NIVERSITAT ZU LUBECK

Ozgiir L. Ozcep

Finite Model Theory

Lecture 3: Games, Locality, 0-1 laws for FOL
2 November, 2016

Foundations of Ontologies and Databases

for Information Systems
CS5130 (Winter 2016)

Recap of Lecture 2: FOL

FOL as a Representation Language

» FOL provides expressive language with neat semantics to
represent assertions relevant for CS

System descriptions

Desired requirements

System behavior description

Domain constraints

vV vy VvVYyy

v

See Exercise 2.1 and Exercise 2.2

3/73

Solving Algorithmic Problems in FOL

» Definitions for important semantical properties (satisfaction,
satisfiability, entailment) do not tell how to compute them

» Proof calculi to the rescue
» Various FOL calculi exist that have desired properties of being
correct and complete

» Prominent ones that are “directed” and hence well
implementable: Tableaux and Resolution

» Resolution calculi

» Refutation calculus (un-satisfiability tester)

» Data structure: Formula in Clausal Normal Form
(see Exercise 2.3)

» Resolution rule:

(AV-B)A(BV C)Es AV C

4/73

Solving Algorithmic Problems in FOL

» No decidability for validity (unsatisfiability, entailment) but
semi-decidability

» Hence we will have to consider different variants of FOL

» Undecidability stays when changing to finite model semantics
It becomes even worse

Theorem (Trakhtenbrot)

Validity of FOL sentences under finite model semantics is not
semi-decidable

> Nonetheless FOL has important role (for CS)

» FOL “open” (has parameters) for restrictions to more feasible
fragments: number of variables, predicates, arity of predicates,
complex formulae construction, quantifier nesting, quantifier
alternation etc.

» FOL (per se) is useful as a query language on DBs: constant
time in data complexity (= to be discussed today)

End of Recap s

Literature Hints

» Lit: L. Libkin. The finite model theory toolbox of a database theoretician. In
PODS '09: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 65—-76, New York, NY,
USA, 2009. ACM.

» Lit: L. Libkin. Elements Of Finite Model Theory (Texts in Theoretical Computer
Science. An Eatcs Series). SpringerVerlag, 2004.

» Lit: H. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
mathematical logic. Springer, 1999.

6/73

Aim
Understand: “Finite Model Theory (FMT) is the backbone of
database theory”

7/73

Finite Model Theory

» Fundamental ideas

1. Consider DBs as finite FOL structures
2. Consider FOL as query language over DBs

» Starting with FOL investigate all relevant (algorithmic)
problems with finite structure semantics

8/73

Finite Model Theory

» Fundamental ideas

1. Consider DBs as finite FOL structures
2. Consider FOL as query language over DBs

» Starting with FOL investigate all relevant (algorithmic)
problems with finite structure semantics

» These ideas make up an approximative but nonetheless very
fruitful theoretical approach to studying DB related problems
» Showing expressivity bounds for query languages
» Showing equivalence of DB query languages
» Showing the inherent complexity of DB query languages

9/73

FOL as a Query Language

» FOL query formula ¢(x) (for X = xi ..., xp) over signature o
» X = distinguished variables, answer variables.

Definition (Answers of a query on a structure)

P(x)
— {(d=(d,...,dy)|di€Aand 2| $(7/d)}

ans(p(x),2A)

» Set of answers can be considered as a structure with n-ary
predicate ans

» n-ary query induced by ¢:

Qs : STRUCT (0) — STRUCT (ans)

10/73

Boolean Queries

» Boolean FOL query formula = FOL formulae without free
variables (also called sentences)

» According to definition possible answers are {()} (stands for
true) and () (false)

» Boolean queries can be identified with the class of o structures
making them true

11/73

Answering (Boolean) FOL queries

» Why is FOL so successful in DB theory?
» E.g., is model checking problem (2l |= ¢) feasible?

12/73

Answering (Boolean) FOL queries

» Why is FOL so successful in DB theory?
» E.g., is model checking problem (2(|= ¢) feasible?

» Answer is NO if considering 2, ¢ both as inputs
—> Combined complexity
Theorem (Stockmeyer 74, Vardi 82)

Model-checking for FOL (and monadic second-order logic MSO) is
PSPACE complete.

