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Organizational Stuff



Organization

» Lectures with integrated exercises (sometimes homework)

» Exercise slot may vary: so come to the lectures

» Start: Today, Wed, 19 October, 2016, 16.05h

» Lecture and exercise related material in Moodle “Grundlagen
von Ontologien und Datenbanken fiir Informationssysteme -
CS5130"

» Oral exam at the end of the semester

» Register for the course in Moodle
» Prerequisite for exam: At least 50 percent of exercises solved
successfully

» The lectures and the exercises are in English
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Sometimes English Becomes Less Important

Prologue
La loi 101 (Charte de la langue francaise)

Principe du deux pour unGlle texte frangais doit &tre écrit en caracteres deux fois
p]us ZroS que ceux de la version en langue étrangere.

Two for one principleDan english (for clarity) text should be written in characters wice smaller than its
french counterpart.

ExceptionO the english version of the text of the Law itself can be written in

characters f1VE times blgger than the french original.

Slide example by Bruno Poizat from a conference talk

» Model Theorist
» Has a wonderful (unconventional) book on model theory
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Sometimes English Becomes Less Important

Prologue
La loi 101 (Charte de la langue francaise)

Principe du deux pour unGlle texte frangais doit &tre écrit en caracteres deux fois
p]us ZroS que ceux de la version en langue étrangere.

Two for one principleDan english (for clarity) text should be written in characters wice smaller than its
french counterpart.

ExceptionO the english version of the text of the Law itself can be written in

characters f1VE times blgger than the french original.

Slide example by Bruno Poizat from a conference talk

» Model Theorist
» Has a wonderful (unconventional) book on model theory

» Was not well received (for some years)
» until he translated it into English
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Plan

Logic, Logic, Logic (2 lectures)
Logical Foundations of Database Systems: Finite Model
Theory (2 lectures)

Semantic Integration with OBDA: Bridging the DB and
Ontology World (2-3 lectures)

Semantic Integration on Ontology Level: Ontology Integration
(2-3 lectures)

Stream Processing (2-3 lectures)

Process Analysis and Design (2-3 lectures)
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First-Order Logic



“Logic, Logic, and Logic”

» Interesting collection of essays

» Rather “philosophical logic”

BOOLOS

1 I a

» But we adopt the motto:

Logic everywhere !
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“Logic, Logic, and Logic”

v

Interesting collection of essays

v

Rather “philosophical logic”

v

But we adopt the motto:

Logic everywhere !

» We are interested not only in logics
per se but

v

(Knowledge on) logics useful for
computer science
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"The beauty of this is that it is only of
theoretical importance, and there is no way
it can be of any practical use whatsoever."
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Logic and Logics

» Science of logic

>

vV vy VvYyy

investigates mathematical structures (static and dynamic)
and formal languages to describe them

distinguishing between syntax

and semantics (truth conditions for sentences)

providing notions of satisfaction, entailment (from
semantics)

and of provability, inference (calculus)

» A logic: A language with syntax, semantics (and possibly
calculus)

» There are many different logics (within computer science)

» But in any case somehow related to first-order logic
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First-Order Logic (FOL)

» Also called predicate logic (or quantification logic)

> Aristotelian syllogisms already incorporate restricted FOL
» All Philosophers are wise men. All wise men are nice. Hence all

Philosophers are nice men.
» Restricted to unary predicates

» Modern FOL started with Frege's
“Begriffsschrift”

» language constructs based on
constants, variables, predicates,
functions, boolean connectives,
quantifiers

» Formal axioms and inference rules

» His 2-dimensional representation
format aesthetic but not practical

A—n<bd

Y0, +T =)

b<B
n>0
A=b
fo+r=s)
b<B
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FOL Structures

» A formalism to investigate (mathematical) structures

A= (AR, . ..REA .G

yIm>

» (Non-logical) Vocabulary
» Relation symbols/predicates R; with arities
» Function symbols f; (with arities)
» Constant symbols ¢;

» Components of the structure
» Universe/Domain A
» Interpretations/denotations of nonlogical symbols

