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Organizational Stuff



Organization

I Lectures with integrated exercises (sometimes homework)
I Exercise slot may vary: so come to the lectures
I Start: Today, Wed, 19 October, 2016, 16.05h
I Lecture and exercise related material in Moodle “Grundlagen

von Ontologien und Datenbanken für Informationssysteme -
CS5130”

I Oral exam at the end of the semester
I Register for the course in Moodle
I Prerequisite for exam: At least 50 percent of exercises solved

successfully

I The lectures and the exercises are in English
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Sometimes English Becomes Less Important

2

Prologue

La loi 101 (Charte de la langue française)

Principe du deux pour un�: le texte français doit être écrit en caractères deux fois
plus gros que ceux de la version en langue étrangère.

Two for one principle�: an english (for clarity) text should be written in characters twice smaller than its
french counterpart.

Exception�: the english version of the text of the Law itself can be written in

characters five times bigger than the french original.

Slide example by Bruno Poizat from a conference talk
I Model Theorist
I Has a wonderful (unconventional) book on model theory

I Was not well received (for some years)
I until he translated it into English

Lit: B. Poizat. A Course in Model Theory. Universitext. Springer Verlag, 2000.
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Plan

I Logic, Logic, Logic (2 lectures)
I Logical Foundations of Database Systems: Finite Model

Theory (2 lectures)
I Semantic Integration with OBDA: Bridging the DB and

Ontology World (2-3 lectures)
I Semantic Integration on Ontology Level: Ontology Integration

(2-3 lectures)
I Stream Processing (2-3 lectures)
I Process Analysis and Design (2-3 lectures)
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First-Order Logic



“Logic, Logic, and Logic”

I Interesting collection of essays
I Rather “philosophical logic”

I But we adopt the motto:

Logic everywhere !

I We are interested not only in logics
per se but

I (Knowledge on) logics useful for
computer science
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“And you don’t what that!”
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But: “Nothing is more practical than a good theory”
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Logic and Logics

I Science of logic
I investigates mathematical structures (static and dynamic)
I and formal languages to describe them
I distinguishing between syntax
I and semantics (truth conditions for sentences)
I providing notions of satisfaction, entailment (from

semantics)
I and of provability, inference (calculus)

I A logic: A language with syntax, semantics (and possibly
calculus)

I There are many different logics (within computer science)
I But in any case somehow related to first-order logic
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First-Order Logic (FOL)

I Also called predicate logic (or quantification logic)
I Aristotelian syllogisms already incorporate restricted FOL

I All Philosophers are wise men. All wise men are nice. Hence all
Philosophers are nice men.

I Restricted to unary predicates

I Modern FOL started with Frege’s
“Begriffsschrift”

I language constructs based on
constants, variables, predicates,
functions, boolean connectives,
quantifiers

I Formal axioms and inference rules
I His 2-dimensional representation

format aesthetic but not practical
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FOL Structures

I A formalism to investigate (mathematical) structures

A = (A,RA
1 , . . .R

A
n , f

A
1 , . . . , f

A
m , c

A
1 , . . . , c

A
l )

I (Non-logical) Vocabulary
I Relation symbols/predicates Ri with arities
I Function symbols fi (with arities)
I Constant symbols ci

I Components of the structure
I Universe/Domain A
I Interpretations/denotations of nonlogical symbols

I Relation RA ⊆ An (for n-ary relation symbol R)
I Function f A ∈ An −→ A (for n-ary function symbol f )
I Individuals cA ∈ A (for constants c)
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Example FOL Structures

I Graphs G = (V ,EG)

1. V = nodes of the graph
2. EG ⊆ V 2 = edges of the graph

I Undirected, loopless graphs G = (V ,EG)

1. as above
2. as above
3. Additionally: edge relation is symmetric and a-reflexive

I Need an appropriate language to formulate constraints such as
in 3.
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FOL Syntax
I Allow variables (x1, x2, . . . ) and logical constructors

I Terms
I variables and constants are terms
I if t1, . . . , tn are terms, so is f (t1, . . . , tn) (for n-ary function

symbol f

I Formulae
I ti = tj and R(t1, . . . , tn) (for terms ti and n-ary relation) R
I If φ is a formula, so are

