atoms φ
I qr(φ ∨ ψ) = qr(φ ∧ ψ) = qr(φ→ ψ) = max{qr(φ), qr(ψ)}
I qr(¬φ) = qr(φ)

I qr(∃x φ) = qr(∀x φ) = qr(φ) + 1

I Example: qr( ∀x [∃w(P(x ,w)) ∧ ∃y∃zR(x , y , z)] ) = 3
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Quantifier Rank

I How do we use games for proving in-expressivity?

I We need two more technical notions
I to capture nesting depth of quantifiers
I to capture property that two structures model the same

sentences (up to some syntactical complexity)

Definition (Equivalence Up to Rank n)

A ≡n B iff A and B agree on all FOL sentences of quantifier rank
up to n.
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How to Use Games?

Theorem
A ∼Gn B iff A ≡n B

This gives a non-FOL-expressibility tool
I Aim: Show Q not expressible in FOL

I Construct families of structure An,Bn s.t.
1. All An satisfy Q
2. No Bn satisfies Q
3. An ∼Gn Bn

I Assume Q expressible as FOL formula φ of quantifier rank n.
Then An |= φ and Bn |= ¬φ, but An ∼Gn Bn E
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Example: Inexpressibility of EVEN

I EVEN(σ): structures over signature σ with domain of even
cardinality

I The signature is relevant for the proofs
I Simpel case: σ = ∅ =⇒ structures are sets

Proposition

EVEN(∅) is not expressible in FOL

Proof
I Choose An as 2n-element set, Bn as 2n + 1-element set.
I An ∈ EVEN(∅) and Bn /∈ EVEN(∅)
I An ∼Gn Bn: Duplicator plays already played element in the

other set iff spoiler does
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Inexpressibility of EVEN(σ) with Games

I What about EVEN(σ) for non-empty σ?
I Consider: σ = {<} and class of structures = linear orders
I Ln: n-element total ordering on some set

Theorem
For every m, k ≥ 2n: Lm ∼Gn Lk .

I In particular EVEN(<) not expressible over linear orders: take
An = L2n , Bn = L2n+1.
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Proving Inexpressivity: Reduction Tricks (not Tools)

I Showing FOL inexpressibility of
I graph connectivity CONN
I acyclicity ACYCL
I transitive closure TC

by reduction of EVEN(<) to each of them
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Reduce EVEN(<) to Graph Connectivity

imaginative names such as player 1 and player 2 are also often
used). Think of the spoiler as someone trying to show thatA
andB differ, and of the duplicator as someone trying to show
that they are the same. Even if A andB are not isomorphic,
the games goes only for a fixed number of rounds, and this
gives the duplicator a chance of winning.

The game goes as follows. In each round i, the spoiler
picks a structure and an element of that structure. The dupli-
cator goes to the other structure and picks an element there.
So if the spoiler picks A and an element ai ∈ A, the duplica-
tor responds with an element bi ∈ B; and if the spoiler picks
B and bi ∈ B, then the duplicator responds with an element
ai ∈ A. After n rounds, we have points a1, . . . , an played in
A and b1, . . . , bn played inB. The duplicator wins the game
if the mapping ai "→ bi is a partial isomorphism between A
and B. For example, if the structures are graphs, it means
that ai = aj iff bi = bj and thatE(ai, aj) iffE(bi, bj) for all
i, j ≤ n. We say that the duplicator has a winning strategy
in the n-round game if he can win no matter how the spoiler
plays. In that case, we write A ≡n B.

The reason this is important is due to the following: A ≡n

B iff A and B agree on all FO sentences of quantifier rank
up to n. So now we have a nice tool to prove that a property
P is notFO-expressible: come up with families of structures
An, Bn, n ∈ N, so that:

1. all An’s satisfy P ; noBn satisfies P ; and
2. An ≡n Bn for all n.

Why does this work? Assume P is expressible in FO by a
sentenceϕ of quantifier rankn. ThenAn |= ϕ andBn |= ¬ϕ
by 1), but 2) tells us that An andBn have to agree on ϕ.

So why not just stop there? The method of games looks
nice, and it is in a certain sense complete: any inexpressibility
result – even relative to a class of structures – can in principle
be proved by games. The problemwith the technique is that,
even if we find good classes of structures An and Bn, it is
often hard to prove that An ≡n Bn.

