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Recap of Lecture 3



I Finite Model Theory approach
I consider DBs as finite structures
I FOL as query language

I FOL works because
I Though FOL model checking in PSPACE w.r.t. combine

complexity
I it is in AC 0 for data complexity

I Inexpressivity Tools
I Games as basic tool for proving inexpressivity
I Reduction again
I Still to discuss: locality
I Still to discuss: 0-1 laws

End of Recap
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Locality



Proving Inexpressibility by Locality

I FOL has a fundamental property: locality

I Observation
I Consider a binary query Q : STRUCT (σ) −→ STRUC (ans) to

be defined in FOL
I So, we need a formula φQ in two open variables x , y
I The way how to describe constraints between x and y is

restricted by the number of atoms and elements occurring in
φQ .

I Different (comparable) locality notions
I Bounded number of degrees property (BNDP)
I Gaifman locality
I Hanf locality
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BNDP

I in(G) = set of in-degrees of nodes in G

I out(G) = set of out-degrees of nodes in G

I degs(G) = in(G) ∪ out(G)

Definition
Q has BNDP iff there is fQ : N −→ N s.t. for all graphs G:

If there is k ∈ N s.t. max(degs(G)) ≤ k ,
then |degs(Q(G))| ≤ fQ(k).

I Intuitively: Q disallowed to arbitrarily increase degrees of nodes

Theorem
Every FOL query has the BNDP.
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Example: TC on Successor Relation Graph

I G = ({a0, . . . , an}, {E (a0, a1), . . . ,E (an−1, an)})

I in(G) = out(G) = {0, 1}

I in(TC (G)) = out(TC (G)) = {0, . . . , n − 1}

G

TC (G)
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Gaifman locality

Gaifman locality defined here on graphs G = (A,E )
(can be generalized to arbitrary structures)

Gaifman Locality (Intuitively)

An m-ary query Q is Gaifman local iff there is a threshold (radius)
r such that for all graphs:

Q cannot distinguish between tuples if their r -neighbourhoods in
the graph are the same.

Theorem
Every FOL-definable query is Gaifman local.
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Gaifman Locality

I a ∈ An (vector of elements)

I BG
r (a) = {b ∈ A | d(a, b) ≤ r} (radius r ball around a)

d(a, b) = minimal path distance from {a1, . . . an} to b

I NG
r (a) (r-neighbourhood of a)

subgraph induced by BG
r (a) in the structure (A,E , a)

Definition
An m-ary query Q (with m > 0) is Gaifman-local iff:

There exists a radius r s.t. for all G: If NG
r (a) ' NG

r (b), then
a ∈ Q(G) exactly when b ∈ Q(G).
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Example: TC is not Gaifman local

Corollary 3.2. Connectivity, acyclicity, and transitive
closure queries are not FO-expressible.

While the reduction-to-even trick is nice, it is just a trick,
and not yet a tool that can be applied in many situations. We
shall now be looking at such tools, starting with those based
on the locality of FO.

3.4 Inexpressibility tools: locality

As awarm-up, consider again the inexpressibility of transi-
tive closure. Suppose we now start with a successor relation,
i.e. a graph of the form {(a1, a2), (a2, a3), . . . , (an−1, an)},
where all the ai’s are distinct. When we view it as a graph,
all the in- and out-degrees of nodes are either 0 or 1: in fact,
the in-degree of a1 and the out-degree of an are 0, and all
other in- and out-degrees are 1. In the transitive closure, we
have all the edges (ai, aj) for i < j. In particular, for each
number k from {0, . . . , n − 1} there is a node whose in- or
out-degree is k. Thus, the transitive closure query takes a
graph whose degrees are either 0 and 1 and produces a graph
which realizes a “large” number of degrees: large heremeans
depending on the input.

It turns out that FO-definable queries cannot exhibit such
a behavior. For now, consider queries Q on graphs; that is,
both the input and the output of a query are graphs. If such
a query were definable in a logic, it would be by a formula
ϕ(x, y) with two free variables. The first locality-based tool
is captured by the following definition.

Definition 3.3. A query Q has the bounded number of
degrees property (BNDP) if there is a function fQ :
N → N such that for each graph G whose in- and out-
degrees are bounded by a number k, the number of dif-
ferent in- and out-degrees in Q(G) is at most fQ(k).

