NIVERSITAT ZU LUBECK

Ozgiir L. Ozcep

Finite Model Theory

Lecture 4: Locality, 1-0, fixed points
9 November, 2016

Foundations of Ontologies and Databases

for Information Systems
CS5130 (Winter 16/17)

Recap of Lecture 3

» Finite Model Theory approach

» consider DBs as finite structures
» FOL as query language

» FOL works because

» Though FOL model checking in PSPACE w.r.t. combine
complexity
> it is in ACO for data complexity

> |nexpressivity Tools

Games as basic tool for proving inexpressivity
Reduction again

Still to discuss: locality

Still to discuss: 0-1 laws

vV vy Vvyy

End of Recap

3/54

Locality

Proving Inexpressibility by Locality
» FOL has a fundamental property: locality

» Observation
» Consider a binary query Q : STRUCT () — STRUC(ans) to
be defined in FOL
» So, we need a formula ¢¢ in two open variables x, y
» The way how to describe constraints between x and y is
restricted by the number of atoms and elements occurring in

?q-

5/54

Proving Inexpressibility by Locality
» FOL has a fundamental property: locality

» Observation
» Consider a binary query Q : STRUCT () — STRUC(ans) to
be defined in FOL
» So, we need a formula ¢¢ in two open variables x, y
» The way how to describe constraints between x and y is
restricted by the number of atoms and elements occurring in

?q-

» Different (comparable) locality notions

» Bounded number of degrees property (BNDP)
» Gaifman locality
» Hanf locality

6/54

BNDP

> in(®) = set of in-degrees of nodes in &
» out(®) = set of out-degrees of nodes in &
> degs(®) = in(&) U out(®)

Definition

Q has BNDP iff there is fg : N — N s.t. for all graphs &:
If there is k € N s.t. max(degs(®)) < k,

then |degs(Q(®))| < fo(k).

» Intuitively: @ disallowed to arbitrarily increase degrees of nodes

Theorem
Every FOL query has the BNDP.

7/54

Example: TC on Successor Relation Graph

» in(TC(®)) = out(TC(B)) ={0,...,n—1}

8/54

Gaifman locality

Gaifman locality defined here on graphs & = (A, E)
(can be generalized to arbitrary structures)

Gaifman Locality (Intuitively)

An m-ary query Q is Gaifman local iff there is a threshold (radius)
r such that for all graphs:

Q cannot distinguish between tuples if their r-neighbourhoods in
the graph are the same.

Theorem
Every FOL-definable query is Gaifman local.

9/54

Gaifman Locality
»acA” (vector of elements)

» B®(@) ={bc A|d(ab)<r} (radius r ball around 3)
d(3, b) = minimal path distance from {a1,...a,} to b

» NO(a) (r-neighbourhood of 3)
subgraph induced by B®(3) in the structure (A, E,3)

Definition
An m-ary query Q (with m > 0) is Gaifman-local iff:

There exists a radius r s.t. for all &: If N®(3) ~ N®(b), then
2 € Q(®) exactly when b € Q(&).

10/54

Example: TC is not Gaifman local

& G e e G D

Proof
» Suppose TC is FOL definable with query Q
Then Q is Gaifman local with some radius r
N((a, b)) = NE((b, 2))
because both subgaphs are disjoint unions of two 2r-chains
But (a,b) € TC(®) and (b,a) ¢ TC(®B), ¢

v

v

v

11/54

Hanf locality

» &= (AE),s =(AE)

» &=, & iff
there exists bijection f: A — A’ s.t. for all a € A:
NP (a) = NP’ (f(a))

> Intuitively: &, &’ are pointwise similar w.r.t. r-neighbourhoods
y: O, p g

A Boolean query Q is Hanf-local iff a radius r exists s.t. for any
graphs &, &' with & =, &’ one has Q(8) = Q(&').

Every FOL definable Boolean query is Hanf-local.