» Relation R* C A" (for n-ary relation symbol R)
» Function f* € A" — A (for n-ary function symbol f)
» Individuals ¢® € A (for constants c)
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Example FOL Structures

» Graphs & = (V, E®)
1. V = nodes of the graph
2. E® C V2 = edges of the graph

» Undirected, loopless graphs & = (V, E®)
1. as above
2. as above
3. Additionally: edge relation is symmetric and a-reflexive

» Need an appropriate language to formulate constraints such as
in 3.
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FOL Syntax

» Allow variables (x1,x2,...) and logical constructors
» Terms
» variables and constants are terms

» if t1,...,t, are terms, so is f(t1,...,t,) (for n-ary function
symbol f
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FOL Syntax

» Allow variables (x1,x2,...) and logical constructors

» Terms
» variables and constants are terms
» if t1,...,t, are terms, so is f(t1,...,t,) (for n-ary function
symbol f

» Formulae
» t; =tj and R(t1,...,t,) (for terms t; and n-ary relation) R
» If ¢ is a formula, so are
> =¢  ("Not ¢")
» Vx ¢ (“For all x it holds that ¢")
» dx ¢ (“Thereis an x s.t. ¢")

> If ¢, are formula, so are
> (pAY) ("¢ and ¥")
> (pVv) (“pory)
> (¢ =) ("I ¢ then ")
> (o vp) ("o iff y")
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FOL Semantics

> Interpretation 7 = (2, v)
» v assigns to all variables elements from domain A
» Needed to deal with open formulae
e.g. Yy R(y, x) open/free in variable x

» x-Variant 7, /g
same as Z but with d € A assigned to x

» Interpretation of terms
» I(c) =
> I(x) = v(x)
> I(f(t1, ..., tn)) = F(Z(ta), ..., Z(ts))
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FOL Semantics

» Interpretation Z = (2, v)
» v assigns to all variables elements from domain A
» Needed to deal with open formulae
e.g. Yy R(y, x) open/free in variable x

» x-Variant I[x/d]
same as 7 but with d € A assigned to x

» Interpretation of terms

» I(c) = c*
» I(x) = v(x)
> I(f(t1, ..., tn)) = FHZ(t1), - .., Z(tn))
/,Luedl‘f:d
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FOL Semantics
» Satisfaction relation =
» Tt =6 iff Z(t) = Z(t)
» T R(ty, ... t,) iff (Z(t1), ..., Z(t,)) € R*

v

IE-¢iffnotZ = ¢

PANY)IffT=Epand T =4
dVU)IffIE=Epor I =
p—=Y)if: fZTE=¢thenZ
po) i TEQIFFTEY

x ¢ iff: Forall d € A: Zj, g1 = @
x ¢ iff: Thereis d € Ast. Ij/q) = ¢

—~ N~

T
va
T
A

vV vy vy

vy

=
=
=
=
IEVY
IE3
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FOL Semantics
» Satisfaction relation =
» TEH =6IiffZ(k) =Z(t)
» T R(ty, ... t,) iff (Z(t1), ..., Z(t,)) € R*

v

IE-¢iffnotZ = ¢

(pAY)iffTE=¢and T
(6V )T =porT =
(¢ = )i f T E¢then T =4
(V) ITEQIIFIEY

¢ iff: For all d € A: T,/ q) Eoé
¢ iff: There is d € Ast. Ijyq) = ¢

T
va
T
A

vV vy vy

=
=
=
=
T = Wx
Tk 3x

vy

» Known result: v can be assumed to be defined only for the free
variables in the formula.