Lit: L. J. Stockmeyer. The complexity of decision problems in automata theory and
logic. PhD thesis, MIT, 1974.

Lit: M. Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC '82, pages 137-146, New York, NY, USA, 1982. ACM.

13/73

Reminder: Complexity Classes

» Encode algorithmic problem I as a language 1 C ¥, i.e.,
sets of words over an alphabet X.

» PTIME = Problems solvable in polynomial time (w.r.t. the
input size) by a deterministic Turing machine

» PSPACE = Problems solvable in polynomial space (w.r.t. the
input size) by a (deterministic) Turing machine

14/73

https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Reminder: Complexity Classes

>

Encode algorithmic problem I as a language N1 C ¥*, i.e.,
sets of words over an alphabet X.

PTIME = Problems solvable in polynomial time (w.r.t. the
input size) by a deterministic Turing machine

PSPACE = Problems solvable in polynomial space (w.r.t. the
input size) by a (deterministic) Turing machine

» We will come across different complexity classes

» Mostly, as computer scientist, you do not refer directly to TMs

for getting complexity results

Instead you (should) train yourself in the art of reducing and
learning paradigmatic problems in complexity classes.

15/73

https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Complete Problems

» “Paradigmatic” problems in a complexity class C called
C-complete problems

» C complete problems (w.r.t. C’ reductions)=
Most difficult problems in C =
{N| N € C and all other C problems are C’-reducible to I }

» Problem N C X is C-reducible to problem N’ C ¥/, for short:

M <c I, iff there is a C-computable function such that for all
weX:weliff f(w) e I’

16 /73

Example for PSPACE Complete Problem

v

Quantified Boolean Formula (QBF)

All propositional symbols p; are QBF

All boolean combinations of QBFs are QBFs

If ¢ is a QBF, then so areVp¢ and pg.

Semantics: Structures here are truth value assignments

vV vy vy

v

Theorem: Satisfiability of QBFs is PSPACE complete

v

dpdq p A q is satisfiable, because
there is assignment v(q) = 1 and v(q) = 1 making p A g true.

v

dp p A —p is not satisfiable

17/73

FOL is in PSPACE

Complexity estimation for query answering

Time complexity for checking 2 |= ¢ is O(n*), where

» n = size of input structure 2l and
» k = size of input query ¢
Note: Size of query k is responsible for exponential blow up

Reminder (Landau-Notation)
» f € O(g) means: f has function g as upper bound

» Formally: There are constants ¢ > 0 and xg, s.t. for all x > xg:

[f(x)] < c* [g(x)]

18/73

FOL is in PSPACE

Complexity estimation for query answering

Time complexity for checking 2 |= ¢ is O(n¥), where

» n = size of input structure 2 and

» k = size of input query ¢

v

Note: Size of query k is responsible for exponential blow up

» Naive recursive algorithm showing time complexity (O(n*))
and space complexity (O(k * log(n)))
» Atomic formula: Look up in structure

» Boolean cases: apply semantics of Boolean connectors
» Ixp(x): Check for all d € A whether 2 = ¢(x/d)

v

PSPACE hardness by reducing QBF satisfiability to FOL model
checking

19/73

FOL is in AC°

» In practical scenarios DB size n much bigger than query size k

» Therefore: Consider only DB as input; query fixed
— data complexity

» This helps al lot, as only query size responsible for exponential
complexity, indeed:

Data complexity for FOL query answering is in LOGSPACE
and even in AC°.

» LOGSPACE = Problems solvable in logarithmic space on the
read-write tape by a deterministic 2-tape Turing machine

» AC® C LOGSPACE.

20/73

The Class AC?

» Intuitively AC® = class of problems solvable in constant time
on polynomially many process (in parallel)

» Formally, AC? is defined using a computation model based on
boolean circuits

and out

(¢ ETTRIRY; or

Boolean circuit above computes (=pV g) A (p A —q)

21/73

The class AC°

» Encode problems as 0/1 vector inputs

» Computability by circuits: There is family of circuits (for every
possible size of input) computing desired boolean function

» In many cases: uniformity condition: family not arbitrarily
constructed but computable as output of single TM

AC® = Problems solvable by families of circuits with

» constant depth,
» polynomial size and
» using NOT gates, unlimited-fanin AND gates and OR gates.