12/54

Example: CONN is not Hanf-local

()() ®: two cycles of length m
< > &’: one cycle of length 2m

Proof
» For contradiction assume CONN is Hanf-local with parameter r
» Choose m > 2r + 1; f an arbitrary bijection of & and &’
» r-neighbourhood of any a the same: 2r-chain with a in the
middle

» Hence & =, &', but: &’ is connected and & is not. /
13 /54

Comparison of Locality Notions

Hanf local = Gaifmann local = BNDP

14 /54

Optional Slide: Adding Order

» Many applications have finite models with a linear order <

» Locality conditions in its original form not applicable: 1-radius
already whole structure

» Consider invariant queries

Definition

A query Q over ordered structures is invariant iff
E)r all structures Ql,_all tuples b and all linear orders <1, <» on :
be QA <1)) iff be Q((A, <2))

For an invariant @ define Q;,, on arbitrary structures as:
Qinv(2) = Q((A, <)) for arbitrarily chosen <.

Theorem

Every invariant FOL query is Gaifman-local (and so has BNDP).

15 /54

0-1 law

0-1 law

An inexpressibility tool based on a probabilistic property of FOL
queries

0-1-law informally

Either almost all finite structures fulfill the property or almost all do
not

» Boolean query @ = Vx,y E(x,y) on graphs
Almost all graphs do not satisfy Q; (only the complete ones)

» Boolean query @, = VxVy3z E(z,x) A —~E(z,y)
Almost all graphs satisfy @

17 /54

Formal definition 0-1 laws

» Here it is important that signature o is relationall!
» STRUC(o, n): structures with domain [n] := {0,1,...,n— 1}
over .

» For a Boolean query Q let

{2 € STRUC(o, n) | Q(2A) = true}|
1a(Q) = |STRUC(a, n)|

> 1n(Q) is the probability that a randomly chosen structure on
[n] satisfies @

> (@) = limpsoo tin(Q)

Definition

A logic has 0-1-law if for every Boolean query Q expressible in it
either u(Q) =0 or u(Q) = 1.

18 /54

Inexpressibility with 0-1 laws

Theorem
FOL has the 0-1- law.

» Helpful for proving inexpressibility of counting properties

u(EVEN) not defined because p,(EVEN) alternates between 0 and
1.

19/54

Beyond FOL

Counting, Aggregation

» Practical languages s.a. SQL allow counting and aggregation.

SELECT S1.Dept, AVG(S2.Salary)
FROM S1, S2

WHERE S1.Empl = S2.Empl

GROUP BY S1.Dept

HAVING SUM(S2.Salary) > 1000

Schema: S1(Empl, Detp), S2(Empl,Salary)

» Consider corresponding extensions of FOL

» Some of the tools shown so far still work (when non-ordered
structures are considered)

21 /54

FOL with counting quantifiers

Definition (FOL-AIICnt)

FOL-AIICnt is the extension of FOL with counting quantifiers and
counting terms:

» 327x.4(x): There are at least i elements x fulfilling ¢.
> #X.¢(X): the number of X fulfilling ¢ ().

» Semantics defined w.r.t. 2-sorted FOL structures
A= (A7 N, (Rm)REOW Anth)
» Second domain (sort) N is infinite!

» Arith contains (interpreted) arithmetic predicates and functions

22 /54

Parity of a unary predicate symbol U can be expressed by the
following formula using counting quantifiers:

3j3i((i + i =) A I xU(x) AVK(FZExU(x) = k < j))

“There is an even number (j) of Us and there are no more than j
Usll

FOL+AIICtn queries are Hanf local (and thus Gaifman local and
have the BNDP).

23 /54

Aggregation

» F = aggregate function = family of functions fi, f>, ... with

» f, maps n-element multisets from Q to elements from Q.
E.g.. SUM = {51, S TN } with Sk({dl, ce dk}) = Zf'(zldi

Definition (FOL-Aggr)

FOL-Aggr same as FOL+AIICnt but with aggregate terms (and Q
instead of N).

» Syntax: Terms t(X) of the form Aggrry.(¢(X,¥), t'(X,¥))

» Semantics over 2 for tuple b
> t%(b) = fig|({t"™(b,T) | T € B})
(where B := {c | %A |= #(b,c)})

Correspondence to SQL:
» X = grouping attributes
» ¢(x,y) = HAVING clause

24 /54

Locality for FOL+Aggr

FOL-Aggr queries are Hanf-local (and thus Gaifmann-local and
have the BNDP).

