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Short Recap

We should understand now:
“Finite Model Theory (FMT) is the backbone of database theory”
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Data Exchange: Motivation



Data Exchange (DE): Main Setting

σ DB

source schema σ

target schema τ

τ query

Inputs of a DE scenario
I Source (σ) instance
I MappingM = (σ, τ,Mστ , )
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Data Exchange History

I Much research in DB community

I Formal treatment starts in 2003
Lit: R. Fagin et al. Data exchange: Semantics and query answering. In:

Database Theory - ICDT 2003, Proceedings, volume 2572 of LNCS, pages

207–224. Springer, 2003.

Lit: R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and Y.

Velegrakis. Conceptual modeling: Foundations and applications. chapter Clio:

Schema Mapping Creation and Data Exchange, pages 198–236. Springer-Verlag,

Berlin, Heidelberg, 2009.

I Incorporated into IBM Clio
http://dblab.cs.toronto.edu/project/clio/
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Research Context of DE

Definition (Semantic Integration (SI))

Research area dealing with issues (services) related to ensuring
interoperability of possibly heterogeneous (data) sources using
semantics.

Data Exchange = Asymmetric DB schema-level SI
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Lecture Context

I Lecture 5 + 6: Data exchange
I Will heavily use knowledge on FOL (Lectures 1 + 2) and FMT

(Lectures 3 + 4)

I Lecture 7 + 8: Ontology-based data access

I Lecture 9+10: Ontology-level integration
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Data Exchange: Challenges

σ DB

source schema σ target schema τ

τ query

τ DB
Exchange

mapping rules

Mστ

Consistency: Is there a τ DB
fitting the rules?

Materialization: If yes, can one construct
solution (effectively)?

Goodness: Are some solutions “better”?
(universal, core)

Semantics of QA: What answers are intended?
certain answers

QA algorithm: How to calculate answers?Semantics of mappings
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Running Example



Example (DE in Flight Domain)

Source schema σ

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

Target schema τ

Route( fno, src, dest )

Info( fno, dep, arr, airl )

Serves( airl, city, coun, phone )

Mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃arr (Route(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))
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Sufficiently expressive FOL formula of feasible form
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Source schema σ and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )
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Definition (Certain answers over incomplete DB (informally))
cert(Q,T) = intersection of answers over all complete DBs

represented by T

Rep(T) = all complete DBs resulting from T by substituting
marked NULLs (consistently) with constants
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Definition (Certain answers over incomplete DB (formally))

cert(Q,T) = Q(T) =
⋂

T′∈Rep(T)

Q(T′)
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Definition (Certain answers over incomplete DB (formally))

cert(Q,T) = Q(T) =
⋂

T′∈Rep(T)

Q(T′)

Rep(T) = all complete DBs resulting from T by substituting
marked NULLs (consistently) with constants

I Exemplifies two important general strategies
I Reduction (here: to answering over complete DBs)
I Minimal compromise/Summarization over all possible solutions

I Compare with full bayesian learning in ML:
Considers all hypotheses (∼ completions) consistent with
training data and averages (∼ intersects)
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⋂

T′∈Rep(T)

Q(T′)

Rep(T) = all complete DBs resulting from T by substituting
marked NULLs (consistently) with constants

Example (Answer for τ solution from flight domain)

I T = {Route(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr)}
Rep(T) = {{Route(123, paris, sant), Info(123, 2320, 0815, airFr)},

{{Route(124, paris, sant), Info(124, 2320, 0915, airFr)},
. . . , }

I Q1 = ∃fno Route(fno, paris, sant) cert(Q1,T) = {()} = yes

I Q2 = Route(123, paris, sant) cert(Q2,T) = ∅ = no

13 / 60



Definition (Certain answers over incomplete DB (formally))

cert(Q,T) = Q(T) =
⋂

T′∈Rep(T)

Q(T′)

Rep(T) = all complete DBs resulting from T by substituting
marked NULLs (consistently) with constants

Example (Answer for τ solution from flight domain)

I T = {Route(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr)}
Rep(T) = {{Route(123, paris, sant), Info(123, 2320, 0815, airFr)},

{{Route(124, paris, sant), Info(124, 2320, 0915, airFr)},
. . . , }

I Q1 = ∃fno Route(fno, paris, sant) cert(Q1,T) = {()} = yes

I Q2 = Route(123, paris, sant) cert(Q2,T) = ∅ = no

13 / 60



Definition (Certain answers over incomplete DB (formally))

cert(Q,T) = Q(T) =
⋂

T′∈Rep(T)