22/73

FOL is in ACY data complexity

Proof idea

» Query modelled as boolean circuit family for every possible
instance of given DB schema R and super-domain Dom

v

Every ground atom R(di,...,d,) is represented as
propositional input symbol

v

Gates for every subexpression of query

v

Boolean operators in subexpression modelled by corresponding
boolean gates

3 (V) quantifier modelled by unbounded fan-in OR (AND) gate

v

23/73

Proving Expressivity Bounds for FOL

Expressivity of Languages

» We defined above the query Qg4 induced by a formula ¢
(syntax-> semantics direction)

25 /73

Expressivity of Languages

» We defined above the query Qg4 induced by a formula ¢
(syntax-> semantics direction)

» For expressivity considerations one goes the other way round
(semantics -> syntax):

» Given a query
Q@ : STRUC(c) — STRUC(ans)

test whether there is formula ¢ in the given logic s.t. Q = Qg
> In this case one says that Q is definable in the logic (for the
given set of structures STRUC (o))

26 /73

Expressivity of Languages

» We defined above the query Qg4 induced by a formula ¢
(syntax-> semantics direction)

» For expressivity considerations one goes the other way round
(semantics -> syntax):

» Given a query

Q@ : STRUC(c) — STRUC(ans)

test whether there is formula ¢ in the given logic s.t. Q = Qg
> In this case one says that Q is definable in the logic (for the
given set of structures STRUC (o))

» For Boolean queries definability amounts to:
Given a class X C STRUC (o) of structures over a signature o:
there is a sentence ¢ (over the given logic) s.t. Mod(¢) = X

27/73

Need for New Proof Techniques

v

Main classical techniques used for classical FOL do not work

» Because corresponding theorems do not hold for FMT

v

Reminder: Main properties of FOL

» Compactness (Comp)
» Lowenheim-Skolem (Lsko)

v

These properties characterize FOL for arbitrary structures:
Lindstrom theorems

28 /73

Finite Compactness Pendant?

If every finite subset of ® has a finite model, then ® has a finite
model.

» The finite version of compactness (Fin-Comp) does not hold
for FOL.

» Falsifier

> A\, = ?xl,...,x,,/\#j—\(x;:)g))
(says: “There are at least n elements”)

» {\, | n € N} has not finite model though every subset has
(Compare Exercise 2.2.3)

20/73

What's the right “proof technique™?

"You want proof? I'll give you proof!"

30/73

We Prefer to Proof/Argue ... without Being a Poser ...

Pinguin Video
URL: https://www.youtube.com/watch?v=7iDn5d9q9Y8

31/73

https://www.youtube.com/watch?v=7iDn5d9q9Y8

Convention for the Following

Assume all structures are relational, i.e., there are no function
symbols other than constants—unless stated otherwise

32/73

Games

Games as Essence of Being a Human

"Der Mensch spielt nur, wo er in voller Bedeutung des Wortes Mensch ist,
und er ist nur da ganz Mensch, wo er spielt”

(F. Schiller, Briefe iiber die dsthetische Erziechung des Menschen (1795))

Games

as a CS Tool

In logic, Fraissé games are an important proof tool

Different variations (w.r.t. rules, winning strategies)

We will consider a basic game type and show how to use it.

But: games have high “cognitive complexity’” even for
non-trivial problems

Therefore: Use games for simple but generic problems and
reduce others to these

35/73

Ehrenfeucht-Fraissé Games

» Notation: G,(2,‘B)
n-round game played for structures on same signature

> Input: structures 2, ‘B

» Players: spoiler and duplicator

» QOutput: a function relating elements from 2, B

» Rules: see next slide

» Spoiler's aim: show 2, B are “different”

» Duplicator's aim: show 2, B are “same”

36/73

Rules of the Game
» In turn, spoiler choose structure and element i in it and
» duplicator chooses other structure and element in it

» After n rounds: n elements ay,...,a, from 2 and n elements
bi,..., b, from B are chosen.