» |If order is added, then locality is lost

25 /54

Higher-Order Logics

v

Second order logic (SO): Allow quantification over relations

v

Vocabulary: FOL vocabulary + predicate variables X, Y, ...

Syntax: FOL syntax +

» Xty...t,is a formula (for n-ary X and terms t;)
» If ¢ is a formula, then so are 3X¢, VX¢

v

v

Higher-order quantification adds expressivity, e.g.,

v

EVEN(o) (for any signature o) expressible. (Exercise)

26 / 54

Fixed Point Logics (FPLs)

» Reachability queries call for extension of FOL with “iteration”
mechanism

» FPLs use a well-behaved self-referential process/bootstrapping
» Fixed points as limits of this process
» Different fixed points may exist

» Different fixed point logics exist (e.g. largest, least)

» Most prominent in DB theory: Datalog

27 /54

Example: Compute the Transitive Closure
» E(x,y) =: edge of graph &,
» R(x,y) =: transitively closed relation between vertices
Vx,Yy R (x,y) <+ E(x,y)V(3z.E(x,z) N R(z,y))

» For all graphs & find extension & = (&, R®') s.t. |hs and rhs
evaluate to the same relation. (*)

» Read equivalence as a iteratively applied rule from right to left

(x,y) — E(x,y)V (3z.E(x,2) A Xoid (z,¥))

QS(X:y?Xo/d)

» Induces a step(-jump)-operator F on the semantical side
» For X C G x G:

F: X | {(d,d) | (&, X,x/d1,y/db) = d(x,y, X)}

» Condition (*) reread: find fixed point R, i.e., F(R)=R

28 / 54

Constructing Least Fixed Points

» Start with extension () (seed) and proceed iteratively
» Progress schema: 0, F(0), F(F(0)), F3(0), F*(0),...
» |n our example

» X0 =seed =)
» X1 = E%® = direct edges

> X2 = F(XY) = X1 U{(x,y) | 32.E(x,2) A X'(2,y)} =

direct edges or paths of length 2

- ...
> RY :UieNXi

» The fixed point here is the least fixed point.

29 /54

Constructing Least Fixed Points

» Start with extension () (seed) and proceed iteratively
Progress schema: (), F(0), F(F(0)), F3(0), F*(0),...

v

» |n our example
» X0 =seed =10
» X1 = E%® = direct edges
» X2 =F(XY) = XU {(x,y) | 3z.E(x,2) A X (z,y)} =
direct edges or paths of length 2
> .
> R = UieN X
» The fixed point here is the least fixed point.

Nota bene
» A fixed point may not exist
» There may be many fixed points
» There may not be a least fixed point. (Exercise)

v

30/54

Fixed Point Construction Graphically

» Fixed point for F(x) = cos(x).
» Attractor

__
V/
~
N
3
0.6
fixed point
0.6
0.4
02
| seed | | |
I I Y I I I
1.5 1 05 0 05 1 15

"Cosine fixed point". Licensed under CC BY-SA 3.0 via Wikimedia Commons - https:

//commons .wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg

31/54

https://commons.wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg
https://commons.wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg

Recursive Humor

> Wiki entry Recursive humor.
It is not unusual for such books to
include a joke entry in their glossary
along the lines of: Recursion, see
Recursion.[6]

[...] An alternative form is the following,
from Andrew Plotkin: “If you already
know what recursion is, just remember
the answer. Otherwise, find someone who
is standing closer to Douglas Hofstadter
than you are; then ask him or her what
recursion is.”

