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Recap of Lecture 3



What the lecturer happens to see in the
audience—sometimes

https://www.youtube.com/watch?v=IQgAuBh1BTO
Owl video
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https://www.youtube.com/watch?v=IQgAuBhlBT0

» Finite Model Theory approach

» consider DBs as finite structures
» FOL as query language

» FOL works because

» Though FOL model checking in PSPACE w.r.t. combine
complexity
» itis in ACY for data complexity

> |nexpressivity Tools

» Games as basic tool for proving inexpressivity
» Reduction tricks

End of Recap
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Locality



Proving Inexpressibility by Locality
» FOL has a fundamental property:

» Observation
» Consider a binary query Q : STRUCT (o) — STRUC(ans) to
be defined in FOL
» So, we need a formula ¢ in two open variables x, y
» The way how to describe constraints between x and y is
restricted by the number of atoms and elements occurring in
PQ-
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Proving Inexpressibility by Locality
» FOL has a fundamental property:

» Observation
» Consider a binary query Q : STRUCT (o) — STRUC(ans) to
be defined in FOL
» So, we need a formula ¢ in two open variables x, y
» The way how to describe constraints between x and y is
restricted by the number of atoms and elements occurring in

0Q-

» Different (comparable) locality notions

» Bounded number of degrees property (BNDP)
» Gaifman locality
» Hanf locality
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BNDP

» in(®) = set of in-degrees of nodes in &
» out(®) = set of out-degrees of nodes in &
> degs(®) = in(®) U out(®)

Definition
@ has the bounded number of degrees property (BNDP) iff there is
fo : N — N s.t. for all graphs &:

If there is k € N s.t. max(degs(®)) < k
then |degs(Q(®))| < fo(k).

» Intuitively: @ disallowed to arbitrarily increase degrees of nodes

Theorem
Every FOL query has the BNDP.
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Example: TC on Successor Relation Graph
» & = ({a0,...,an},{E(a0,a1),..., E(an—1,an)})
> in(®) = out(®) = {0,1)

> in(TC(®)) = out(TC(®)) = {0,....n— 1}
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It's (sometimes) sufficient to Consider Graphs Only

Definition (Gaifman Graph)

For any o structure 2l one can define the Gaifman graph
& = (G, E) as follows:
» G = dom(2)
» There is an edge between two elements a, b of 2l iff they
co-occur within a relation of 2, formally:
(a,b) € E® iff 2 # b and there is some (n-ary) relation R*
and a tuple a1,..., a, such a, b are among those elements and
ai,...,aj1 such that (ar,...,a,) € R¥
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It's (sometimes) sufficient to Consider Graphs Only

Definition (Gaifman Graph)

For any o structure 2l one can define the Gaifman graph
& = (G, E) as follows:
» G = dom(2)
» There is an edge between two elements a, b of 2l iff they
co-occur within a relation of 2, formally:
(a,b) € E® iff 2 # b and there is some (n-ary) relation R*
and a tuple a1,..., a, such a, b are among those elements and
ai,...,aj1 such that (ar,...,a,) € R¥

» d(a, b) = distance between two vertices a, b = path of
minimal length between a, b

» d(3,b) = min,es{d(a;, b)} = distance of vertex b from tuple
of vertices 3
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Gaifman locality

Gaifman locality defined here on graphs & = (G, E)
(can be generalized to arbitrary structures with Gaifman graph)

Gaifman Locality (Intuitively)

An m-ary query Q is Gaifman local iff there is a threshold (radius)
r such that for all graphs:

@ cannot distinguish between tuples if their r-neighbourhoods in
the graph are the same.