I ¬φ (“Not φ”)
I ∀x φ (“For all x it holds that φ”)
I ∃x φ (“There is an x s.t. φ”)

I If φ, ψ are formula, so are
I (φ ∧ ψ) (“φ and ψ”)
I (φ ∨ ψ) (“φ or ψ”)
I (φ→ ψ) (“If φ then ψ”)
I (φ↔ ψ) (“φ iff ψ”)
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FOL Semantics

I Interpretation I = (A, ν)
I ν assigns to all variables elements from domain A
I Needed to deal with open formulae

e.g. ∀y R(y , x) open/free in variable x

I x-Variant I[x/d ]
same as I but with d ∈ A assigned to x

I Interpretation of terms
I I(c) = cA

I I(x) = ν(x)
I I(f (t1, . . . , tn)) = f A(I(t1), . . . , I(tn))

Because dealing with variables is
non-trivial...
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FOL Semantics
I Satisfaction relation |=

I I |= t1 = t2 iff I(t1) = I(t2)
I I |= R(t1, . . . , tn) iff (I(t1), . . . , I(tn)) ∈ RA

I I |= ¬φ iff not I |= φ

I I |= (φ ∧ ψ) iff I |= φ and I |= ψ
I I |= (φ ∨ ψ) iff I |= φ or I |= ψ
I I |= (φ→ ψ) iff: If I |= φ then I |= ψ
I I |= (φ↔ ψ) iff: I |= φ iff I |= ψ

I I |= ∀x φ iff: For all d ∈ A: I[x/d ] |= φ
I I |= ∃x φ iff: There is d ∈ A s.t. I[x/d ] |= φ

I Known result: ν can be assumed to be defined only for the free
variables in the formula.

I Terminology I satisfies φ, I makes φ true, I is a model for φ
I We also write A |= φ(~x/ν)
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Examples

I Consider loopless, symmetric graphs G = (G ,EG)

a b

I φ1 := ∃x ∃y E (x , y) G |= φ1?
I φ2(x) := ∃y ∃z E (x , y) ∧ E (x , z) ∧ E (y , z) G |= φ2(x/a)

I φ3(x , y) := E (x , y) G |= φ3(x/a, y/b)
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Entailment

I X |= φ iff all models of X are models of φ
I We say: X entails φ or φ follows from X
I X : set of sentences
I φ: sentence

I Note: entailment definition (per se) not easy implementable
=⇒: Notion of derivibility/inference in a calculus (see later
lectures)
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Algorithmic Problems in First-Order Logic

I Model Checking:
I Input: graph (or generally structure) G, formula φ(x1, . . . , xn)

and assignment [x1/a1, . . . , xn/an]
I Output: Is G |= φ(x1/a1, . . . , xn/an) the case?

I Satisfiability Problem
I Input: sentence φ
I Output: Does there exist a structure G s.t. G |= φ?

I Complexity of problems
I Model checking problem is decidable and PSPACE complete

(in combined complexity)
I Satisfiability is undecidable
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Role of Logic for/in Computer Science



The Burden of Logic in the 19-20th Century

I Role of logic as a foundation
for all of mathematics

I Literature hint: Logicomix
I fantastic graphic novel
I Narrator: Philosopher and

logician B. Russell
I About the illusions,

disillusions, and
landmarking results at the
end of the 19th century

33 / 66



Foundations of Mathematics with Mathematical Logic

I Attempts to find formal foundation for mathematical logic
I Hilberts Program (1900-1928)

I Mathematics is consistent
I Mathematics is (semantically) complete
I Mathematics is decidable
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Awakening

I Young Gödel proves (1931-33)
I arithmetics not complete
I consistency of set theory not provable

I Church/Turing (1936/37)
I First-order logic is not decidable
I Valid sentences not recursive
I Sentences true in arithmetic not recursively enumerable

(semi-decidable)

I Nonetheless there are the following positive insights
I Syntactically completeness for FOL (Gödel, 1930)
I ZFC (Zermelo-Fraenkel Set Theory) can be used to formalize

all contemporary mathematics
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The Unusual Effectiveness of Logic

I Logic (Research) and Computer Science had fruitful effects
onto each other

I Logic even more w.r.t. CS (than w.r.t. mathematics)
I “Logic is the calculus of CS”

Lit: M. Y. Vardi. From philosophical to industrial logics. In Proceedings of the 3rd

Indian Conference on Logic and Its Applications, ICLA’09, pages 89–115, Berlin,

Heidelberg, 2009. Springer-Verlag.