Lit: D. Hofstadter. Gddel, Escher, Bach:

An Eternal Golden Braid.Vintage Books,

1979. PLLTOTALLY SCREW WITH THE
b SPACE/TIME CONTINUUM BRO

> Blog Recursively Recursive
https://recursivelyrecursive.wordpress.com/category/
recursive-humour/page/2/

32/54

https://recursivelyrecursive.wordpress.com/category/recursive-humour/page/2/
https://recursivelyrecursive.wordpress.com/category/recursive-humour/page/2/

Datalog

» The illustrations above where motivated by Datalog rule
notation

» Developed around 1980s

» Renaissance (not only as proof tool but) as industrially applied
tool

» Logic programming characterization: Prolog without function
terms (and without other non-declarative stuff such as cuts)

» EXPTIME-complete in combined complexity; PTIME-complete
data complexity

» Simple evaluation strategy for positive fragment (no negation)
» Negation calls for hierarchical evaluation (stratification)

» Different fragments; optimizations ...

33/54

Datalog

» General Logic Programm: Finite set of rules of the form

NS ,<_ﬁl7"'7ﬁn
head body

« atomic formula; §; are literals

Free variables V quantified; comma read as A

Intensional relation: Relation symbol occurring in some head
Extensional relation: occurring only in body

vV vy vy

» Datalog program = logic program with
» no function symbols
» no intensional relation negated in body
» Sometimes additionally safety constraints:
> all free variables in head also in body
> all variables in negated atoms (or arithmetical expressions
such as identity) also in non-negated atom in body
Semantics for datalog programs: by step-operator used in
parallel for intensional relations

v

34 /54

Datalog example: ancestors of Mary

ans(x) <« ancestor(x, mary)
ancestor(x,y) < parentOf(x,y)

ancestor(x,y) < parentOf(x,z), ancestor(z,y)

35 /54

SQL 3 Recursion example

%Find Mary’s ancestors from ParentOf (parent,child)
WITH RECURSIVE Ancestor(anc,desc) AS
((SELECT parent as anc, child as desc FROM ParentOf)

UNION
(SELECT Ancestor.anc, ParentOf.child as desc
FROM Ancestor, ParentOf
WHERE Ancestor.desc = ParentOf.parent))

SELECT anc FROM Ancestor WHERE desc = "Mary"

36 /54

FOL with Least Fixed Points

» Datalog extends FOL w.r.t. the semantics (subkutane)

» There are different extensions of FOL with fixed point
operators available in the syntax

» Example 3FO(LFP): existential fragment of FOL with least
fixed point operator [LFPy, y¢]
» Semantics of [LFPg x¢]t in model 2:
“For X chosen as least fixed point, t fulfills ¢ in "
» Restriction: X has to occur positively (i.e. after an even
number of = in ¢)
(Needed to guarantee existence of Ifp)

Existential fragment of 3FO(LFP) is equivalent to Datalog.

37 /54

0-1 law for Datalog

Datalog (without negation and ordering) has the 0-1 law.

> In particular you can not express EVEN

38/54

0-1 law for Datalog

Datalog (without negation and ordering) has the 0-1 law.

> In particular you can not express EVEN

» (Adding negation allows to express EVEN, which does not
fulfill 0-1 law)

» In fact a successor relation together with min- and
max-predicates is sufficient.

odd(x) <« min(x)

odd(x) <« S(x,y),even(y)
even(x) <« S(y,x),odd(y)
EVEN <+ max(x),even(x)

39/54

What we Did not Cover

Very many FMT topics were not covered in these two lectures, in
particular ...
» Descriptive Complexity
» Algorithmic Model Theory (Infer meta-theorems on
algorithmic properties by considering)

» Proving equivalence of languages (using types)

40 /54

Descriptive Complexity

» There is a close relationship between complexity classes and
logics (queries expressible in a logic)

» Hints to astonishing correspondences between prima facie two
different worlds

» The world of representation (what?) and of calculation (how?)
» Results talk about data complexity (!)