» Terminology T satisfies ¢, Z makes ¢ true, Z is a model for ¢

» We also write 2 = ¢(X/v)
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Examples

» Consider loopless, symmetric graphs & = (G, E®)

> ¢1:=3x Jy E(x,y) & = @17
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Examples

» Consider loopless, symmetric graphs & = (G, E®)

> ¢1:=3x Ty E(x,y) & = 1
> ¢2(x) =Ty IZ E(x,y) NE(x,2) NE(y,2z) & = ¢o(x/a)?
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Examples

» Consider loopless, symmetric graphs & = (G, E®)

> ¢1:=3Ix Iy E(x,y) & = ¢
> ¢o(x) =3y Iz E(x,y) NE(x,z) NE(y,z) & = ¢2(x/a)
> ¢3(x,y) = E(x,y) & = ¢3(x/a,y/b)?
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Examples

» Consider loopless, symmetric graphs & = (G, E®)

> ¢1:=3x Jy E(x,y) & = ¢
> ¢o(x) =3y Iz E(x,y) NE(x,z) NE(y,z) & = ¢2(x/a)
> ¢3(x,y) == E(x,y) ® = ¢3(x/a,y/b) NO!
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Entailment

» X [= ¢ iff all models of X are models of ¢

» We say: X entails ¢ or ¢ follows from X
» X: set of sentences
> ¢: sentence

» Note: entailment definition (per se) not easy implementable
= Notion of derivibility/inference in a calculus (see later
lectures)
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Algorithmic Problems in First-Order Logic

» Model Checking:

» Input: graph (or generally structure) &, formula ¢(xi, ..., x,)
and assignment [xy/a1, ..., Xn/an]
» Output: Is & = ¢(x1/a1,...,xn/an) the case?

» Satisfiability Problem

> Input: sentence ¢
» Output: Does there exist a structure & s.t. & = ¢7?

» Complexity of problems

» Model checking problem is decidable and PSPACE complete
(in combined complexity)
» Satisfiability is undecidable
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Role of Logic for/in Computer Science



The Burden of Logic in the 19-20th Century

» Role of logic as a foundation lnGIcﬂM Ix

for all of mathematics

» Literature hint: Logicomix

» fantastic graphic novel

» Narrator: Philosopher and
logician B. Russell

» About the illusions,
disillusions, and
landmarking results at the

end of the 19th century AN EP]E SEAH[:H F“H THUTH

APOSTOLOS DOXIADIS awo CHRISTOS H. PAPADIMITRIOU
K87 8Y ALECOS PAPADATOS ano ANNIE Di DONNA
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Foundations of Mathematics with Mathematical Logic

» Attempts to find formal foundation for mathematical logic

» Hilberts Program (1900-1928)

» Mathematics is consistent
» Mathematics is (semantically) complete
» Mathematics is decidable
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Awakening

» Young Godel proves (1931-33)

» arithmetics not complete
» consistency of set theory not provable

» Church/Turing (1936/37)
» First-order logic is not decidable
» Valid sentences not recursive

» Sentences true in arithmetic not recursively enumerable
(semi-decidable)

35/66



Awakening

» Young Godel proves (1931-33)

» arithmetics not complete
» consistency of set theory not provable

» Church/Turing (1936/37)

» First-order logic is not decidable

» Valid sentences not recursive

» Sentences true in arithmetic not recursively enumerable
(semi-decidable)

» Nonetheless there are the following positive insights

» Syntactically completeness for FOL (Gédel, 1930)
» ZFC (Zermelo-Fraenkel Set Theory) can be used to formalize
all contemporary mathematics
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The Unusual Effectiveness of Logic

» Logic (Research) and Computer Science had fruitful effects
onto each other

» Logic even more w.r.t. CS (than w.r.t. mathematics)

» “Logic is the calculus of CS”

Lit: M. Y. Vardi. From philosophical to industrial logics. In Proceedings of the 3rd
Indian Conference on Logic and Its Applications, ICLA'09, pages 89-115, Berlin,
Heidelberg, 2009. Springer-Verlag.

Lit: J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi, and V.
Vianu. On the unusual effectiveness of logic in computer science. Bull. Symbolic

Logic, 7(2):213-236, 2001.
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Why is this the Case?

» Logic is so general that it allows to

» talk precisely about the objects within a
computer/computation model
» specify and reason about the properties of runs in the model

» Even more: One can characterize complexity classes with logics
(Descriptive Complexity)
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So ...