To illustrate this, we start with a very simple example,
where playing the game is actually easy, and then show how
the complexity rises quickly as structures get a bit more
complicated. The easy example is again the query even on
sets, i.e. structures of the empty vocabulary. Note that in the
n-round game on any two sets with at least n elements, the
duplicator has a very simple winning strategy: if the spoiler
plays an already played element, the duplicator does the same
in the other set, and if the spoiler plays a new element, so
does the duplicator: the sizes of the sets ensure that in n
rounds, the duplicator won’t run out of elements to play.

So to show that even is not expressible, we can take, for
example,An to be a 2n-element set andBn to be a (2n+1)-
element set; bywhat we just saw,An ≡n Bn. So far so good,
but what if we have something in the vocabulary? After all,
databases without relations aren’t very interesting!

Let’s try to look at a little extension: suppose we deal not
with sets, but with orders, i.e. graphswith one binary relation

interpreted as a linear order. We denote an n-element linear
ordering by Ln. Can we prove that even is not expressible
over linear orders?

A moment’s reflection shows that the previous proof does
not work. But the followingwas observed by several authors,
e.g., [37]:

Theorem 3.1. For every m, k ≥ 2n, we have Lm ≡n Lk.

In particular, even is not expressible over orders: we take
L2n as An, and L2n+1 asBn.

But it is more important to observe that a small addition to
the structure leads to an “exponential” blowup in the com-
plexity of the proof. In fact one does not even need an order
relation: the successor relation would do. And what if we
have two successor relations? Or three? Game-based proofs
become very heavy combinatorially. In fact, [10] suggested
that we build a library of winning strategies for the dupli-
cator. We now start working towards such a library, first by
showing a few simple tricks, and then creating powerful tools
for proving inexpressibility results.

3.3 Inexpressibility results: tricks

We have shown very little so far – only that even cannot
be expressed over sets and linear orders – but with that, we
can already derive surprisingly strong bounds on the expres-
siveness of FO. We are about to show, with a simple trick,
that graph connectivity, acyclicity, and the transitive closure
query are not FO-definable.

For graph connectivity, we start with linear orders. The
following query is easily definable: for each element in the
order, put an edge to its 2nd successor; also put edges between
the last element of the order and the 2nd element, and the
penultimate element and the first element. This construction
is illustrated below for orders on 5 and 6 elements.

⇒

⇒

It is now easy to observe that: a) the construction we pre-
sented is expressible in FO; and b) the resulting graph is
connected for orders of odd size, and contains two connected
components for orders of even size. Hence, if we could ex-
press graph connectivity in FO, we would be able to express
even on linear orders, contradicting Theorem 3.1.

This trick, observed by [19], also gives an easy proof that
testing whether a graph is acyclic is notFO-definable. In this
case, simply put one back edge, from the last element to the
first. The resulting graph is acyclic for orders of even size,
and cyclic for orders of odd size. With the transitive closure
query one can check if a graph is connected: add an edge
(x, y) for each edge (y, x), compute the transitive closure,
and see if the resulting graph is complete. So we get:

67

linear order is odd

ifflinear order is even

iff graph connected

graph is disconnected

I Construction of graph from linear order is expressible as an
FOL query Qred : LinOrd −→ GRAPH (see Exercise 3.3)
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Reduce EVEN(<) to Graph Connectivity
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To illustrate this, we start with a very simple example,
where playing the game is actually easy, and then show how
the complexity rises quickly as structures get a bit more
complicated. The easy example is again the query even on
sets, i.e. structures of the empty vocabulary. Note that in the
n-round game on any two sets with at least n elements, the
duplicator has a very simple winning strategy: if the spoiler
plays an already played element, the duplicator does the same
in the other set, and if the spoiler plays a new element, so
does the duplicator: the sizes of the sets ensure that in n
rounds, the duplicator won’t run out of elements to play.

So to show that even is not expressible, we can take, for
example,An to be a 2n-element set andBn to be a (2n+1)-
element set; bywhat we just saw,An ≡n Bn. So far so good,
but what if we have something in the vocabulary? After all,
databases without relations aren’t very interesting!

Let’s try to look at a little extension: suppose we deal not
with sets, but with orders, i.e. graphswith one binary relation

interpreted as a linear order. We denote an n-element linear
ordering by Ln. Can we prove that even is not expressible
over linear orders?