» Results mainly for ordered structures

41 /54

Fagin lays the foundations

» One of the first insights which founded descriptive complexity
goes back to Fagin

Theorem (SO captures NPTIME)

Existential second order logic (SO3) captures the class of problems
verifiable in polynomial time (NP)

Definition
A logic £ captures a complexity class C iff for all o with <€ ¢ and
classes of structures K C STRUC(0):

K € C iff K is axiomatizable in £

42 /54

co-re. Arithmetic Hierarchy re.
complete co—r.e. FOMN) r.e. complete

— . FOH(N)
FOV(N) Recursive

Primitive Recursive

o

sop" | EXPTIME SO(LFP)
FO[Z"M] som M) PSPACE FO(PFP) SO(TC)
co-NP Polynomial-Time Hierarchy NP
complete " 0-NP 50 NP complete
sov NP 01 co-NP Sod
Foin O] p FOLEP)
"truly feasible" SO-Homn
FO[(log m)*" | NC
NC?
log(CFL) sAC!
FO(TC) NSPACE[log n] SO-Krom
FO(DTC) DSPACE[log n]
_ relar Nc!
FOOM) _— — T

0

L~ '//;() Logarithmic-Time Hierarchy AC
The Descriptive World

(Immerman: Descriptive Complexity, ACM SIGACT NEWS, vol. 34, no. 3, 2003, p.5)
43 /54

Solutions to Exercise 3 (12 Points)

44 /54

Ad Exercise 3.1 (4 Points)

» DBs have may have NULL values (but structures are not
incomplete)
» Domain of structure not explicitly specified

» Natural vs. active domain semantics
» Safety considerations needed for FOL (not the case for
relational calculus/SQL)

» One can show: FOL under active domain semantics the same
as SQL

» Nonetheless: It means dependency on domain.

45 /54

Exercise 3.2 (4 Points)

» For every n-ary functional symbol f introduce n + 1-ary
relation symbol Ry and state that Ry is a function:

VXl, .. .VX,,,lﬂlef(Xl, A ,X,,,yl)/\
Vy1, yaR(X1, - -y Xny Y1) A R(X1, ...y Xny Y2) = y1 = Y2

» Then recursively eliminate all terms by substituting atoms of
the form
> f(Fl) =1t with Rf(Fl, tz)
> S(f(t1), B2, - -, t) with IxS(x, B2, . .., tn) A Re(t1, x)
and so on.

and atoms of the form

46 /54

Exercise 3.3 (4 Points): Reduce EVEN(<) to Graph

Connectivity

linear order is odd

linear order is even

iff

iff

graph connected

VANVAN

graph is disconnected

47 /54

Exercise 3.3 (4 Points): Reduce EVEN(<) to Graph
Connectivity

linear order is odd iff graph connected

-

= /\ /\
linear order is even iff graph is disconnected

» Construction of graph from linear order expressible as an FOL
query Qreq : LinOrd — GRAPH

48 /54

Exercise 3.3 (4 Points)

» Helper formulae
> succ(x,y):x<yA-Jzx<zAz<y
» last(x): —Jzx < z
> first(x) : ~3z.z < x

» Define Q,eq: LinOrd — GRAPH as

E(x,y) = ¢lxy)=
(3z(succ(x, z) A succ(z,y))) V
(last(x) A 3z(first(z) A succ(z,y))) V
(3z(last(z) A succ(x, z) A first(y)))
» Assume that CONN is expressible as FOL query ¢conn over
signature {E} for graphs.
» Then EVEN(<) would be FOL expressible as:
Peonn| E/1]#

(Note: ¢conn[E /3] is shorthand for replacing every occurrence of atom E(u, w)
by formula ¥(u, w) in ¢conn.)

49 /54

Exercise 4 (16 Points)

50/54

Exercise 4.1 (6 Points)

Use Hanf locality in order to proof that the following boolean
queries are not FOL-definable.

1. graph acyclicity
2. tree

51/54

Exercise 4.2 (4 Points)

Show that EVEN(o) can be defined within second-order logic for
any o.

Hint: formalize “There is a binary relation which is an equivalence
relation having only equivalence classes with exactly two elements”
and argue why this shows the axiomatizability.

52 /54

Exercise 4.3 (2 Points)

Argue why (in particular within the DB community) one imposes
safety conditions for Datalog rules.

53 /54

Exercise 4.4 (4 points)

Give examples of general program rules for which
1. No fixed point exists at all (Hint: “This sentence is not true")

2. Has two minimal fixed points (Hint: “The following sentence is
false. The previous sentence is false.”)

54 /54

	Recap of Lecture 3
	Locality
	0-1 law
	Beyond FOL