Q(T′)

Rep(T) = all complete DBs resulting from T by substituting
marked NULLs (consistently) with constants

Example (Answer for τ solution from flight domain)

I T = {Route(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr)}
Rep(T) = {{Route(123, paris, sant), Info(123, 2320, 0815, airFr)},

{{Route(124, paris, sant), Info(124, 2320, 0915, airFr)},
. . . , }

I Q1 = ∃fno Route(fno, paris, sant) cert(Q1,T) = {()} = yes

I Q2 = Route(123, paris, sant) cert(Q2,T) = ∅ = no

13 / 60



Example (DE in Flight Domain)

Source schema σ and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema τ and instance

Route( fno, src, dest )

Info( fno, dep, arr, airl )

Serves( airl, city, coun, phone )
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1. Flight(src, dest, airl , dep) −→
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. . .
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Certain Answers Help Again
I Same idea: Compromise over all possible solutions
I Certain answers w.r.t. mappingM = (σ, τ,Mστ ,Mτ ) and

source DB S

Definition (Certain answers (formally))

certM(Q,S) =
⋂

T∈SolM(S)Q(T)

Example (Certain answers in flight domain)

T = {Route(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr)}
T′ = {Route(⊥3, paris, sant), Info(⊥3, 2320,⊥2, airFr)}
T′′ = {Route(⊥1, paris, sant), Info(⊥1, 2320,⊥1, airFr)}
T′′′ = {Route(123, paris, sant), Info(123, 2320,⊥2, airFr)} . . .

I Q1 = ∃fno Route(fno, paris, sant) certM(Q1,S) = {()} = yes

I Q2 = Route(123, paris, sant) certM(Q2,S) = ∅ = no
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Certain Answers Help Again
I Same idea: Compromise over all possible solutions
I Certain answers w.r.t. mappingM = (σ, τ,Mστ ,Mτ ) and

source DB S

Definition (Certain answers (formally))
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⋂

T∈SolM(S)Q(T)
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But wait . . .

I In DE one aims at materializing exactly one τ solution?
I Is there a single solution Tu capturing the certain answers?

certM(Q,S)
?
= Q(Tu)

I Yes! Universal solution
I Contains facts which are as specific as necessary, i.e.,

all other solutions more specific
I Works for CQs = conjunctive queries (= SPJ fragment)
I Universality fundamental property ubiquitous in CS

I e.g., most general unifier in resolution
I If existent, can be constructed by chase procedure
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Example (DE in Flight Domain)

Source schema σ and instance S

Geo( city, coun, pop )
Flight( src, dest, airl, dep )

paris sant. airFr 2320

Target schema τ

Route( fno, src, dest )

Info( fno, dep, arr, airl )

Serves( airl, city, coun, phone )
Mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃arr (Route(fno, src, dest) ∧ Info(fno, dep, arr , airl))

Universal solutions

T = {Route(⊥1, paris, sant), Info(⊥1, 2320,⊥2, airFr)}

T′ = {Route(⊥3, paris, sant), Info(⊥3, 2320,⊥2, airFr)}

T′′ = {Route(⊥1, paris, sant), Info(⊥1, 2320,⊥1, airFr)}

T′′′ = {Route(123, paris, sant), Info(123, 2320,⊥2, airFr)} . . .
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non-necessary
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Definition (Universal Solution)

A solution T for S andM is called a universal solution iff
it can be mapped homomorphically into all other solutions.

For all T′ ∈ SOLM(S) there is h : T
hom−→ T′

18 / 60



Homomorphism

I CONST (T) = set of all constants in T

I VAR(T) = set of all marked nulls in T

Definition
A homomorphism h : T

hom−→ T′ is a map

h : Var(T) ∪ CONST → VAR(T′) ∪ CONST

s.t.
I h(c) = c for all c ∈ CONST and
I if R(t1, . . . , tn) ∈ T, then R(h(t1), . . . , h(tn)) ∈ T′

(for all relations R)

See blackboard for (non)examples
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Example (Core in Flight Domain)

Source schema σ and instance

Geo( city, coun, pop )
paris, france, 2M

Flight ( src, dest, airl, dep )
paris amst. klm 1410
paris amst. klm 2230

Target schema τ

Route( fno, src, dest )

⊥1, paris, amst.
⊥3, paris, amst.