A moment’s reflection shows that the previous proof does
not work. But the followingwas observed by several authors,
e.g., [37]:

Theorem 3.1. For every m, k ≥ 2n, we have Lm ≡n Lk.

In particular, even is not expressible over orders: we take
L2n as An, and L2n+1 asBn.

But it is more important to observe that a small addition to
the structure leads to an “exponential” blowup in the com-
plexity of the proof. In fact one does not even need an order
relation: the successor relation would do. And what if we
have two successor relations? Or three? Game-based proofs
become very heavy combinatorially. In fact, [10] suggested
that we build a library of winning strategies for the dupli-
cator. We now start working towards such a library, first by
showing a few simple tricks, and then creating powerful tools
for proving inexpressibility results.

3.3 Inexpressibility results: tricks

We have shown very little so far – only that even cannot
be expressed over sets and linear orders – but with that, we
can already derive surprisingly strong bounds on the expres-
siveness of FO. We are about to show, with a simple trick,
that graph connectivity, acyclicity, and the transitive closure
query are not FO-definable.

For graph connectivity, we start with linear orders. The
following query is easily definable: for each element in the
order, put an edge to its 2nd successor; also put edges between
the last element of the order and the 2nd element, and the
penultimate element and the first element. This construction
is illustrated below for orders on 5 and 6 elements.

⇒

⇒

It is now easy to observe that: a) the construction we pre-
sented is expressible in FO; and b) the resulting graph is
connected for orders of odd size, and contains two connected
components for orders of even size. Hence, if we could ex-
press graph connectivity in FO, we would be able to express
even on linear orders, contradicting Theorem 3.1.

This trick, observed by [19], also gives an easy proof that
testing whether a graph is acyclic is notFO-definable. In this
case, simply put one back edge, from the last element to the
first. The resulting graph is acyclic for orders of even size,
and cyclic for orders of odd size. With the transitive closure
query one can check if a graph is connected: add an edge
(x, y) for each edge (y, x), compute the transitive closure,
and see if the resulting graph is complete. So we get:
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linear order is odd

ifflinear order is even

iff graph connected

graph is disconnected

I Construction of graph from linear order is expressible as an
FOL query Qred : LinOrd −→ GRAPH (see Exercise 3.3)
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ACYCL and TC are not FOL expressible

I ACYCL: Reduction EVEN ⇒ ACYCL as above but with one
back edge from last node to first node

I Reduction for TC: CONN ⇒ TC
I Add edge E (x , y) for every edge E (y , x)
I Compute TC on resulting graph
I Test whether graph is complete

50 / 73



Locality



Proving Inexpressibility by Locality

I FOL has a fundamental property: locality

I Consider a binary query Q : STRUCT (σ) −→ STRUC (ans)
I Need a formula φQ in two open variables x , y
I The way how to describe constraints between x and y is

restricted by the number of atoms and elements occurring in
φQ .

I Different (comparable) locality notions
I Bounded number of degrees property (BNDP)
I Gaifman locality
I Hanf locality
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BNDP

I in(G) = set of in-degrees of nodes in G

I out(G) = set of out-degrees of nodes in G

I degs(G) = in(G) ∪ out(G)

Definition
Q has BNDP iff there is fQ : N −→ N s.t. for all graphs G:

If there is k ∈ N s.t. max(degs(G)) ≤ k ,
then |degs(Q(G))| ≤ fQ(k).

I Intuitively: Q disallowed to arbitrarily increase degrees of nodes

Theorem
Every FOL query has the BNDP.
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Example: TC on Successor Relation Graph

I G = ({a0, . . . , an}, {E (a0, a1), . . . ,E (an−1, an)})
I in(G) = out(G) = {0, 1}
I in(TC (G)) = out(TC (G)) = {0, . . . , n − 1}

G

TC (G)
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Gaifman locality

Gaifman locality defined here on graphs G = (A,E )
(can be generalized to arbitrary structures)

Gaifman Locality Intuitively

An m-ary query Q is Gaifman local iff there is a threshold (radius)
r such that for all graphs:

Q cannot distinguish between tuples if their r -neighbourhoods in
the graph are the same.