Theorem
Every FOL-definable query is Gaifman local.
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Gaifman Locality

» 3a=(a1,...,an) € G" (vector of elements)
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Gaifman Locality

» 3= (a1,...,an) € G" (vector of elements)

» B(@)={be G|d(ab)<r} (radius r ball around 3)
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Gaifman Locality

» 3= (a1,...,an) € G" (vector of elements)
» B(@)={be G|d(ab)<r} (radius r ball around 3)
» NP(a) (r-neighbourhood of a)

subgraph induced by BY(3) in the structure (G, E, 3)
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Gaifman Locality

» 3= (a1,...,an) € G" (vector of elements)
» B®(@)={be G|d(ab)<r} (radius r ball around 3)
» N®(3) (r-neighbourhood of 3)

subgraph induced by B®(3) in the structure (G, E, 3)
» Note: (G, E, 3) is a graph where some elements (namely that
of 3) are named by constants: they are fixed
» In N®(3) the elements 3 have the same names as in (G, E, )
(say c1,...c,) and the there is an edge between a pair of
elements B® (3) iff there is an edge in (G, E, 3) between them
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Gaifman Locality

» 3= (a1,...,ap) € G" (vector of elements)
» B%(a)={bec G|d(ab)<r} (radius r ball around 3)
» NO(a) (r-neighbourhood of 3)

subgraph induced by B®(3) in the structure (G, E, 3)

Definition
An m-ary query Q (with m > 0) is Gaifman-local iff:

There exists a radius r s.t. for all &: If N®(3) ~ N®(b), then
2 € Q(®) exactly when b € Q(®&).
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Example: TC is not Gaifman local

O e e e G D

Proof
» Suppose TC were FOL definable with query @
» Then @ would be Gaifman local with some radius r
N ((a, b)) = NE((b, 2))
because both subgraphs are disjoint unions of two 2r-chains
But (a,b) € TC(®) and (b, a) ¢ TC(®), ¢

v

v
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Hanf locality

Definition (Hanf locality (informally))

A Boolean query @ is Hanf-local iff there is a threshold (radius) r
s.t. any pair of graphs &, ®’ that can be made pointwise similar
w.r.t. r-neighbourhoods cannot be told apart by Q.

» Have to make precise “pointwise similar”

13 /56



Hanf locality

> & =(AE),® = (A, E)

> 6=, & ff
there exists bijection f : A — A’ s.t. for all 2 € A:
NE(3) = NE'((2))

Definition (Hanf locality (formal))

A Boolean query @ is Hanf-local iff a radius r exists s.t. for any
graphs &, &' with =, &’ one has Q(®) = Q(&').

Every FOL definable Boolean query is Hanf-local.
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Example: CONN is not Hanf-local

( )( ) ®: two cycles of length m
< > ®’: one cycle of length 2m
Proof

» For contradiction assume CONN is Hanf-local with parameter r

» Choose m > 2r + 1; f an arbitrary bijection of ® and &’

» r-neighbourhood of any a the same: 2r-chain with a in the
middle

» Hence & =, &, but: &’ is connected and & is not. /
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Comparison of Locality Notions

Hanf local = Gaifmann local = BNDP
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Optional Slide: Adding Order

» Many applications have finite models with a linear order <

» Locality conditions in its original form not applicable: 1-radius
already whole structure

» Consider invariant queries

Definition
A query Q over ordered structures is invariant iff

ﬁ)r all structures Ql,iall tuples b and all linear orders <1, <> on 2:
be Q((A,<1)) iff be Q((A, <2))

For an invariant @ define Q;,, on arbitrary structures as:
Qiny(2) = Q((2, <)) for arbitrarily chosen <.
Qinv called invariant FO-query.

Theorem

Every invariant FOL query is Gaifman-local (and so has BNDP).
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0-1 law



0-1 law

An inexpressibility tool based on a probabilistic property of FOL
queries

0-1-law informally

Either almost all finite structures fulfill the property or almost all do
not

Consider the following boolean queries on graphs
> Ql - VX,)/ E(Xy)
Almost all graphs do not satisfy Q; (only the complete ones)

> Q =VxVy3dz E(z,x) N —E(z,y)
Almost all graphs satisfy Q>
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Formal definition 0-1 laws

» Here it is important that signature o is relationall!
» STRUC(o, n): structures with domain [n] := {0,1,...,n— 1}
over o.

» For a Boolean query @ let

{2 € STRUC(o, n) | Q(2A) = true}|
Ha(Q) = ISTRUC(a, n)|

> 11,(Q) is the probability that a randomly chosen structure on
[n] satisfies @

» 1(Q) =limpeo (@) (if limit exists)

A logic has the 0-1-law if for every Boolean query @ expressible in
it either u(Q) =0 or pu(Q) = 1.
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Inexpressibility with 0-1 laws

Theorem
FOL has the 0-1-law.