Info( fno, dep, arr, airl )

⊥1, 1410, ⊥2, klm
⊥3, 2320, ⊥4, klm

Serves( airl, city, coun, phone )

klm, paris, france, ⊥5

Mapping rules Mστ

1. Flight(src, dest, airl , dep) −→
∃fno ∃arr (Route(fno, src, dest) ∧ Info(fno, dep, arr , airl))

2. Flight(city , dest, airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))

3. Flight(src, city , airl , dep) ∧ Geo(city , coun, pop) −→
∃phone (Serves(airl , city , coun, phone))
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Why not delete similarly Route(⊥3, paris, amst)?

There are additional facts distinguishing ⊥1 and ⊥3

Identification ⊥1 = ⊥3 would violate primary key constraint
20 / 60



Core Solution vs. Universal Solution

I Core solutions contain less redundant information and are
unique

I but are harder to construct (next lecture)

I Which one to use?
I Aim “only” answering CQs =⇒ universal solution
I Aim goes further =⇒ core solution

I Need to query with more expressive language
(negation, counting)

I Need to calculate sufficient statistics in an ML algorithm
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Outlook

I Next lecture
I Formalization of mappings
I Algorithmic problem of testing for solutions
I Chase algorithm for constructing solutions

I Thereafter
I Universal solutions and cores
I Certain Answers
I Rewriting
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Testing for and Constructing Solutions



Relational Mappings
I Going to deal mainly with relational mappings, i.e. mappings

for relational DBs
I Relational DB (Codd 1970) very successful and still highly

relevant
I There were other opinions...

“Some of the ideas presented in the paper are interesting and may be of some

use, but, in general, this very preliminary work fails to make a convincing point

as to their implementation, performance, and practical usefulness. The paper’s

general point is that the tabular form presented should be suitable for general

data access, but I see two problems with this statement: expressivity and

efficiency. [...] The formalism is needlessly complex and mathematical, using

concepts and notation with which the average data bank practitioner is

unfamiliar.” Cited according to (Santini 2005)

Lit: E. F. Codd. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, June 1970.

Lit: S. Santini. We are sorry to inform you ... Computer, December 2005.
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Relational Mappings Formally

Definition
A relational mappingM is a tuple of the form

M = (σ, τ,Mστ ,Mτ )

where
I σ is the source schema
I τ is the target schema with all relation symbols different from

those in σ
I Mστ is a finite set of FOL formulae over σ ∪ τ called

source-to-target dependencies
I Mτ is a set of constraints on the target schema called target

dependencies
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DB Instances of Schemata

I Schemata are relational signatures
I Concrete database instance

I For a given schema σ a concrete DB instance is a σ FOL
structure with active domain

I Active domain: Domain contains all and only individuals (also
called constants) occurring in relations

I Usually: All source instances are concrete DBs

I Generalized DB instances
I For some attributes in target schema (Example: flight number

fno) no corresponding attribute in source may exist
I Next to constants CONST allow disjoint set of marked NULLs,

denoted VAR
I A generalized DB instance may contain elements from CONST
∪ VAR

I “Incomplete” DB
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Source-Target-Dependencies Mστ

I Source-Target-Dependencies may be arbitrary FOL formula
I Usually they have a simple directed form (decidability!)

Definition
A source-to-target tuple-generating dependencies (st-tgds) is a FOL
formula of the form

∀~x~y(φσ(~x , ~y) −→ ∃~z ψτ (~x , ~z))

where
I φσ is a conjunction of atoms over source schema σ
I ψτ is a conjunction of atoms over target schema τ

I So in particular, antecedens is a conjunctive query (CQ)
I CQs “well-behaved”
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Reminder: Conjunctive Queries (CQs)

I Class of sufficiently expressive and feasible FOL queries of form

ans(~x) = ∃~y
(
α1(~x1, ~y1) ∧ · · · ∧ αn(~xn, ~yn)

)
where

I αi (~xi , ~yi ) are atomic FOL formula and
I ~xi variable vectors among ~x and ~yi variables among ~y

I Corresponds to SELECT-PROJECT-JOIN Fragment of SQL

Example (Conjunctive Query from Flight Domain)

ans(src, dest, airl , dep) = ∃fno ∃ arr(Routes(fno, src, dest) ∧ Info(fno, dep, arr , airl))
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Reminder: Conjunctive Queries (CQs)

Theorem

I Answering CQs is NP-complete w.r.t. combined complexity
(Chandra,Merlin 1977)

I Subsumption test for CQs is NP complete
I Answering CQs is in AC0 (and thus in P) w.r.t. data complexity

Lit: A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In: Proceedings of the Ninth Annual ACM Symposium on

Theory of Computing, STOC’77, pages 77–90, New York, NY, USA, 1977. ACM.
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Wake-Up Question

Are st-tgds Datalog rules?