Theorem
Every FOL-definable query is Gaifman-local.
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Gaifman locality

I a ∈ An (vector of elements)

I BG
r (a) = {b ∈ A | d(a, b) ≤ r} (radius r ball around a)

d(a, b)) = minimal path distance from {a1, . . . an} to b

I NG
r (a) (r-neighbourhood of a)

subgraph induced by BG
r (a) in the structure (A,E , a)

Definition
An m-ary query Q (with m > 0) is Gaifman-local iff:

There exists a radius r s.t. for all G: If NG
r (a) ' NG

r (b), then
a ∈ Q(G) exactly when b ∈ Q(G).
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Example: TC is not Gaifman local

Corollary 3.2. Connectivity, acyclicity, and transitive
closure queries are not FO-expressible.

While the reduction-to-even trick is nice, it is just a trick,
and not yet a tool that can be applied in many situations. We
shall now be looking at such tools, starting with those based
on the locality of FO.

3.4 Inexpressibility tools: locality

As awarm-up, consider again the inexpressibility of transi-
tive closure. Suppose we now start with a successor relation,
i.e. a graph of the form {(a1, a2), (a2, a3), . . . , (an−1, an)},
where all the ai’s are distinct. When we view it as a graph,
all the in- and out-degrees of nodes are either 0 or 1: in fact,
the in-degree of a1 and the out-degree of an are 0, and all
other in- and out-degrees are 1. In the transitive closure, we
have all the edges (ai, aj) for i < j. In particular, for each
number k from {0, . . . , n − 1} there is a node whose in- or
out-degree is k. Thus, the transitive closure query takes a
graph whose degrees are either 0 and 1 and produces a graph
which realizes a “large” number of degrees: large heremeans
depending on the input.

It turns out that FO-definable queries cannot exhibit such
a behavior. For now, consider queries Q on graphs; that is,
both the input and the output of a query are graphs. If such
a query were definable in a logic, it would be by a formula
ϕ(x, y) with two free variables. The first locality-based tool
is captured by the following definition.

Definition 3.3. A query Q has the bounded number of
degrees property (BNDP) if there is a function fQ :
N → N such that for each graph G whose in- and out-
degrees are bounded by a number k, the number of dif-
ferent in- and out-degrees in Q(G) is at most fQ(k).

Theorem 3.4. ([6]) Every FO-definable query has the
BNDP.

The result is not limited to graph queries: it holds for
all FO-definable queries under the appropriate notion of a
degree inm-ary relations.

The BNDP is a very simple tool to use to prove that fixed-
point queries cannot be defined in FO: indeed, it is often
easy to produce many different degrees in the output with
such queries (typically, each stage of the fixed-point com-
putation generates a new element of the degree-set). The
transitive closure is one example, as we just saw. As another
application, consider the same-generation query expressed
by the Datalog program below:

sg(x, x) :–
sg(x, y) :– e(x′, x), e(y′, y), sg(x′, y′)

That is, if e(·, ·) is the parent-child relation, then x and y are
in the same generation if so are their parents or if x = y. Now
consider a full binary tree of depth n. In it, all nodes have
degrees 0, 1, or 2, but in the output of the same-generation
query we would have all degrees 1, 2, 4, . . . , 2n present –
hence it violates the BNDP and is not FO-expressible.

The BNDP itself is based on two locality tools that have
found numerous applications. They originate from results
by Gaifman [12] and Fagin, Stockmeyer, Vardi [10] (which
adapted results of Hanf [20] to finite models). Again, we
present these notions for graphs to keep the notation simple,
but they extend to queries on arbitrary structures.

Given a graph G, the distance d(a, b) between two nodes
is the length of the shortest path between them, if we forget
about the orientation of edges (i.e., we can traverse an edge
(u, v) in the direction from u to v, and from v to u). The
distance d(ā, b) for ā = (a1, . . . , an) is the minimum of the
distances d(ai, b).

If G = ⟨A, E⟩ is a graph and ā = (a1, . . . , an) ∈ An,
then the radius r ball around ā is the set BG

r (ā) = {b ∈
A | d(ā, b) ≤ r}, and the r-neighborhood of ā in G is
the subgraph induced by BG

r (ā), with ā being distinguished
nodes. The latter means that if we consider an isomorphism

h : NG
r (a1, . . . , an) → NG′

r (b1, . . . , bn), then wemust have
h(ai) = bi for all i.

Definition 3.5. An m-ary query Q, for m > 0, is called
Gaifman-local if there exists a number r ≥ 0 such that
for every graph G, two tuples ā, b̄ ∈ Am cannot be dis-
tinguished by Q whenever NG

r (ā) and NG
r (ā2) are iso-

morphic.