» Helpful for proving inexpressibility of counting properties

((EVEN) not defined because 1i,(EVEN) alternates between 0 and
1.
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Let me add a “footnote” on the general strategy of using the 0-1
law ®

https://www.youtube.com/watch?v=jWinRjU7KbO

Locally stored video
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https://www.youtube.com/watch?v=jWinRjU7Kb0

Let me add a “footnote” on the general strategy of using the 0-1
law ©

https://www.youtube.com/watch?v=jWinRjU7KbO

Locally stored video

OK, now the real footnote—on the next slide
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Probability and Logic

» The 0-1 law exemplifies a general strategy
of using methods for handling uncertainty
(probability theory) in order to solve crisp
questions (here: FOL expressibility)

» Compare “probabilistic method” as applied
to combinatorics

» Also called “Erdés method”

» Take a time to learn about the great
Hungarian mathematician Erdos, e.g.,
from biography “The man who loved only
numbers’ http://www.nytimes.com/
books/first/h/hoffman-man.html
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Beyond FOL



Counting, Aggregation

» Practical languages s.a. SQL allow counting and aggregation.

>

SELECT S1.Dept, AVG(S2.Salary)
FROM S1, S2

WHERE S1.Empl = S2.Empl

GROUP BY S1.Dept

HAVING SUM(S2.Salary) > 1000

Schema: S1(Empl, Dept), S2(Empl,Salary)

» Consider corresponding extensions of FOL

» Some of the tools shown so far still work (when non-ordered
structures are considered)
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FOL with counting quantifiers

Definition (FOL-AIICnt)

FOL-AIICnt is the extension of FOL with counting quantifiers and
counting terms:

» 377x.4(x): There are at least i elements x fulfilling ¢.

> #X.¢(X): the number of X fulfilling ¢ ().

» Semantics defined w.r.t. 2-sorted FOL structures
2 = (AN, (R")reo, Arith)
» Second domain (sort) N is infinite!

» Arith contains (interpreted) arithmetic predicates and functions
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Parity of a unary predicate symbol U can be expressed by the
following formula using counting quantifiers:

YFi((i + i = j) A FFxU(x) AVK(FZFXU(x) — k <))

“There is an even number () of Us and there are no more than j
Usll

FOL+AIICtn queries are Hanf local (and thus Gaifman local and
have the BNDP).
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Aggregation

» J = aggregate function = family of functions f, >, ... with
» f, maps n-element multisets from Q to elements from Q.
E.g.: SUM = {51, S2, ... ,} with Sk({dl, Cee dk}) = sz:ldi

Definition (FOL-Aggr)

FOL-Aggr same as FOL+AIICnt but with aggregate terms (and ©Q
instead of N).
» Syntax: Terms t(X) of the form Aggrry.(4(X,y), t'(X.¥))
» Not eh possibility of nesting with term ¢’ (as in SQL)

>

» Semantics over 2 for tuple b
> t%(b) = fig({t"™(b,T) | € € B})
(where B := {¢ |2 |= ¢(b,?)})

Correspondence to SQL:
» X = grouping attributes
» ¢(x,y) = HAVING clause
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Locality for FOL+Aggr

FOL-Aggr queries are Hanf-local (and thus Gaifmann-local and
have the BNDP).

» |If order is added, then locality is lost
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Higher-Order Logics

> : Allow quantification over relations

Vocabulary: FOL vocabulary + predicate variables X, Y. ...
Syntax: FOL syntax +
» Xty...t,is a formula (for n-ary relation variable X and terms
t,')

» If ¢ is a formula, then so are IX¢, VXo

v

v

v

Higher-order quantification adds expressivity, e.g.,

v

EVEN(o) (for any signature o, in particualr for o = {})
expressible. (Exercise)
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Fixed Point Logics (FPLs)

» Reachability queries call for extension of FOL with “iteration”
mechanism

» FPLs use a well-behaved self-referential process/bootstrapping
» Fixed points as limits of this process
» Different fixed points may exist