As an upcoming computer scientist (in academia or industry) you
should train in formal models, in particular logics, because:

» you want to apply successfully for a job

» But more importantly: you want to keep your job

39/66



Computer Science Areas Effected by Logic Research

» Database Systems

» Ontology-Based Information Systems

» Semantic Integration

» Computer-Aided Verification (Model Checking)
» Computational Complexity

» High-Level Stream Processing

» Multi-Agent Systems

» Machine Learning (e.g. probabilistic graph models and logics)
» Semantic Web

» Logic Programming

» Knowledge Representation

» Semantics of Programms

» Digital Design ...
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Computer Science Areas Effected by Logic Research

Database Systems

Ontology-Based Information Systems
Semantic Integration

Computer-Aided Verification (Model Checking)
Computational Complexity

High-Level Stream Processing

Logic Programming
Knowledge Representation
Semantics of Programms
Digital Design ...

YV V. V. YVY VY VY VY VvV VY

This course
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Effects of Computer Science to Logic Research

» Focus/Intensive research on finite structures
» Objects of computation are finite (Finite Model Theory)
» But: potentially infinite structures (such as infinite DBs or
streams) are useful as well

Need for extensions of FOL
» Higher-order logics (quantification over sets/relations)
» Recursion (Datalog)

v

v

Feasibility of reasoning services = restrictions of FOL
» Modal and temporal logics
» Description Logics

v

Connections of logic and automata models
» Regular expressions, finite automata, sequential logics
» Buechi automata

Logic engineering

v

Different forms of inference ...

v
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Overview on Course With Examples



Example: Logic in DB Research (Lectures 3-4)

Table Flight
Start End
Hamburg Berlin

Hamburg New York
» SQL allows for recursion New York Berlin

(CONNECT key word)

» But is it really necessary?

Query Qeach: List all cities reachable from Hamburg!

Intuitively without recursion:

» Travel DB with direct
connection flights

» Reachability query

Qreach(x) = Flight(Hamburg, x) V
3Ix1 Flight(Hamburg, x1) N\ Flight(xy, x) V
Ix1, x2 Flight(Hamburg, x2) A Flight(x2, x1) A Flight(x1,x) V
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Example: Logic In DB Research

» Finite Model Theory (FMT) gives a proof for the
impossibility to use FOL for recursive queries

» FMT models DBs as finite relational FOL structures

v

Flight table becomes structure

2 = (D, Flight®, Hamburg®, Berlin®, . ..)

Domain D: all constants in DB

Constants named by themselves, e.g., Hamburg® = Hamburg
Flight® = {(Hamburg, Berlin), (Hamburg, NewYork), ...}

v

v

v
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Example: Logic In DB Research

» Investigate all relevant reasoning problems w.r.t. finite models

» Many properties for classical FOL do not hold
» Also w.r.t. complexity
— Calls for new techniques

» In particular: Investigate properties that all FOL queries have.

All FOL formulas are local.
(Holds even for FOL extended with aggregation)

» Recursive queries are not local!
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Example: Data Exchange (Lectures 5-6)

» Deals in a specific way with the integration of DBs

» Scenario

>

You have two DBs (source and target) on the same domain
but different schemata S and T

» You have some relationship specifications (T, S) for T and S
» Aim: Answer queries over T to get answers with DBs over S
» Subaims: Find (good) instances for T corresponding to given

instances over S and answer over found solution set.
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Example: Data Exchange (Lectures 5-6)
» Deals in a specific way with the integration of DBs

» Scenario

» You have two DBs (source and target) on the same domain
but different schemata S and T

» You have some relationship specifications (T, S) for T and S

» Aim: Answer queries over T to get answers with DBs over S

» Subaims: Find (good) instances for T corresponding to given
instances over S and answer over found solution set.