Lit: J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi, and V.

Vianu. On the unusual effectiveness of logic in computer science. Bull. Symbolic

Logic, 7(2):213–236, 2001.
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Why is this the Case?

I Logic is so general that it allows to
I talk precisely about the objects within a

computer/computation model
I specify and reason about the properties of runs in the model

I Even more: One can characterize complexity classes with logics
(Descriptive Complexity)
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So ...

As an upcoming computer scientist (in academia or industry) you
should train in formal models, in particular logics, because:

I you want to apply successfully for a job

I But more importantly: you want to keep your job
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Computer Science Areas Effected by Logic Research

I Database Systems
I Ontology-Based Information Systems
I Semantic Integration
I Computer-Aided Verification (Model Checking)
I Computational Complexity
I High-Level Stream Processing
I Multi-Agent Systems
I Machine Learning (e.g. probabilistic graph models and logics)
I Semantic Web
I Logic Programming
I Knowledge Representation
I Semantics of Programms
I Digital Design ...
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Effects of Computer Science to Logic Research
I Focus/Intensive research on finite structures

I Objects of computation are finite (Finite Model Theory)
I But: potentially infinite structures (such as infinite DBs or

streams) are useful as well

I Need for extensions of FOL
I Higher-order logics (quantification over sets/relations)
I Recursion (Datalog)

I Feasibility of reasoning services =⇒ restrictions of FOL
I Modal and temporal logics
I Description Logics

I Connections of logic and automata models
I Regular expressions, finite automata, sequential logics
I Buechi automata

I Logic engineering

I Different forms of inference ...
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Overview on Course With Examples



Example: Logic in DB Research (Lectures 3-4)

I Travel DB with direct
connection flights

I Reachability query
I SQL allows for recursion

(CONNECT key word)
I But is it really necessary?

Table Flight
Start End

Hamburg Berlin
Hamburg New York
New York Berlin

. . . . . .

Query Qreach: List all cities reachable from Hamburg!

Intuitively without recursion:

Qreach(x) = Flight(Hamburg , x) ∨
∃x1Flight(Hamburg , x1) ∧ Flight(x1, x) ∨
∃x1, x2Flight(Hamburg , x2) ∧ Flight(x2, x1) ∧ Flight(x1, x) ∨

. . .
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Example: Logic In DB Research

I Finite Model Theory (FMT) gives a proof for the
impossibility to use FOL for recursive queries

I FMT models DBs as finite relational FOL structures

Example

I Flight table becomes structure
A = (D,FlightA,HamburgA,BerlinA, . . . )

I Domain D: all constants in DB
I Constants named by themselves, e.g., HamburgA = Hamburg
I FlightA = {(Hamburg ,Berlin), (Hamburg ,NewYork), . . . }
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Example: Logic In DB Research

I Investigate all relevant reasoning problems w.r.t. finite models
I Many properties for classical FOL do not hold
I Also w.r.t. complexity

=⇒ Calls for new techniques

I In particular: Investigate properties that all FOL queries have.

Theorem
All FOL formulas are local.
(Holds even for FOL extended with aggregation)

I Recursive queries are not local!
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Example: Data Exchange (Lectures 5-6)

I Deals in a specific way with the integration of DBs

I Scenario
I You have two DBs (source and target) on the same domain

but different schemata S and T
I You have some relationship specifications Σ(T ,S) for T and S
I Aim: Answer queries over T to get answers with DBs over S
I Subaims: Find (good) instances for T corresponding to given

instances over S and answer over found solution set.