» Different fixed point logics exist (e.g. largest, least)

» Most prominent in DB theory: Datalog
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Example: Compute the Transitive Closure

» E(x,y) = edge of graph &,
» R(x,y) = transitively closed relation between vertices

Vx,Yy R (x,y) < E(x,y)V(3z.E(x,z) N R (z,y))

» For all graphs & find extension & = (&, R®') s.t. Ihs and rhs
evaluate to the same relation. (*)
» Read equivalence as a iteratively applied rule from right to left

Xnew |(x,y) —  E(x,y) V(32.E(x,2) A Xoid (2.¥))

(*b(Xay7Xo/d)

» Induces a step(-jump)-operator F on the semantical side
» For X C G x G:

F X o {(d1,cb) | (8, X, x/dv,y/d) = 6(x,y. X)}

» Condition (*) reread: find fixed point R, i.e., F(R)=R
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Constructing Least Fixed Points

v

Start with extension () (seed) and proceed iteratively
Progress schema: (), F(0)), F(F(0)), F3(0), F*(0),...
In our example
» X0 =seed =10
» X! = E® = direct edges
» X2 =F(XY) = XU {(x,y)|3z.E(x,2) A X (z,y)} =
direct edges or paths of length 2

v

v

> ..
& _ i
> R _UieNX

v

The fixed point here is the least fixed point.
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Constructing Least Fixed Points

» Start with extension () (seed) and proceed iteratively
Progress schema: (), F(0)), F(F(0)), F3(0), F*(0),...

v

> In our example
» X0 =seed =10
» X! = E® = direct edges
» X2 =F(XY) = XU {(x,y)|3z.E(x,2) A X (z,y)} =
direct edges or paths of length 2
>
» RY = Uien X'
» The fixed point here is the least fixed point.

Nota bene
» A fixed point may not exist
» There may be many fixed points
» There may not be a least fixed point. (Exercise)

v
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Fixed Point Construction Graphically

» Fixed point for F(x) = cos(x).
» Attractor

_\_
Vi
~
N
&
0.6+
fixed point
0.6
0.4
02
| seed | | |
I I Y I I I
1.5 1 05 0 05 1 15

"Cosine fixed point". Licensed under CC BY-SA 3.0 via Wikimedia Commons - https:

//commons.wikimedia.org/wiki/File:Cosine_fixed_point.svg#/media/File:Cosine_fixed_point.svg
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Recursive Humor

> Wiki entry Recursive humor.
It is not unusual for such books to
include a joke entry in their glossary
along the lines of: Recursion, see
Recursion.[6]

[...] An alternative form is the following,
from Andrew Plotkin: “If you already
know what recursion is, just remember
the answer. Otherwise, find someone who
is standing closer to Douglas Hofstadter
than you are; then ask him or her what
recursion is.”

Lit: D. Hofstadter. Godel, Escher, Bach:

An Eternal Golden Braid.Vintage Books,

1979. PLLTOTAL Ly SCREW WITH TH
. BPACEATIVE CONTINUUM BRO

> Blog Recursively Recursive
https://recursivelyrecursive.wordpress.com/category/
recursive-humour/page/2/
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Datalog

» Developed around 1980s

» Renaissance (not only as proof tool but) as industrially applied
tool

» EXPTIME-complete in combined complexity; PTIME-complete
data complexity

» Simple evaluation strategy for positive fragment (no negation)
» Negation calls for hierarchical evaluation (stratification)

» Different fragments; optimizations ...
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Datalog

» General Logic Programm: Finite set of rules of the form

head body

« atomic formula; 3; are literals

Free variables V quantified; comma , read as A

Intensional relation: Relation symbol occurring in some head
Extensional relation: occurring only in body

vV vy vy
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Datalog

> : Finite set of rules of the form

« atomic formula; 3; are literals
Free variables V quantified; comma , read as A

: occurring only in body

> = logic program with
» no function symbols
» no intensional relation negated in body
» Sometimes additionally
> all free variables in head also in body
> all variables in negated atoms (or arithmetical expressions
such as identity) also in non-negated atom in body
» Semantics for datalog programs: by step-operator used in
parallel for intensional relations