Theorem 3.4. ([6]) Every FO-definable query has the
BNDP.

The result is not limited to graph queries: it holds for
all FO-definable queries under the appropriate notion of a
degree inm-ary relations.

The BNDP is a very simple tool to use to prove that fixed-
point queries cannot be defined in FO: indeed, it is often
easy to produce many different degrees in the output with
such queries (typically, each stage of the fixed-point com-
putation generates a new element of the degree-set). The
transitive closure is one example, as we just saw. As another
application, consider the same-generation query expressed
by the Datalog program below:

sg(x, x) :–
sg(x, y) :– e(x′, x), e(y′, y), sg(x′, y′)

That is, if e(·, ·) is the parent-child relation, then x and y are
in the same generation if so are their parents or if x = y. Now
consider a full binary tree of depth n. In it, all nodes have
degrees 0, 1, or 2, but in the output of the same-generation
query we would have all degrees 1, 2, 4, . . . , 2n present –
hence it violates the BNDP and is not FO-expressible.

The BNDP itself is based on two locality tools that have
found numerous applications. They originate from results
by Gaifman [12] and Fagin, Stockmeyer, Vardi [10] (which
adapted results of Hanf [20] to finite models). Again, we
present these notions for graphs to keep the notation simple,
but they extend to queries on arbitrary structures.

Given a graph G, the distance d(a, b) between two nodes
is the length of the shortest path between them, if we forget
about the orientation of edges (i.e., we can traverse an edge
(u, v) in the direction from u to v, and from v to u). The
distance d(ā, b) for ā = (a1, . . . , an) is the minimum of the
distances d(ai, b).

If G = ⟨A, E⟩ is a graph and ā = (a1, . . . , an) ∈ An,
then the radius r ball around ā is the set BG

r (ā) = {b ∈
A | d(ā, b) ≤ r}, and the r-neighborhood of ā in G is
the subgraph induced by BG

r (ā), with ā being distinguished
nodes. The latter means that if we consider an isomorphism

h : NG
r (a1, . . . , an) → NG′

r (b1, . . . , bn), then wemust have
h(ai) = bi for all i.

Definition 3.5. An m-ary query Q, for m > 0, is called
Gaifman-local if there exists a number r ≥ 0 such that
for every graph G, two tuples ā, b̄ ∈ Am cannot be dis-
tinguished by Q whenever NG

r (ā) and NG
r (ā2) are iso-

morphic.

By “cannot be distinguished” we mean that ā ∈ Q(G) iff
b̄ ∈ Q(G). This notion applies to all FO-queries:

Theorem 3.6. ([12]) Every FO-definable query is
Gaifman-local.

The canonical example of using Gaifman-locality is prov-
ing that transitive closure is not FO-definable. Suppose it
were, by a queryQ; then choose r as in the definition and con-
sider a very long chain, as below, with two points at distances
bigger than 2r from each other, and from the endpoints:

... ... ... ... ... ... ... ...
a b

2r 2r

Then r-neighborhoods of (a, b) and (b, a) are isomorphic,
since each is a disjoint union of two chains of length 2r.
We know that (a, b) belongs to the output of Q; hence by
Gaifman-locality, (b, a) is in the output as well, which con-
tradicts the assumption that Q defines transitive closure.

And yet another notion of locality is applicable to FO-
queries, and it is often useful in establishing expressivity
bounds for Boolean queries. It refers to pairs of structures.
Again we deal with graphs for simplicity. IfG = ⟨A, E⟩ and
G′ = ⟨A′, E′⟩ are two graphs, we write G !r G′ if there
exists a bijection f : A → A′ such that for every a ∈ A, the

neighborhoodsNG
r (a) and NG′

r (f(a)) are isomorphic. The
!r relation says, in a sense, that locally two graphs look the
same, with respect to a certain bijection f ; that is, f sends
each node a into f(a) that has the same neighborhood.

Definition 3.7. A Boolean query Q is Hanf-local if there
exists a number r ≥ 0 such that for every two graphs G
and G′ satisfying G!rG

′, we have Q(G) = Q(G′).