I And here comes logic
I Language for specifying ΣST =⇒ Specific FOL formulas called

tuple generating dependencies (tgds)
I Criteria for goodness of solutions =⇒ universal model notion
I How specify answers? =⇒ Certain answer semantics
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Example: Data Exchange

Example

I S : student(name)
I T : univ(sname, uname)
I ΣST : student(x)→ ∃y univ(x , y)

“If something is a student in a S-DB, then there is an
associated university in the T -DB”

I Example T -query: Q(x) = ∃y .univ(x , y)

I What should be the answers for given S-DB I =
{student(Frege)}?
cert(Q(x),I) = {Frege}
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Example: Querying via Ontologies (Lectures 7-8)

I Ontologies as formal means to represent and reason over data
I Ontologies specify constraints and completeness rules
I Ontologies may have many models (open world assumption)
I May be used for access of heterogeneous data sources

I Appropriate ontology languages: Description Logics (OWL and
variants)

I Constants, concepts (unary predicates), roles (binary
predicates)

I Terminological axioms, e.g., Students v Humans
I Assertions axioms, e.g., Student(Frege)
I Description logics are feasible fragments of FOL
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Example

I No university known for Goedel
I Completeness:

Student v ∃hasUniv .University
I Functionality constraint:

(func hasUniv)

Table university
Student Univ
Frege U-Jena
Russell U-London
Goedel NULL
. . . . . .
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Example: Ontology Integration (Lectures 9-10)

I There exist many ontologies out there
I For some applications need to integrate ontologies
I Problem: Joining ontologies may lead to

incoherences/inconsistencies

Example
Ontology A

I Article ≡ ∃publ .Journal
I Journal v ¬Proceedings
I (func publ)

Ontology B

I Article ≡ ∃publ .Journal
tProceedings

I publish(ab, procXY )

I OA ∪ OB is inconsistent
I How to repair this?
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Belief Revision

I Belief Revision deals with operators for revising theories under
possible inconsistencies

I Investigates concrete revision operators
I Principles that these must fulfill (minimality etc.)
I Representation theorems

I Recent research how to adapt these for non-classical
logics/ontologies

54 / 66



Streams (Lectures 11-12)
I “It’s a streaming world” (Ubiquity)

I Many data are temporal (sensor, event data)
I Big data is mostly temporal data

I “Streams are forever” (Potential Infinity)
I Streams are potentially infinite
I One has to tame the infinite
I Streams call for continuous querying (monitoring)

I “Order Matters” (Sequentiality)
I Stream elements have an arriving order next to temporal order
I Re-ordering or special sequencing may be needed

Lit: E. Della Valle. et al. It’s a streaming world! Reasoning upon rapidly changing

information. Intelligent Systems, IEEE, 24(6):83–89, nov.-dec. 2009.

Lit: J. Endrullis, D. Hendriks, and J. W. Klop. Streams are forever. Bulletin of the

EATCS, 109:70–106, 2013.

Lit: E. D. Valle et al. Order matters! Harnessing a world of orderings for reasoning

over massive data. Semantic Web, 4(2):219–231, 2013.
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Query With Sliding Window

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Qloc

I Sliding window for taming the infinite
I Query window contents with local query Qloc

I Example: Qloc = Show all failure events in the window
I For High-Level Stream Processing: Incorporate background

knowledge
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Process Verification (Lectures 12-13)
I Verification of system behavior very important for industrial

applications
I Model Checking mature theory with well-proven software

implementations used in industry
I given a system description (model) and (desired) specifications

(axioms in (temporal logics))
I Check whether specification is fulfilled by (all runs of) model

Example (Linear Temporal Logic)

I Excluding unwanted conditions for every time point

�¬(turbineTemp > 90◦)

I Ensuring wanted conditions

�(startTurbine → �TurbineIsRunning)
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Process Verification

I Lift verification ideas/tools to verify business processes
I Challenges

I Have to incorporate (large amounts of) data
=⇒ artifact-centric approach (early 2000)

I Finite state models not sufficient
=⇒ finite state transducers
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Exercise 1 (6 points)

Describe an example application or a computer science sub-area
from your CS studies or from your job which exemplifies the “use”
of some form of logic. In particular answer the following questions
(on 2-3 slides in pdf):

1. What kind of logic is used?
2. What is its relation to FOL?
3. How/why is it used in the area/application?

I Send your solutions in one pdf file as presentation until
Monday night, 24th of October 2016 to
oezcep@ifis.uni-luebeck.de.

I You may work in pairs
I State your name, your study course (Studiengang) and your

identity number (Matrikelnummer) at the title page
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