Winning condition
Duplicator wins iff
(a1,...,an) plays in A the same role as (b1, ..., b,) in B

37/73

Partial Isomorphism

Formalize sameness of tuples' roles by notion of partial
isomorphism

Definition (Partial Isomorphism)

For structures 2, B over signature o, let f : A— B a function
with domain dom(f). f is called a partial isomorphism iff

> f is injective
» For every constant c: ¢® € dom(f) and f(c*) = c®

» For all relation symbols R (including identity) and
ai,...,an € dom(f)
R¥(ay,...,an) iff R¥(f(a1),...,f(an))

If f is total and bijective, then f is called an isomorphism, and
2, B are said to be isomorphic, for short A ~ B

38/73

Winning Condition Formalized

» After n rounds: n elements aq, ..., a, from 2 and n elements
by, ..., b, from B are chosen.

» Winning condition
Duplicator wins iff
f . aj — bj is a partial isomorphism of 2 and B.

» Game equivalence
2 ~¢, B iff: Duplicator has a winning strategy in G,(2,‘B)
(A and B are the same w.r.t. n-round games)

39/73

Quantifier Rank

» How do we use games for proving in-expressivity?

» We need two more technical notions

» to capture nesting depth of quantifiers
» to capture property that two structures model the same
sentences (up to some syntactical complexity)

40/73

Quantifier Rank

» How do we use games for proving in-expressivity?
» We need two more technical notions
» to capture nesting depth of quantifiers

> to capture property that two structures model the same
sentences (up to some syntactical complexity)

Definition (Quantifier Rank gr(¢))

v

qr(¢) = 0 for atoms ¢

ar(é v 6) = r(6 A) = ar(é — ©) = max{ar(6), ar(¥)}
ar(~¢) = qr(s)

qr(3x ¢) = qr(vx ¢) = qr(¢) +1

v

v

v

v

Example: gr(Vx[3w(P(x,w)) A 3y3zR(x,y,z)]) =3

41/73

Quantifier Rank

» How do we use games for proving in-expressivity?

» We need two more technical notions
> to capture nesting depth of quantifiers
> to capture property that two structures model the same
sentences (up to some syntactical complexity)

Definition (Equivalence Up to Rank n)

=, B iff A and B agree on all FOL sentences of quantifier rank
up to n.

42/73

How to Use Games?

A~g, BiffA=,B

This gives a non-FOL-expressibility tool
» Aim: Show @ not expressible in FOL

» Construct families of structure 2, B, s.t.

1. All 2, satisfy Q
2. No B, satisfies Q
3. Ay ~g, By

» Assume Q expressible as FOL formula ¢ of quantifier rank n.
Then 21, &= ¢ and B, = —¢, but A, ~¢, B, ¢

43/73

Example: Inexpressibility of EVEN

» EVEN(0): structures over signature o with domain of even
cardinality
» The signature is relevant for the proofs

» Simpel case: 0 = () == structures are sets

44 /73

Example: Inexpressibility of EVEN

» EVEN(0): structures over signature o with domain of even
cardinality
» The signature is relevant for the proofs

» Simpel case: 0 = () == structures are sets

EVEN() is not expressible in FOL

Proof
» Choose 2, as 2n-element set, B, as 2n + l-element set.
» A, € EVEN(D) and B, ¢ EVEN(()

» A, ~¢, Bn: Duplicator plays already played element in the
other set iff spoiler does

45/73

Inexpressibility of EVEN(o) with Games

» What about EVEN(c) for non-empty o7
» Consider: 0 = {<} and class of structures = linear orders

» [,: n-element total ordering on some set

For every m, k > 2": L, ~¢, L.

» In particular EVEN(<) not expressible over linear orders: take
Ap = Lon, By = Lonys.

46 /73

Proving Inexpressivity: Reduction Tricks (not Tools)

» Showing FOL inexpressibility of

» graph connectivity CONN
» acyclicity ACYCL
» transitive closure TC

by reduction of EVEN(<) to each of them

47 /73

Reduce EVEN(<) to Graph Connectivity

linear order is odd iff graph connected

-

= /\ /\
linear order is even iff graph is disconnected

48 /73

Reduce EVEN(<) to Graph Connectivity

linear order is odd iff graph connected

—

= /\ /\
linear order is even iff graph is disconnected

» Construction of graph from linear order is expressible as an
FOL query Qeq : LinOrd — GRAPH (see Exercise 3.3)