: Relation symbol occurring in some head
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Datalog example: ancestors of Mary

ans(x) < ancestor(x, mary)
ancestor(x,y) < parentOf(x,y)

ancestor(x,y) < parentOf(x,z),ancestor(z,y)

In FOL notation:

Vx ancestor(x, mary) — ans(x)
VxVy parentOf(x, y) — ancestor(x, y)
Vx,Vy (3z parentOf (x, z), ancestor(z,y)) — ancestor(x, y)
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SQL 3 Recursion example

%Find Mary’s ancestors from ParentOf (parent,child)
WITH RECURSIVE Ancestor(anc,desc) AS
( (SELECT parent as anc, child as desc FROM ParentOf)

UNION
(SELECT Ancestor.anc, ParentOf.child as desc
FROM Ancestor, ParentOf
WHERE Ancestor.desc = ParentOf.parent) )

SELECT anc FROM Ancestor WHERE desc = "Mary"
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FOL with Least Fixed Points

» Datalog extends FOL w.r.t. the semantics (subkutane)

» There are different extensions of FOL with fixed point
operators available in the syntax

» Example 3FO(LFP): existential fragment of FOL extended
with relation variables and with least fixed point operator
[LFPy y¢]
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JFO(LFP)
» Syntax: FORMsro( rp) = set of IFO(LFP) formulae

» Every second-order atomic formula is in FORM=ro(,rp)
¢ for ¢ an atomic FOL formula
¢ AN € FORMafpo(LFp)
¢V 1 € FORMspo(Lrp)
dx¢ € FORMsgo(Lrpy (only (existential) quantification over
first-order variables)
[LFPz x|t
» Semantics
>
> A = [LFPsz x @]t iff
“For X chosen as least fixed point, t fulfills ¢ in 2"
» Restriction: X has to occur positively (i.e. after an even
number of = in ¢ )
(Needed to guarantee existence of Ifp)

Existential fragment of 3FO(LFP) is equivalent to Datalog.

vV vy vy

v
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0-1 law for Datalog

Datalog (without negation and ordering) has the 0-1 law.

» In particular you can not express EVEN
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0-1 law for Datalog

Datalog (without negation and ordering) has the 0-1 law.

» In particular you can not express EVEN

» (Adding negation allows to express EVEN, which does not
fulfill 0-1 law)

» In fact a successor relation together with min- and
max-predicates is sufficient.

odd(x) <« min(x)

odd(x) <« S(x,y),even(y)

even(x) <« S(y,x),odd(y)
EVEN <« max(x), even(x)
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What we Did not Cover

Very many FMT topics were not covered in these two lectures, in
particular ...
» Descriptive Complexity

» Algorithmic Model Theory (Infer meta-theorems on
algorithmic properties by constraining some input parameters

( ))

» Proving equivalence of languages (using types)
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Descriptive Complexity

» There is a close relationship between complexity classes and
logics (queries expressible in a logic)

» Hints to astonishing correspondences between prima facie two
different worlds

» The world of representation (what?) and of calculation (how?)
» Results talk about data complexity (!)

» Results mainly for ordered structures
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Fagin lays the foundations

» One of the first insights which founded descriptive complexity
goes back to Fagin

Theorem ( captures NPTIME)

Existential second order logic (SO3) captures the class of problems
verifiable in polynomial time (NP)

S04 = second order logic where second order quantitiers are
restricted to

Definition
A logic L captures a complexity class C iff for all o with <€ ¢ and
classes of structures K C STRUC(o):

K € C iff K is axiomatizable in £
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co-re. Arithmetic Hierarchy re.
complete co—r.e. FOMN) r.e. complete

— . FOH(N)
FOV(N) Recursive

Primitive Recursive

o

sop" | EXPTIME SO(LFP)
FO[Z"M] som M) PSPACE FO(PFP) SO(TC)
co-NP Polynomial-Time Hierarchy NP
complete " 0-NP 50 NP complete
sov NP 01 co-NP Sod
Foin O] p FOLEP)
"truly feasible" SO-Homn
FO[(log m)*" | NC
NC?
log(CFL) sAC!
FO(TC) NSPACE[log n] SO-Krom
FO(DTC) DSPACE[log n]
_ relar Nc!
FOOM) _— — T

0

L~ '//;() Logarithmic-Time Hierarchy AC
The Descriptive World

(Immerman: Descriptive Complexity, ACM SIGACT NEWS, vol. 34, no. 3, 2003, p.5)
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Solutions to Exercise 3 (12 Points)

47 /56



Ad Exercise 3.1 (4 Points)

Give at least two aspects of real DBs for which the approach of
identifying DBs with finite FOL structures is not sufficient or
adequate.