By “cannot be distinguished” we mean that ā ∈ Q(G) iff
b̄ ∈ Q(G). This notion applies to all FO-queries:

Theorem 3.6. ([12]) Every FO-definable query is
Gaifman-local.

The canonical example of using Gaifman-locality is prov-
ing that transitive closure is not FO-definable. Suppose it
were, by a queryQ; then choose r as in the definition and con-
sider a very long chain, as below, with two points at distances
bigger than 2r from each other, and from the endpoints:

... ... ... ... ... ... ... ...
a b

2r 2r

Then r-neighborhoods of (a, b) and (b, a) are isomorphic,
since each is a disjoint union of two chains of length 2r.
We know that (a, b) belongs to the output of Q; hence by
Gaifman-locality, (b, a) is in the output as well, which con-
tradicts the assumption that Q defines transitive closure.

And yet another notion of locality is applicable to FO-
queries, and it is often useful in establishing expressivity
bounds for Boolean queries. It refers to pairs of structures.
Again we deal with graphs for simplicity. IfG = ⟨A, E⟩ and
G′ = ⟨A′, E′⟩ are two graphs, we write G !r G′ if there
exists a bijection f : A → A′ such that for every a ∈ A, the

neighborhoodsNG
r (a) and NG′

r (f(a)) are isomorphic. The
!r relation says, in a sense, that locally two graphs look the
same, with respect to a certain bijection f ; that is, f sends
each node a into f(a) that has the same neighborhood.

Definition 3.7. A Boolean query Q is Hanf-local if there
exists a number r ≥ 0 such that for every two graphs G
and G′ satisfying G!rG

′, we have Q(G) = Q(G′).
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G :

Proof
I Suppose TC is FOL definable with query Q
I Then Q is Gaifman local with some radius r
I NG

r ((a, b)) ' NG
r ((b, a))

because both subgaphs are disjoint unions of two 2r-chains
I But (a, b) ∈ TC (G) and (b, a) /∈ TC (G), E
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Hanf locality

I G = (A,E ),G′ = (A′,E ′)

I G�r G
′ iff

there exists bijection f : A −→ A′ s.t. for all a ∈ A:
NG

r (a) ' NG′
r (f (a))

I Intuitively: G,G′ are pointwise similar w.r.t. to
r -neighbourhoods

Definition
A Boolean query Q is Hanf-local iff a radius r exists s.t. for any
graphs G,G′ with G�r G

′ one has Q(G) = Q(G′).

Theorem
Every FOL definable Boolean query is Hanf-local.
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Example: CONN is not Hanf-local

Theorem 3.8. ([10]) Every FO-definable Boolean query
is Hanf-local.

The notion can be extended to non-Boolean queries as
well [21] but since most of the time Hanf-locality is applied
to prove inexpressibility of sentences, we only present this
limited version here.

We now give the canonical example of usingHanf-locality,
and prove that graph connectivity is not FO-definable. As-
sume to the contrary that it is; then it is Hanf-local, so we
choose the number r as in the definition of Hanf-locality.
Now consider two graphs below, form > 2r + 1.

. . .

. . .

one cycle of length 2m
G2

two cycles of length m
G1

. .

. .. .

. .

Let f be an arbitrary bijection between the graphs. The
d-neighborhood of any node a is the same: it is a chain
of length 2r with a in the middle. Hence, G1!rG

2, and
they must agree on Q, but G2 is connected, and G1 is not.
Thus, graph connectivity is not FO-definable. A similar
example shows that testing whether a graph is a tree is not
FO-definable. In that case, we takeG1 to be a chain of length
2m, and G2 the disjoint union of a chain of length m and a
cycle of lengthm; then G1!rG

2 as long asm > 2r + 1.

It is natural to ask how these notions are related. The
precise relationship is known (assuming the definition of
Hanf-locality that applies to arbitrarym-ary queries):

Theorem 3.9. ([21]) Each Hanf-local query is Gaifman-
local, and each Gaifman-local query has the BNDP.