49/73

ACYCL and TC are not FOL expressible

» ACYCL: Reduction EVEN = ACYCL as above but with one
back edge from last node to first node

» Reduction for TC: CONN = TC

» Add edge E(x,y) for every edge E(y,x)
» Compute TC on resulting graph
» Test whether graph is complete

50/73

Locality

Proving Inexpressibility by Locality

» FOL has a fundamental property: locality

» Consider a binary query Q : STRUCT (0) — STRUC(ans)

» Need a formula ¢¢g in two open variables x, y
» The way how to describe constraints between x and y is
restricted by the number of atoms and elements occurring in

bq-

52 /73

Proving Inexpressibility by Locality

» FOL has a fundamental property: locality

» Consider a binary query Q : STRUCT (0) — STRUC(ans)

» Need a formula ¢¢g in two open variables x, y
» The way how to describe constraints between x and y is
restricted by the number of atoms and elements occurring in

bq-

» Different (comparable) locality notions

» Bounded number of degrees property (BNDP)
» Gaifman locality
» Hanf locality

53/73

BNDP

> in(®) = set of in-degrees of nodes in &
» out(®) = set of out-degrees of nodes in &
> degs(®) = in(&) U out(®)

Definition
Q has BNDP iff there is fo : N — N s.t. for all graphs &:

If there is k € N s.t. max(degs(®)) < k,
then |degs(Q(®))| < fo(k).

» Intuitively: @ disallowed to arbitrarily increase degrees of nodes

Theorem
Every FOL query has the BNDP.

54 /73

Example: TC on Successor Relation Graph

55/73

Gaifman locality

Gaifman locality defined here on graphs & = (A, E)
(can be generalized to arbitrary structures)

Gaifman Locality Intuitively

An m-ary query Q is Gaifman local iff there is a threshold (radius)
r such that for all graphs:

Q cannot distinguish between tuples if their r-neighbourhoods in
the graph are the same.

Theorem

Every FOL-definable query is Gaifman-local.

56 /73

Gaifman locality
»acA” (vector of elements)

» B®(@) ={bc A|d(ab)<r} (radius r ball around 3)
d(3, b)) = minimal path distance from {a1,...a,} to b

» NO(a) (r-neighbourhood of 3)
subgraph induced by B®(3) in the structure (A, E,3)

Definition
An m-ary query Q (with m > 0) is Gaifman-local iff:

There exists a radius r s.t. for all &: If N®(3) ~ N®(b), then
2 € Q(®) exactly when b € Q(&).

57/73

Example: TC is not Gaifman local

& G e e G D

Proof
» Suppose TC is FOL definable with query Q
Then Q is Gaifman local with some radius r
N((a, b)) = NE((b, 2))
because both subgaphs are disjoint unions of two 2r-chains
But (a,b) € TC(®) and (b,a) ¢ TC(®B), ¢

v

v

v

58 /73

Hanf locality

» & =(AE),® =(AE)

> &=, & iff
there exists bijection f : A — A’ s.t. for all a € A:
NP (a) = NE'(f(a))

» Intuitively: &, ®’ are pointwise similar w.r.t. to
r-neighbourhoods

A Boolean query Q is Hanf-local iff a radius r exists s.t. for any
graphs &, &' with =, &’ one has Q(8) = Q(&').

Every FOL definable Boolean query is Hanf-local.

59/73

Example: CONN is not Hanf-local

()() G: two cycles of length m
< > G’: one cycle of length 2m

Proof
» For contradiction assume CONN is Hanf-local with parameter r
» Choose m > 2r + 1; f an arbitrary bijection of G and G’
» r-neighbourhood of any a the same: 2r-chain with a in the
middle

» Hence G =, G’, but: G’ is connected and G is not. /
60/73

Comparison of Locality Notions

Hanf local = Gaifmann local = BNDP

61/73

0-1 law

0-1 law

An inexpressibility tool based on a probabilistic property of FOL
queries

0-1-law informally

Either almost all finite structures fulfill the property or almost all do
not

» Boolean query @ = Vx,y E(x,y) on graphs
Almost all graphs do not satisfy Q; (only the complete ones)

» Boolean query @, = VxVy3z E(z,x) A —~E(z,y)
Almost all graphs satisfy @

63/73

Formal definition 0-1 laws

» Here it is important that signature o is relationall!