>

DBs may have NULL values (but structures are not
incomplete). So one has to argue with completions of DBs.
(See lecture on data exchange)
Domain of the structure corresponding to a DB is not
explicitly specified
» Natural (as in FOL) vs. active domain semantics (consider only
those constants occurring in a DB as potential element of the
domain)
» Safety considerations needed for FOL (not the case for
relational calculus/SQL)
One can show: FOL under active domain semantics the same
as SQL

Nonetheless: It means dependency on domain.
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Ad Exercise 3.2 (4 Points)

Argue why the usual restriction in FMT to consider only relational
structures (i.e., no function symbols allowed) is not problematic.
That is more formally: How can formulae with function symbols be
represented by formulae containing only relation symbols (in
particular the identity relation)?

» For every n-ary functional symbol f introduce n + 1-ary
relation symbol Ry and state that Rr is a function:

Vx1, o YXp—1 3y Re(X1, - - oy Xny y1)A

» Then recursively eliminate all terms by substituting atoms of
the form

» (1) =t with Re(t1, t2)
> S(fA(t1), 2, - -, ty) with IxS(x, B2, ..., tn) A Re(t1, x)
and so on.
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Ad Exercise 3.3 (4 Points): Reduce EVEN(<) to Graph

Connectivity

Formalize the reduction query Q,oy : LinOrd — GRAPH from linear
orders to graphs by describing a query formula inducing Q,eq.

linear order is odd iff graph connected

-

= /\ /\
linear order is even iff graph is disconnected
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Ad Exercise 3.3 (4 Points): Reduce EVEN(<) to Graph

Connectivity

Formalize the reduction query Q,oy : LinOrd — GRAPH from linear
orders to graphs by describing a query formula inducing Q,eq.

linear order is odd iff graph connected

=

= /\ /\
linear order is even iff graph is disconnected

» Construction of graph from linear order expressible as an FOL
query Qreq : LinOrd — GRAPH
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Ad Exercise 3.3 (4 Points)

» Helper formulae
» succ(x,y):x<yA-Jzx<zAz<y
» last(x):—Jz.x < z
» first(x): —3z.z < x

» Define Q,eq: LinOrd — GRAPH as

E(x,y) = dlxy)=
(3z(succ(x, z) A succ(z,y))) V
(last(x) A 3z(first(z) A succ(z,y))) V
(3z(last(z) A succ(x, z) A first(y)))

» Assume that CONN is expressible as FOL query ¢conn over
signature {E} for graphs.

» Then EVEN(<) would be FOL expressible as:
beonlE V¢
(Note: ¢conn[E /7] is shorthand for replacing every occurrence of atom E(u, w)

by formula ¥ (u, w) in ¢conn.) 51/56



Exercise 4 (16 Points)
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Exercise 4.1 (6 Points)

Use Hanf locality in order to proof that the following boolean
queries are not FOL-definable.

1. Is a given graph acyclic?
2. Is a given graph a tree?
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Exercise 4.2 (4 Points)

Show that EVEN(c) can be defined within second-order logic for
any o.

Hint: formalize “There is a binary relation which is an equivalence
relation having only equivalence classes with exactly two elements”
and argue why this shows the axiomatizability.
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Exercise 4.3 (2 Points)

Argue why (in particular within the DB community) one imposes
safety conditions for Datalog rules.
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Exercise 4.4 (4 points)

Give examples of general program rules for which
1. No fixed point exists at all (Hint: “This sentence is not true")

2. Has two minimal fixed points (Hint: “The following sentence is
false. The previous sentence is false.”)
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