68

G :

Proof
I Suppose TC is FOL definable with query Q
I Then Q is Gaifman local with some radius r

I NG
r ((a, b)) ' NG

r ((b, a))
because both subgaphs are disjoint unions of two 2r-chains

I But (a, b) ∈ TC (G) and (b, a) /∈ TC (G), E
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Hanf locality

I G = (A,E ),G′ = (A′,E ′)

I G�r G
′ iff

there exists bijection f : A −→ A′ s.t. for all a ∈ A:
NG
r (a) ' NG′

r (f (a))

I Intuitively: G,G′ are pointwise similar w.r.t. r -neighbourhoods

Definition
A Boolean query Q is Hanf-local iff a radius r exists s.t. for any
graphs G,G′ with G�r G

′ one has Q(G) = Q(G′).

Theorem
Every FOL definable Boolean query is Hanf-local.
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Example: CONN is not Hanf-local

Theorem 3.8. ([10]) Every FO-definable Boolean query
is Hanf-local.

The notion can be extended to non-Boolean queries as
well [21] but since most of the time Hanf-locality is applied
to prove inexpressibility of sentences, we only present this
limited version here.

We now give the canonical example of usingHanf-locality,
and prove that graph connectivity is not FO-definable. As-
sume to the contrary that it is; then it is Hanf-local, so we
choose the number r as in the definition of Hanf-locality.
Now consider two graphs below, form > 2r + 1.

. . .

. . .

one cycle of length 2m
G2

two cycles of length m
G1

. .

. .. .

. .

Let f be an arbitrary bijection between the graphs. The
d-neighborhood of any node a is the same: it is a chain
of length 2r with a in the middle. Hence, G1!rG

2, and
they must agree on Q, but G2 is connected, and G1 is not.
Thus, graph connectivity is not FO-definable. A similar
example shows that testing whether a graph is a tree is not
FO-definable. In that case, we takeG1 to be a chain of length
2m, and G2 the disjoint union of a chain of length m and a
cycle of lengthm; then G1!rG

2 as long asm > 2r + 1.

It is natural to ask how these notions are related. The
precise relationship is known (assuming the definition of
Hanf-locality that applies to arbitrarym-ary queries):

Theorem 3.9. ([21]) Each Hanf-local query is Gaifman-
local, and each Gaifman-local query has the BNDP.

3.5 Other uses of locality

Hanf-locality as defined here can be applied only when
example structures have the same cardinality (e.g., the graphs
G1 andG2 in the picture). Sometimes this is an inconvenient
restriction, and a more relaxed notion can be used for graphs
of bounded degree. Suppose we are looking at graphs whose
in- and out-degrees are bounded by k ∈ N. Then, for each
fixed r, we have finitely many possible isomorphism types
of neighborhoodsof radius r. We denote this set byN (k, r).
For each graph G and a node a, we say that a realizes τ ∈
N (k, r) if the isomorphism type of NG

r (a) is τ . Now we
write G!∗

m,rG
′ if for each τ ∈ N (k, r), either

1. bothG andG′ have the same number of nodes realizing
τ ; or

2. bothG andG′ have at leastm nodes realizing τ .

Thus, the numbers of nodes realizing τ have to be the same
up to thresholdm; above the threshold they can be arbitrary.
Notice that if we remove the second condition, we get the
definition ofG!rG

′. The applicability of this notion to FO
queries is due to the following.

Theorem 3.10. ([10]) For each FO sentence ϕ and k ∈
N, one can find numbers m, r ∈ N so that for every
two graphs G, G′ with degrees bounded by k, we have
G |= ϕ ⇔ G′ |= ϕ whenever G!∗

m,rG
′.

This result has an algorithmic application. We say that a
class of graphs has bounded degree if for some k ∈ N, all
degrees in graphs in that class are bounded by k.

Theorem 3.11. ([40]) Evaluation of FO queries over
classes of graphs of bounded degree can be done with
linear-time data complexity.

The idea is simple: take a query ϕ, and the bound k
on degrees; compute m, r as in Theorem 3.10, and con-
struct N (k, r). Then enumerate functions f : N (k, r) →
{0, . . . , m, ∗}, and for each such function decide if a graph
in which the number of nodes realizing τ is f(τ) (with ∗
meaning “above the threshold”) satisfies ϕ. Notice that so
far we haven’t used the input graph. Now go over the input
graphG, compute in linear time the number of nodes realiz-
ing each τ , and use the result of the precomputation to see if
G satisfies ϕ.