3.5 Other uses of locality

Hanf-locality as defined here can be applied only when
example structures have the same cardinality (e.g., the graphs
G1 andG2 in the picture). Sometimes this is an inconvenient
restriction, and a more relaxed notion can be used for graphs
of bounded degree. Suppose we are looking at graphs whose
in- and out-degrees are bounded by k ∈ N. Then, for each
fixed r, we have finitely many possible isomorphism types
of neighborhoodsof radius r. We denote this set byN (k, r).
For each graph G and a node a, we say that a realizes τ ∈
N (k, r) if the isomorphism type of NG

r (a) is τ . Now we
write G!∗

m,rG
′ if for each τ ∈ N (k, r), either

1. bothG andG′ have the same number of nodes realizing
τ ; or

2. bothG andG′ have at leastm nodes realizing τ .

Thus, the numbers of nodes realizing τ have to be the same
up to thresholdm; above the threshold they can be arbitrary.
Notice that if we remove the second condition, we get the
definition ofG!rG

′. The applicability of this notion to FO
queries is due to the following.

Theorem 3.10. ([10]) For each FO sentence ϕ and k ∈
N, one can find numbers m, r ∈ N so that for every
two graphs G, G′ with degrees bounded by k, we have
G |= ϕ ⇔ G′ |= ϕ whenever G!∗

m,rG
′.

This result has an algorithmic application. We say that a
class of graphs has bounded degree if for some k ∈ N, all
degrees in graphs in that class are bounded by k.

Theorem 3.11. ([40]) Evaluation of FO queries over
classes of graphs of bounded degree can be done with
linear-time data complexity.

The idea is simple: take a query ϕ, and the bound k
on degrees; compute m, r as in Theorem 3.10, and con-
struct N (k, r). Then enumerate functions f : N (k, r) →
{0, . . . , m, ∗}, and for each such function decide if a graph
in which the number of nodes realizing τ is f(τ) (with ∗
meaning “above the threshold”) satisfies ϕ. Notice that so
far we haven’t used the input graph. Now go over the input
graphG, compute in linear time the number of nodes realiz-
ing each τ , and use the result of the precomputation to see if
G satisfies ϕ.

This result is a starting point of a field called algorithmic
model theory, that uses properties of logical formulae on var-
ious classes of graphs and other structures to come up with
efficient algorithms; see [16] for a survey. We finish this
section by a key result on locality often used in such appli-
cations. It characterizes precisely what can be expressed in
FO. We say that a formulaϕ(x) is r-local if all quantification
in it is of the form ∃y ∈ Br(x) or ∀y ∈ Br(x), i.e., restricted
to the radius-r ball around x.

Theorem 3.12. ([12]) Every FO sentence is equivalent
to a Boolean combination of sentences of the form

∃x1 . . . ∃xn

( n∧

i=1

ϕ(x) ∧
∧

i̸=j

d(xi, xj) > 2r
)
,

where ϕ(x) is r-local.

In other words, such a basic sentence asserts the existence
of a scattered sequence x1, . . . , xn so that the same formula
ϕ is true in the r-neighborhood of each xi; and every FO
sentence is a Boolean combination of such basic sentences.

3.6 Structures with order

In most database applications, we deal with domains that
are totally ordered (e.g., numbers by the usual < relation
or strings by the lexicographic ordering). The question is
then whether the bounds on the expressive power remain
valid. More precisely, we now talk about expressibility over
structures of the form (A, <), i.e., σ-structures A expanded
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G : two cycles of length m

G ′: one cycle of length 2m

Proof
I For contradiction assume CONN is Hanf-local with parameter r
I Choose m > 2r + 1; f an arbitrary bijection of G and G ′

I r -neighbourhood of any a the same: 2r-chain with a in the
middle

I Hence G �r G
′, but: G ′ is connected and G is not. E
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Comparison of Locality Notions

Theorem
Hanf local � Gaifmann local � BNDP
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0-1 law



0-1 law

An inexpressibility tool based on a probabilistic property of FOL
queries

0-1-law informally

Either almost all finite structures fulfill the property or almost all do
not

Example

I Boolean query Q1 = ∀x , y E (x , y) on graphs
Almost all graphs do not satisfy Q1 (only the complete ones)

I Boolean query Q2 = ∀x∀y∃z E (z , x) ∧ ¬E (z , y)

Almost all graphs satisfy Q2
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Formal definition 0-1 laws

I Here it is important that signature σ is relational!!
I STRUC (σ, n) =

structures with domain [n] := {0, 1, . . . , n − 1} over σ.
I For a Boolean query Q let

µn =
|{A ∈ STRUC (σ, n) | Q(A) = true}|

|STRUC (σ, n)|

I µn(Q) is the probability that a randomly chosen structure on
[n] satisfies Q

I µ(Q) = limn→∞ µn(Q)

Definition
A logic has 0-1-law if for every Boolean query Q expressible in it
either µ(Q) = 0 or µ(Q) = 1.
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Inexpressibility with 0-1 laws

Theorem
FOL has the 0-1 law.