» And here comes logic
» Language for specifying X s = Specific FOL formulas called
tuple generating dependencies (tgds)
» Criteria for goodness of solutions = universal model notion
» How specify answers? —> Certain answer semantics
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Example: Data Exchange

v

S: student(name)

v

T: univ(sname, uname)

v

Y57 @ student(x) — Jy univ(x,y)
“If something is a student in a S-DB, then there is an
associated university in the T-DB"

» Example T-query: Q(x) = Jy.univ(x, y)

» What should be the answers for given S-DB | =
{student(Frege)}?
cert(Q(x),) = {Frege}

50/ 66



Example: Querying via Ontologies (Lectures 7-8)

Ontologies as formal means to represent and reason over data

v

Ontologies specify constraints and completeness rules

v

Ontologies may have many models (open world assumption)

v

v

May be used for access of heterogeneous data sources

» Appropriate ontology languages: Description Logics (OWL and
variants)
» Constants, concepts (unary predicates), roles (binary
predicates)
» Terminological axioms, e.g., Students = Humans
» Assertions axioms, e.g., Student(Frege)
» Description logics are feasible fragments of FOL
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Table university
Student Univ
Frege U-Jena

Russell  U-London
» Functionality constraint: Sl NULL

(func hasUniv)

» No university known for Goedel

» Completeness:
Student T FhasUniv.University
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Example: Ontology Integration (Lectures 9-10)

» There exist many ontologies out there
» For some applications need to integrate ontologies

» Problem: Joining ontologies may lead to
incoherences/inconsistencies

Ontology A Ontology B

> Article = 3publ.Journal » Article = dpubl.Journal

» Journal C —Proceedings LIProceedings
» (func publ) » publish(ab, procXY')
» O U Og is inconsistent

v

How to repair this?
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Belief Revision

» Belief Revision deals with operators for revising theories under
possible inconsistencies

> Investigates concrete revision operators
» Principles that these must fulfill (minimality etc.)

» Representation theorems

» Recent research how to adapt these for non-classical
logics/ontologies
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Streams (Lectures 11-12)

» “It's a streaming world” (Ubiquity)
» Many data are temporal (sensor, event data)
» Big data is mostly temporal data
» “Streams are forever’ (Potential Infinity)
» Streams are potentially infinite
» One has to tame the infinite
» Streams call for continuous querying (monitoring)
» “Order Matters” (Sequentiality)
» Stream elements have an arriving order next to temporal order
» Re-ordering or special sequencing may be needed
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Query With Sliding Window

Qloc

<« < ( <« « <« <« <« < < < < < < € <

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

» Sliding window for taming the infinite

» Query window contents with local query Qjoc

Time
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Query With Sliding Window

Qloc

<« <« « <« <« <« <« < <« « <« <« < | < <

» Sliding window for taming the infinite

» Query window contents with local query Qjoc

Time

» Example: Qe = Show all failure events in the window
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Query With Sliding Window

« « « <« « <« <« <« <« <« < < < € <€ <

T T T T T T T T Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

v

Sliding window for taming the infinite

v

Query window contents with local query Qjoc

v

Example: Qo = Show all failure events in the window

v

For High-Level Stream Processing: Incorporate background
knowledge
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Process Verification (Lectures 12-13)

» Verification of system behavior very important for industrial
applications

» Model Checking mature theory with well-proven software
implementations used in industry

» given a system description (model) and (desired) specifications
(axioms in (temporal logics))
» Check whether specification is fulfilled by (all runs of) model

» Excluding unwanted conditions for every time point

[0 —(turbineTemp > 90°)

» Ensuring wanted conditions

O(start Turbine — o TurbinelsRunning)
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Process Verification

» Lift verification ideas/tools to verify business processes

» Challenges
» Have to incorporate (large amounts of) data
= artifact-centric approach (early 2000)
» Finite state models not sufficient
— finite state transducers
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Exercise 1 (6 points)

Describe an example application or a computer science sub-area
from your CS studies or from your job which exemplifies the “use”
of some form of logic. In particular answer the following questions

(on 2-3 slides in pdf):
1. What kind of logic is used?
2. What is its relation to FOL?
3. How/why is it used in the area/application?

» Send your solutions in one pdf file as presentation until
Monday night, 24th of October 2016 to
oezcepQifis.uni-luebeck.de.

» You may work in pairs

» State your name, your study course (Studiengang) and your
identity number (Matrikelnummer) at the title page
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