This result is a starting point of a field called algorithmic
model theory, that uses properties of logical formulae on var-
ious classes of graphs and other structures to come up with
efficient algorithms; see [16] for a survey. We finish this
section by a key result on locality often used in such appli-
cations. It characterizes precisely what can be expressed in
FO. We say that a formulaϕ(x) is r-local if all quantification
in it is of the form ∃y ∈ Br(x) or ∀y ∈ Br(x), i.e., restricted
to the radius-r ball around x.

Theorem 3.12. ([12]) Every FO sentence is equivalent
to a Boolean combination of sentences of the form

∃x1 . . . ∃xn

( n∧

i=1

ϕ(x) ∧
∧

i̸=j

d(xi, xj) > 2r
)
,

where ϕ(x) is r-local.

In other words, such a basic sentence asserts the existence
of a scattered sequence x1, . . . , xn so that the same formula
ϕ is true in the r-neighborhood of each xi; and every FO
sentence is a Boolean combination of such basic sentences.

3.6 Structures with order

In most database applications, we deal with domains that
are totally ordered (e.g., numbers by the usual < relation
or strings by the lexicographic ordering). The question is
then whether the bounds on the expressive power remain
valid. More precisely, we now talk about expressibility over
structures of the form (A, <), i.e., σ-structures A expanded

69

G: two cycles of length m

G′: one cycle of length 2m

Proof
I For contradiction assume CONN is Hanf-local with parameter r
I Choose m > 2r + 1; f an arbitrary bijection of G and G′

I r -neighbourhood of any a the same: 2r-chain with a in the
middle

I Hence G�r G
′, but: G′ is connected and G is not. E
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Comparison of Locality Notions

Theorem
Hanf local � Gaifmann local � BNDP
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Optional Slide: Adding Order

I Many applications have finite models with a linear order <
I Locality conditions in its original form not applicable: 1-radius

already whole structure
I Consider invariant queries

Definition
A query Q over ordered structures is invariant iff
for all structures A, all tuples b and all linear orders <1, <2 on A:
b ∈ Q((A, <1)) iff b ∈ Q((A, <2))

For an invariant Q define Qinv on arbitrary structures as:
Qinv (A) = Q((A, <)) for arbitrarily chosen <.

Theorem
Every invariant FOL query is Gaifman-local (and so has BNDP).
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0-1 law



0-1 law

An inexpressibility tool based on a probabilistic property of FOL
queries

0-1-law informally

Either almost all finite structures fulfill the property or almost all do
not

Example

I Boolean query Q1 = ∀x , y E (x , y) on graphs
Almost all graphs do not satisfy Q1 (only the complete ones)

I Boolean query Q2 = ∀x∀y∃z E (z , x) ∧ ¬E (z , y)

Almost all graphs satisfy Q2
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Formal definition 0-1 laws

I Here it is important that signature σ is relational!!
I STRUC (σ, n): structures with domain [n] := {0, 1, . . . , n − 1}

over σ.
I For a Boolean query Q let

µn(Q) =
|{A ∈ STRUC (σ, n) | Q(A) = true}|

|STRUC (σ, n)|

I µn(Q) is the probability that a randomly chosen structure on
[n] satisfies Q

I µ(Q) = limn→∞ µn(Q)

Definition
A logic has 0-1-law if for every Boolean query Q expressible in it
either µ(Q) = 0 or µ(Q) = 1.
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Inexpressibility with 0-1 laws

Theorem
FOL has the 0-1- law.

I Helpful for proving inexpressibility of counting properties

Example (EVEN is not expressible in FOL)

µ(EVEN) not defined because µn(EVEN) alternates between 0 and
1.
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Beyond FOL



Counting, Aggregation

I Practical languages s.a. SQL allow counting and aggregation.