I Helpful for proving inexpressibility of counting properties

Example (EVEN is not expressible in FOL)

µ(EVEN) not defined because µn(EVEN) alternates between 0 and
1.
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Solutions to Exercise 2 (15 Points)



Solution to Exercise 2.1 (6 Points)

Formulate the following English sentences in FOL— preserving as much as possible
the logical structure.

1. Every graduate course is a course.

∀x(GraduateCourse(x)→ Course(x))

2. No Student is a tutor of himself.

∀x(Student(x)→ ¬isTutorOf (x , x))

3. A person is a student if and only if he takes some graduate course

∀x(Person(x)→ (Student(x)↔ ∃y(GraduateCourse(y) ∧ takes(x , y)))

4. Every student has exactly one Identity number.

∀x(Student(x)→ ∃yhasID(x , y) ∧ (∀z(hasID(x , z)→ z = y)))

5. No course was attended by no student.

¬∃x(Course(x) ∧ ¬∃y(Student(y) ∧ attended(y , x)))

6. There are courses that were not attended by all students.

∃x(Course(x) ∧ ¬∀y(Student(y)→ attended(y , x)))
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Solution to Exercise 2.2 (3 Points)

1. φ1 = ∃x , y , z(x 6= y ∧ x 6= z ∧ y 6= z)

2. φ2 = ∃x∀y , z(x = y ∨ x = z ∨ y = z)
(actually: usually one presuppose a nonempty domain. So
instead of ∃x one could have used ∀x)

3. Can not be formulated in FOL. Assume it can by a formula
φfin. Consider formulae φi saying that there are at least i
elements and the set X = {φi | i ∈ N} ∪ {φfin}. Every finite
subset of X has a model. Due to compactness X must have a
model E.

68 / 73



Solution to Exercise 2.3 (6 Points)

I Let I be an arbitrary interpretation with I |= ∀xP(x). As we
may assume that the domain is not empty it follows that there
must be an element which is in I(P).

I

∀xP(x , a)→ (∃xQ(f (x)) ∨ P(a, b) ∨ ∀yQ(f (y)))
≡ ∀xP(x , a)→ (∃zQ(f (z)) ∨ P(a, b) ∨ ∀yQ(f (y)))
≡ ¬∀xP(x , a) ∨ (∃zQ(f (z)) ∨ P(a, b) ∨ ∀yQ(f (y)))
≡ (∃x¬P(x , a)) ∨ (∃zQ(f (z)) ∨ P(a, b) ∨ ∀yQ(f (y)))
≡ ∃x(¬P(x , a) ∨ (∃zQ(f (z)) ∨ P(a, b) ∨ ∀yQ(f (y))))
≡ ∃x∃z(¬P(x , a) ∨ (Q(f (z) ∨ P(a, b) ∨ ∀yQ(f (y))))
≡ ∃x∃z∀y(¬P(x , a) ∨ (Q(f (z) ∨ P(a, b) ∨ Q(f (y))))

≡sat ∀y(¬P(c , a) ∨ (Q(f (d) ∨ P(a, b) ∨ Q(f (y))))
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Exercise 3 (12 Points)

Hand in your exercise as one pdf File in Moodle by November 7,
23:55h



Exercise 3.1 (4 Points)

Give at least two aspects of real DBs for which the approach of
identifying DBs with finite FOL structures is not sufficient or
adequate.
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Exercise 3.2 (4 Points)

Argue why the usual restriction in FMT to consider only relational
structures (i.e., no function symbols allowed) is not problematic.
That is, how can formulae with function symbols be represented by
formulas containing only relation symbols (in particular the identity
relation.)
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Exercise 3.3 (4 Points)

Formalize the reduction query Qred : LinOrd → GRAPH from linear
orders to graphs by describing a query formula inducing Qred .

73 / 73


	Recap of Lecture 2: FOL
	Proving Expressivity Bounds for FOL
	Games
	Locality
	0-1 law