I No, as Datalog rules do not allow existentials in the head of
the query

I But there is the extended logic called Datalog+/−
I Has been investigated in last years also in context of

ontology-based data access (see net lectures)
I Provides many interesting sub-fragments

Lit: A. Calì, G. Gottlob, and T. Lukasiewicz. Datalog+/-: A unified approach to

ontologies and integrity constraints. In Proceedings of the 12th International

Conference on Database Theory, pages 14–30. ACM Press, 2009.

30 / 60



Wake-Up Question

Are st-tgds Datalog rules?

I No, as Datalog rules do not allow existentials in the head of
the query

I But there is the extended logic called Datalog+/−
I Has been investigated in last years also in context of

ontology-based data access (see net lectures)
I Provides many interesting sub-fragments

Lit: A. Calì, G. Gottlob, and T. Lukasiewicz. Datalog+/-: A unified approach to

ontologies and integrity constraints. In Proceedings of the 12th International

Conference on Database Theory, pages 14–30. ACM Press, 2009.

30 / 60



Prominent Tuple Generating Dependencies

I Theorems of Euclids
“Elements” expressible as
tuple generating
dependencies

Lit: J. Avigad, E. Dean, J. Mumma: “A Formal System for Euclid’s Elements”, The

Review of Symbolic Logic, 2009
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Target Dependencies Mτ

I These define constraints on target schema known also from
classical DB theory

I Two different types of dependencies are sufficiently general to
capture the classical DB constraints

Definition
A tuple-generating dependency (tgd) is a FOL formula of the form

∀~x~y(φ(~x , ~y) −→ ∃~z ψ(~x , ~z))

where φ, ψ are conjunctions of atoms over τ .

An equality-generating (egd) is a FOL formula of the form

∀~x(φ(~x) −→ xi = xj)

where φ(~x) is a conjunction of atoms over τ and xi , xj occur in ~x .
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Semantics: Solutions

Definition
Given: a mappingM and a σ instance S

A τ instance T is called a solution for S underM iff
(S,T) satisfies all rules in Mστ (for short: (S,T) |= Mστ ) and T
satisfies all rules in Mτ .

I (S,T) |= Mστ iff S ∪ T |= Mστ where
I S ∪ T is the union of the instances S,T: Structure containing

all relations from S and T with domain the union of domains
of S and T

I well defined because schemata are disjoint

I SolM(S): Set of solutions for S underM
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First Key Problem: Existence of Solutions

Problem: SOLEXISTENCEM
Input: Source instance S
Output: Answer whether there exists a solution for S underM

I Note:M is assumed to be fixed =⇒ data complexity
I This problem is going to be approached with a well known

proof tool: chase
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Trivial Case: No Target Dependencies

I Without target constraints there is always a solution

Proposition

LetM = (σ, τ,Mστ ) with Mστ consisting of st-tgds. Then for any
source instance S there are infinitely many solutions and at least
one solution can be constructed in polynomial time.

Proof Idea
I For every rule and every tuple ~a fulfilling the antecedens

generate facts according to the succedens (using fresh named
nulls for the existentially quantified variables)

I Resulting τ instance T is a solution
I Polynomial: Testing whether ~a fulfills the head (a conjunctive

query) can be done in polynomial time
I Infinity: From T can build any other solution by extension
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Undecidability for General Constraints

Theorem
There is a relational mappingM = (σ, τ,Mστ ,Mτ ) such that
SOLEXISTENCEM is undecidable.

I Proof by reduction from embedding problem for finite
semigroups which is known to be undecidable (Arenas et al.
2014, Thm 5.3)

I As a consequence: Further restrict mapping rules
I But note that the following chase construction defined for

arbitrary st-tgds
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Undecidability for General Constraints

Theorem
There is a relational mappingM = (σ, τ,Mστ ,Mτ ) such that
SOLEXISTENCEM is undecidable.

Wake-Up Question

As another exercise in reduction prove the following corollary:
There is a relational mappingM = (σ, τ,Mστ ) with a single FOL
dependency in Mστ s.t. SOLEXISTENCEM is undecidable
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SOLEXISTENCEM is undecidable.