Example (Departments with Average Salary > 100,000)

SELECT S1.Dept, AVG(S2.Salary)
FROM S1, S2
WHERE S1.Empl = S2.Empl
GROUP BY S1.Dept
HAVING SUM(S2.Salary) > 1000

Schema: S1(Empl, Detp), S2(Empl,Salary)

I Consider corresponding extensions of FOL
I Some of the tools shown so far still work (when non-ordered

structures are considered)
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FOL with counting quantifiers

Definition (FOL-AllCnt)

FOL-AllCnt is the extension of FOL with counting quantifiers and
counting terms:
I ∃≥ix .φ(x): There are at least i elements x fulfilling φ.
I ]x .φ(x): the number of x fulfilling φ(x).

I Semantics defined w.r.t. 2-sorted FOL structures
A = (A,N, (RA)R∈σ,Arith)

I Second domain (sort) N is infinite!
I Arith contains (interpreted) arithmetic predicates and functions
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Example

Parity of a unary predicate symbol U can be expressed by the
following formula using counting quantifiers:

∃j∃i((i + i = j) ∧ ∃≥jxU(x) ∧ ∀k(∃≥kxU(x)→ k ≤ j))

“There is an even number (j) of Us and there are no more than j
Us”

Theorem
FOL+AllCtn queries are Hanf local (and thus Gaifman local and
have the BNDP).
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Aggregation
I F = aggregate function = family of functions f1, f2, . . . with
I fn maps n-element multisets from Q to elements from Q.

E.g.: SUM = {s1, s2, . . . , } with sk({d1, . . . , dk}) = Σk
i=1di

Definition (FOL-Aggr)

FOL-Aggr same as FOL+AllCnt but with aggregate terms (and Q
instead of N).
I Syntax: Terms t(x) of the form AggrFy .(φ(x , y), t ′(x , y))

I Semantics over A for tuple b
I tA(b) = f|B|({t ′A(b, c) | c ∈ B})

(where B := {c | A |= φ(b, c)})

Correspondence to SQL:
I x = grouping attributes
I φ(x , y) = HAVING clause
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Locality for FOL+Aggr

Theorem
FOL-Aggr queries are Hanf-local (and thus Gaifmann-local and
have the BNDP).

I If order is added, then locality is lost

25 / 54



Higher-Order Logics

I Second order logic (SO): Allow quantification over relations
I Vocabulary: FOL vocabulary + predicate variables X ,Y , . . .
I Syntax: FOL syntax +

I Xt1 . . . tn is a formula (for n-ary X and terms ti )
I If φ is a formula, then so are ∃Xφ, ∀Xφ

I Higher-order quantification adds expressivity, e.g.,
I EVEN(σ) (for any signature σ) expressible. (Exercise)
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Fixed Point Logics (FPLs)

I Reachability queries call for extension of FOL with “iteration”
mechanism

I FPLs use a well-behaved self-referential process/bootstrapping

I Fixed points as limits of this process

I Different fixed points may exist

I Different fixed point logics exist (e.g. largest, least)
I Most prominent in DB theory: Datalog
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Example: Compute the Transitive Closure
I E (x , y) =: edge of graph G,
I R(x , y) =: transitively closed relation between vertices

∀x ,∀y R (x , y) ↔ E (x , y) ∨ (∃z .E (x , z) ∧ R (z , y))

I For all graphs G find extension G′ = (G,RG′
) s.t. lhs and rhs

evaluate to the same relation. (*)
I Read equivalence as a iteratively applied rule from right to left

Xnew (x , y) ← E (x , y) ∨ (∃z .E (x , z) ∧ Xold (z , y))
︸ ︷︷ ︸

φ(x ,y ,Xold )

I Induces a step(-jump)-operator F on the semantical side
I For X ⊆ G × G :

F : X 7→ {(d1, d2) | (G,X , x/d1, y/d2) |= φ(x , y , X )}

I Condition (*) reread: find fixed point R , i.e., F (R) = R
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Constructing Least Fixed Points

I Start with extension ∅ (seed) and proceed iteratively
I Progress schema: ∅, F (∅), F (F (∅)), F 3(∅), F 4(∅), . . .
I In our example

I X 0 = seed = ∅
I X 1 = EG = direct edges
I X 2 = F (X 1) = X 1 ∪ {(x , y) | ∃z .E (x , z) ∧ X 1(z , y)} =

direct edges or paths of length 2
I . . .
I RG′

=
⋃

i∈N X i

I The fixed point here is the least fixed point.
I Nota bene

I A fixed point may not exist
I There may be many fixed points
I There may not be a least fixed point. (Exercise)
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Fixed Point Construction Graphically
I Fixed point for F (x) = cos(x).
I Attractor 10.08.15 11:44
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Recursive Humor

I Wiki entry Recursive humor.
It is not unusual for such books to
include a joke entry in their glossary
along the lines of: Recursion, see
Recursion.[6]

[...] An alternative form is the following,
from Andrew Plotkin: “If you already
know what recursion is, just remember
the answer. Otherwise, find someone who
is standing closer to Douglas Hofstadter
than you are; then ask him or her what
recursion is.”