» STRUC(o,n) =
structures with domain [n] :={0,1,...,n— 1} over o.

» For a Boolean query Q let

{2 e STRUC(o, n) | Q(2A) = true}|
Hn = |STRUC(a, n)|

> 1n(Q) is the probability that a randomly chosen structure on
[n] satisfies @

> (@) = limpsoo tin(Q)

Definition

A logic has 0-1-law if for every Boolean query Q expressible in it
either u(Q) =0 or u(Q) = 1.

64/73

Inexpressibility with 0-1 laws

Theorem
FOL has the 0-1 law.

» Helpful for proving inexpressibility of counting properties

u(EVEN) not defined because p,(EVEN) alternates between 0 and
1.

65/73

Solutions to Exercise 2 (15 Points)

Solution to Exercise 2.1 (6 Points)

Formulate the following English sentences in FOL— preserving as much as possible
the logical structure.

1.

Every graduate course is a course.
Vx(GraduateCourse(x) — Course(x))

. No Student is a tutor of himself.

Vx(Student(x) — —isTutorOf (x, x))

. A person is a student if and only if he takes some graduate course

Vx(Person(x) — (Student(x) <+ Jy(GraduateCourse(y) A takes(x,y)))

. Every student has exactly one Identity number.

Vx(Student(x) — JyhasID(x,y) A (Vz(hasID(x,z) — z = y)))

. No course was attended by no student.

—3x(Course(x) A =3y (Student(y) A attended(y, x)))
There are courses that were not attended by all students.

Ix(Course(x) A =Vy(Student(y) — attended(y, x)))

67 /73

Solution to Exercise 2.2 (3 Points)

L ogr=3xy,z2(x#yAx# 2z Ny #2)

2. ¢pp=IxVy,z(x=yVx=2zVy=2)

(actually: usually one presuppose a nonempty domain. So
instead of Ix one could have used Vx)

3. Can not be formulated in FOL. Assume it can by a formula
ofin. Consider formulae ¢; saying that there are at least /
elements and the set X = {¢; | i € N} U {¢#}. Every finite
subset of X has a model. Due to compactness X must have a
model 7.

68 /73

Solution to Exercise 2.3 (6 Points)

» Let Z be an arbitrary interpretation with Z = VxP(x). As we
may assume that the domain is not empty it follows that there
must be an element which is in Z(P).

>

VxP(x,a) — (3xQ(f(x)) vV P
VxP(x,a) — (3zQ(f(z)) vV P
—VxP(x,a) vV (3zQ(f(z)
(3x=P(x,a)) Vv (FzQ(f(
Ix(—P(x,a) vV (FzQ(f(z

f(z

(a,b) VVyQ(f(y)))
(a,b) VVyQ(f(¥)))
)V P(a, b) VVyQ(f(y)))
z)) V P(a, b) V VyQ(f(y)))
)V P(a, b) VVyQ(f(y))))
Ix3z(=P(x, a) V (Q(f(2) V P(a, b) v VyQ(f(y))))
Ix3zVy(=P(x,a) vV (Q(f(z) V P(a, b) V Q(f(¥))))
Vy(=P(c,a) vV (Q(f(d) V P(a, b) v Q(f(y))))

|
19
S|V 1

69/73

Exercise 3 (12 Points)

Hand in your exercise as one pdf File in Moodle by November 7,
23:55h

Exercise 3.1 (4 Points)

Give at least two aspects of real DBs for which the approach of
identifying DBs with finite FOL structures is not sufficient or
adequate.

71/73

Exercise 3.2 (4 Points)

Argue why the usual restriction in FMT to consider only relational
structures (i.e., no function symbols allowed) is not problematic.
That is, how can formulae with function symbols be represented by
formulas containing only relation symbols (in particular the identity
relation.)

72/73

Exercise 3.3 (4 Points)

Formalize the reduction query Qeq : LinOrd — GRAPH from linear
orders to graphs by describing a query formula inducing Qyeq.

73/73

	Recap of Lecture 2: FOL
	Proving Expressivity Bounds for FOL
	Games
	Locality
	0-1 law