Wake-Up Question

As another exercise in reduction prove the following corollary:
There is a relational mappingM = (σ, τ,Mστ ) with a single FOL
dependency in Mστ s.t. SOLEXISTENCEM is undecidable

Proof
I Assume otherwise
I LetM = (σ, τ,Mστ ,Mτ )

I ConstructM′ = (σ, τ, {χ}) with
χ =

∧
(Mστ ∪Mτ )
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Existence Proof vs. Construction
I Proposition above showed existence of solution
I Showing existence 6= construction of a verifier
I Actually we are going to construct a solution using the chase

I Interesting debate in philosophy of mathematics whether
non-constructive proofs are acceptable

I Mathematical Intuitionism: field allowing only constructive
proofs

I truth = provable = constructively provable
I Classical logical inference rules s.a. ¬¬A � A not allowed

I L.E.J. Brouwer (1881 to 1966)
I Guru of intuitionism
I Irony of history: Proved many

interesting results in classical
(non-constructive) mathematics
(Brouwer’s fixed point theorem)
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The Chase



Chase Construction

I A widely used tool in DB theory
I Original use: Calculating entailments of DB constraints

Lit: D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data

dependencies. ACM Trans. Database Syst., 4(4):455–469, Dec. 1979.

I Idea
I Apply tgds as completion/repair rules in a bottom-up strategy
I until no tgds can be applied anymore
I Chase construction mail fail if one of the egds is violated

I The chase leads to an instance with desirable properties
I It produces not too many redundant facts
I Universality
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Example (Terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

}

I Source instance S = {E (a, b)}
I Going to build stepwise potential target instances Ti

considering pairs (S,Ti )

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (termination)
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Example (Non-terminating c(h)ase)

I Source schema σ = {E}; target schema τ = {G , L}
I Mστ = { E (x , y)→ G (x , y)︸ ︷︷ ︸

θ1

}

Mτ = { G (x , y)→ ∃z L(y , z)︸ ︷︷ ︸
χ1

, L(x , y)→ ∃z G (y , z)︸ ︷︷ ︸
χ2

}

I Source instance S = {E (a, b)}

I (S, ∅) (violates θ1)
I (S, {G (a, b)}) (violates χ1)
I (S, {G (a, b), L(b,⊥)}) (violates χ2 )
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1)}) (violates χ1 )
I (S, {G (a, b), L(b,⊥),G (⊥,⊥1), L(⊥1,⊥2)}) (violates χ2 )
I . . . (non-termination)
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Chase Definition
I Let S be a σ instance and dom(S) its domain

Definition (Chase steps)

S
χ,~a
; S′ iff

1. χ a tgd of form φ(~x)→ ∃~yψ(~x , ~y) and
I S |= φ(~a) for some elements ~a from dom(S)
I S′ extends S with all atoms occurring in ψ(~a, ~⊥).

2. or χ is an egd of form φ(~x)→ xi = xj and
I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj and
I ( ai is constant or null, aj is null and S′ = S[aj/ai ] or
I ai is null, aj is constant and S′ = S[ai/aj ] )

S
χ,~a
; fail iff

I S |= φ(~a) for some elements ~a from dom(S) with ai 6= aj
I and both ai , aj are constants.
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Chase

Definition
A chase sequence for S under M is a sequence of chase steps

Si
χi ,~ai; Si+1 such that
I S0 = S

I each χi is in M

I for each distinct i , j also (χi , ~ai ) 6= (χj , ~aj)

For a finite chase sequence the last instance is called its result.
I If the result is fail , then the sequence is said to be a failing

sequence
I If no further dependency from M can be applied to a result,

then the sequence is called successful.
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Indeterminism in Chase Construction

I Indeterminism regarding choice of nulls (no problem)
I Indeterminism regarding order of chosen tgds and egds

This may lead to different chase results
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Use of Chases in Data Exchange

I A chase sequence for S under aM is a chase sequence for
(S, ∅) under Mστ ∪Mτ

I If (S,T) result of a finite sequence, call just T the result

I Chase is the right tool for finding solutions

Proposition

GivenM and source instance S.
I If there is a successful chase sequence for S with result T,

then T is a solution.
I If there is a failing chase sequence for S, then S has no

solution.
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Proposition

GivenM and source instance S.
I If there is a successful chase sequence for S with result T,

then T is a solution.
I If there is a failing chase sequence for S, then S has no

solution.

I The proposition does no cover all cases: non-terminating chase
I In this case still there still may be a solution
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Weak Acyclicity

I In order to guarantee termination restrict target constraints
I Reason for non-termination: generation of new nulls with same

dependencies

Example (Cycle in Dependencies)

I χ1 = G (x , y)→ ∃z L(y , z)
I χ2 = L(x , y)→ ∃z G (y , z)

Possible infinite generation

G (a, b)
χ1; L(b,⊥1)

χ2; G (⊥1,⊥2)
χ1; L(⊥2,⊥3) . . .