Lit: D. Hofstadter. Gödel, Escher, Bach:
An Eternal Golden Braid.Vintage Books,
1979.

I Blog Recursively Recursive
https://recursivelyrecursive.wordpress.com/category/
recursive-humour/page/2/
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Datalog

I The illustrations above where motivated by Datalog rule
notation

I Developed around 1980s
I Renaissance (not only as proof tool but) as industrially applied

tool
I Logic programming characterization: Prolog without function

terms (and without other non-declarative stuff such as cuts)
I EXPTIME-complete in combined complexity; PTIME-complete

data complexity
I Simple evaluation strategy for positive fragment (no negation)
I Negation calls for hierarchical evaluation (stratification)
I Different fragments; optimizations ...
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Datalog
I General Logic Programm: Finite set of rules of the form

α︸︷︷︸
head

← β1, . . . , βn︸ ︷︷ ︸
body

I α atomic formula; βi are literals
I Free variables ∀ quantified; comma read as ∧
I Intensional relation: Relation symbol occurring in some head
I Extensional relation: occurring only in body

I Datalog program = logic program with
I no function symbols
I no intensional relation negated in body
I Sometimes additionally safety constraints:

I all free variables in head also in body
I all variables in negated atoms (or arithmetical expressions

such as identity) also in non-negated atom in body
I Semantics for datalog programs: by step-operator used in

parallel for intensional relations
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Datalog example: ancestors of Mary

ans(x) ← ancestor(x ,mary)

ancestor(x , y) ← parentOf (x , y)

ancestor(x , y) ← parentOf (x , z), ancestor(z , y)
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SQL 3 Recursion example

%Find Mary’s ancestors from ParentOf(parent,child)
WITH RECURSIVE Ancestor(anc,desc) AS

( (SELECT parent as anc, child as desc FROM ParentOf)
UNION
(SELECT Ancestor.anc, ParentOf.child as desc
FROM Ancestor, ParentOf
WHERE Ancestor.desc = ParentOf.parent) )

SELECT anc FROM Ancestor WHERE desc = "Mary"
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FOL with Least Fixed Points

I Datalog extends FOL w.r.t. the semantics (subkutane)
I There are different extensions of FOL with fixed point

operators available in the syntax

I Example ∃FO(LFP): existential fragment of FOL with least
fixed point operator [LFP~y ,Yφ]

I Semantics of [LFP~x,Xφ]~t in model A:
“For X chosen as least fixed point, ~t fulfills φ in A”

I Restriction: X has to occur positively (i.e. after an even
number of ¬ in φ )
(Needed to guarantee existence of lfp)

Theorem
Existential fragment of ∃FO(LFP) is equivalent to Datalog.
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0-1 law for Datalog
Theorem
Datalog (without negation and ordering) has the 0-1 law.

I In particular you can not express EVEN

I (Adding negation allows to express EVEN, which does not
fulfill 0-1 law)

I In fact a successor relation together with min- and
max-predicates is sufficient.

odd(x) ← min(x)

odd(x) ← S(x , y), even(y)

even(x) ← S(y , x), odd(y)

EVEN ← max(x), even(x)
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What we Did not Cover

Very many FMT topics were not covered in these two lectures, in
particular ...
I Descriptive Complexity
I Algorithmic Model Theory (Infer meta-theorems on

algorithmic properties by considering)
I Proving equivalence of languages (using types)
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Descriptive Complexity

I There is a close relationship between complexity classes and
logics (queries expressible in a logic)

I Hints to astonishing correspondences between prima facie two
different worlds

I The world of representation (what?) and of calculation (how?)
I Results talk about data complexity (!)
I Results mainly for ordered structures
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Fagin lays the foundations

I One of the first insights which founded descriptive complexity
goes back to Fagin

Theorem (SO∃ captures NPTIME)

Existential second order logic (SO∃) captures the class of problems
verifiable in polynomial time (NP)

Definition
A logic L captures a complexity class C iff for all σ with <∈ σ and
classes of structures K ⊆ STRUC (σ):

K ∈ C iff K is axiomatizable in L
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Solutions to Exercise 3 (12 Points)
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Ad Exercise 3.1 (4 Points)

I DBs have may have NULL values (but structures are not
incomplete)

I Domain of structure not explicitly specified
I Natural vs. active domain semantics
I Safety considerations needed for FOL (not the case for

relational calculus/SQL)

I One can show: FOL under active domain semantics the same
as SQL

I Nonetheless: It means dependency on domain.
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Exercise 3.2 (4 Points)

I For every n-ary functional symbol f introduce n + 1-ary
relation symbol Rf and state that Rf is a function:

∀x1, . . .∀xn−1∃y1Rf (x1, . . . , xn, y1)∧
∀y1, y2R(x1, . . . , xn, y1) ∧ R(x1, . . . , xn, y2)→ y1 = y2

I Then recursively eliminate all terms by substituting atoms of
the form

I f (~t1) = t2 with Rf (~t1, t2)
I S(f1(~t1), ~t2, . . . , ~tn) with ∃xS(x , ~t2, . . . , ~tn) ∧ Rf (t1, x)

and so on.

and atoms of the form
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Exercise 3.3 (4 Points): Reduce EVEN(<) to Graph
Connectivity

imaginative names such as player 1 and player 2 are also often
used). Think of the spoiler as someone trying to show thatA
andB differ, and of the duplicator as someone trying to show
that they are the same. Even if A andB are not isomorphic,
the games goes only for a fixed number of rounds, and this
gives the duplicator a chance of winning.

The game goes as follows. In each round i, the spoiler
picks a structure and an element of that structure. The dupli-
cator goes to the other structure and picks an element there.
So if the spoiler picks A and an element ai ∈ A, the duplica-
tor responds with an element bi ∈ B; and if the spoiler picks
B and bi ∈ B, then the duplicator responds with an element
ai ∈ A. After n rounds, we have points a1, . . . , an played in
A and b1, . . . , bn played inB. The duplicator wins the game
if the mapping ai "→ bi is a partial isomorphism between A
and B. For example, if the structures are graphs, it means
that ai = aj iff bi = bj and thatE(ai, aj) iffE(bi, bj) for all
i, j ≤ n. We say that the duplicator has a winning strategy
in the n-round game if he can win no matter how the spoiler
plays. In that case, we write A ≡n B.

The reason this is important is due to the following: A ≡n

B iff A and B agree on all FO sentences of quantifier rank
up to n. So now we have a nice tool to prove that a property
P is notFO-expressible: come up with families of structures
An, Bn, n ∈ N, so that:

1. all An’s satisfy P ; noBn satisfies P ; and
2. An ≡n Bn for all n.

Why does this work? Assume P is expressible in FO by a
sentenceϕ of quantifier rankn. ThenAn |= ϕ andBn |= ¬ϕ
by 1), but 2) tells us that An andBn have to agree on ϕ.

So why not just stop there? The method of games looks
nice, and it is in a certain sense complete: any inexpressibility
result – even relative to a class of structures – can in principle
be proved by games. The problemwith the technique is that,
even if we find good classes of structures An and Bn, it is
often hard to prove that An ≡n Bn.

To illustrate this, we start with a very simple example,
where playing the game is actually easy, and then show how
the complexity rises quickly as structures get a bit more
complicated. The easy example is again the query even on
sets, i.e. structures of the empty vocabulary. Note that in the
n-round game on any two sets with at least n elements, the
duplicator has a very simple winning strategy: if the spoiler
plays an already played element, the duplicator does the same
in the other set, and if the spoiler plays a new element, so
does the duplicator: the sizes of the sets ensure that in n
rounds, the duplicator won’t run out of elements to play.

So to show that even is not expressible, we can take, for
example,An to be a 2n-element set andBn to be a (2n+1)-
element set; bywhat we just saw,An ≡n Bn. So far so good,
but what if we have something in the vocabulary? After all,
databases without relations aren’t very interesting!

Let’s try to look at a little extension: suppose we deal not
with sets, but with orders, i.e. graphswith one binary relation

interpreted as a linear order. We denote an n-element linear
ordering by Ln. Can we prove that even is not expressible
over linear orders?

A moment’s reflection shows that the previous proof does
not work. But the followingwas observed by several authors,
e.g., [37]:

Theorem 3.1. For every m, k ≥ 2n, we have Lm ≡n Lk.

In particular, even is not expressible over orders: we take
L2n as An, and L2n+1 asBn.

But it is more important to observe that a small addition to
the structure leads to an “exponential” blowup in the com-
plexity of the proof. In fact one does not even need an order
relation: the successor relation would do. And what if we
have two successor relations? Or three? Game-based proofs
become very heavy combinatorially. In fact, [10] suggested
that we build a library of winning strategies for the dupli-
cator. We now start working towards such a library, first by
showing a few simple tricks, and then creating powerful tools
for proving inexpressibility results.

3.3 Inexpressibility results: tricks

We have shown very little so far – only that even cannot
be expressed over sets and linear orders – but with that, we
can already derive surprisingly strong bounds on the expres-
siveness of FO. We are about to show, with a simple trick,
that graph connectivity, acyclicity, and the transitive closure
query are not FO-definable.

For graph connectivity, we start with linear orders. The
following query is easily definable: for each element in the
order, put an edge to its 2nd successor; also put edges between
the last element of the order and the 2nd element, and the
penultimate element and the first element. This construction
is illustrated below for orders on 5 and 6 elements.

⇒

⇒

It is now easy to observe that: a) the construction we pre-
sented is expressible in FO; and b) the resulting graph is
connected for orders of odd size, and contains two connected
components for orders of even size. Hence, if we could ex-
press graph connectivity in FO, we would be able to express
even on linear orders, contradicting Theorem 3.1.

This trick, observed by [19], also gives an easy proof that
testing whether a graph is acyclic is notFO-definable. In this
case, simply put one back edge, from the last element to the
first. The resulting graph is acyclic for orders of even size,
and cyclic for orders of odd size. With the transitive closure
query one can check if a graph is connected: add an edge
(x, y) for each edge (y, x), compute the transitive closure,
and see if the resulting graph is complete. So we get:

67

linear order is odd

ifflinear order is even

iff graph connected

graph is disconnected

I Construction of graph from linear order expressible as an FOL
query Qred : LinOrd −→ GRAPH
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Exercise 3.3 (4 Points)
I Helper formulae

I succ(x , y) : x < y ∧ ¬∃z .x < z ∧ z < y
I last(x) : ¬∃z .x < z
I first(x) : ¬∃z .z < x

I Define Qred : LinOrd −→ GRAPH as

E (x , y) = ψ(x , y) =

(∃z(succ(x , z) ∧ succ(z , y))) ∨
(last(x) ∧ ∃z(first(z) ∧ succ(z , y))) ∨
(∃z(last(z) ∧ succ(x , z) ∧ first(y)))

I Assume that CONN is expressible as FOL query φconn over
signature {E} for graphs.

I Then EVEN(<) would be FOL expressible as:
φconn[E/ψ]E
(Note: φconn[E/ψ] is shorthand for replacing every occurrence of atom E(u,w)

by formula ψ(u,w) in φconn.)

49 / 54



Exercise 4 (16 Points)
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Exercise 4.1 (6 Points)

Use Hanf locality in order to proof that the following boolean
queries are not FOL-definable.
1. graph acyclicity
2. tree

.
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Exercise 4.2 (4 Points)

Show that EVEN(σ) can be defined within second-order logic for
any σ.

Hint: formalize “There is a binary relation which is an equivalence
relation having only equivalence classes with exactly two elements”
and argue why this shows the axiomatizability.
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Exercise 4.3 (2 Points)

Argue why (in particular within the DB community) one imposes
safety conditions for Datalog rules.
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Exercise 4.4 (4 points)

Give examples of general program rules for which
1. No fixed point exists at all (Hint: “This sentence is not true”)
2. Has two minimal fixed points (Hint: “The following sentence is

false. The previous sentence is false.”)
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