I Problem caused by cycle in dependencies
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I χ2 = L(x , y)→ ∃z G (y , z)

Possible infinite generation

G (a, b)
χ1; L(b,⊥1)

χ2; G (⊥1,⊥2)
χ1; L(⊥2,⊥3) . . .

I Problem caused by cycle in dependencies
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Simple Dependency Graphs
I Nodes: pairs (R, i) of predicate R and argument-position i
I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
∀~x∀~yφ(~x , ~y)→ ∃~zψ(~x , ~z) and
1. Rh occurs in ψ and Rb occurs in φ and
2. for all x ∈ ~x in i-position in Rb

I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified

Example (Simple Dependency Graph with Cycle)

I χ1 = G (y , x)→ ∃z L(x , z)

I χ2 = L(y , x)→ ∃z G (x , z)

(L,1)

(G,1)

(L,2)

(G,2)

Set of tgds called acyclic if simple dependency graph is acyclic.
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Dependency Graphs (DG)
I Nodes: pairs (R, i) of predicate R and argument-position i
I Edges: From (Rb, i) to (Rh, j) iff there is a tgd
∀~x∀~yφ(~x , ~y)→ ∃~zψ(~x , ~z) and
1. Rh occurs in ψ and Rb occurs in φ and
2. for all x ∈ ~x in i-position in Rb

I either x occurs in j-position in Rh

I or the variable in j-position in Rh is existentially quantified
and these are labelled by *

Example (Not weakly acyclic Dependency Graph)

I χ1 = G (y , x)→ ∃z L(x , z)

I χ2 = L(y , x)→ ∃z G (x , z)

(L,1)

(G,1)

(L,2)

(G,2)

* *

TGDs weakly acyclic iff DG has no cycle with a * edge.
48 / 60



Termination for weakly acyclic tgds

Theorem
LetM = (σ, τ,Mστ ,Mτ ) be a mapping where Mτ is the union of
egds and weakly acyclic tgds. Then the length of every chase
sequence for a source S is polynomially bounded w.r.t. the size of
S.

I In particular: Every chase sequence terminates
I Moreover: SOLEXISTENCEM can be solved in polynomial

time
I a solution can be constructed in polynomial time
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“What is 3 Q plus 7 Q?”

. . . for you attention! ,
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“What is 3 Q plus 7 Q?”

. . . for you attention! ,
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Solutions to Exercise 4 (16 Points)
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Solution to Exercise 4.1 (6 Points)
Use Hanf locality in order to proof that the following boolean
queries are not FOL-definable: 1. graph acyclicity, 2. tree.

Solution
Graph Acyclicity (GA).
I For contradiction assume GA is Hanf-local with parameter r ′. Choose

r = 2r ′ + 2
I Let G be the disjoint union of a circle of length r and a linear order of length r
I Let G′ be an order of length 2r .
I Take a bijection f : G→ G′ where

I the circle is unravelled to the middle of G′.
I The lower half part of the order in G is mapped to the lower

part of G′

I The upper half part of the order in G is mapped to the upper
part of G′

I an r ′-neighbourhood of any a in G and f (a) ∈ G′ is the same: if a is from the
circle in G then the r ′-neighbourhood is a 2r’-line and the same for f (a). If a is
an element from the line in G then in its r ′-neighbourhood it has to the left and
to right the same number of elements as has f (a) in its r’-neigbourhood in G′.

I Hence G�r′ G
′, but: G is cyclic and G is not. E

Tree
I Same construction (as G′ is tree whereas G is not)
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Exercise 4.1

H. Kallwies 3/6
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Solution to Exercise 4.2 (4 Points)
Show that EVEN(σ) can be defined within second-order logic for
any σ.

Hint: formalize “There is a binary relation which is an equivalence
relation having only equivalence classes with exactly two elements”
and argue why this shows the axiomatizability.

Solution

∃R ∀xR(x , x) ∧
∀x∀yR(x , y)→ R(y , x) ∧
∀x∀y∀z((R(x , y) ∧ R(y , z))→ R(x , z)) ∧
∀x∃y(R(x , y) ∧ x 6= y ∧ ∀z(R(x , z)→ z = x ∨ z = y))

Note that R is a quantified variable (!). So we have shown that
EVEN[∅] can be defined.
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Solution to Exercise 4.3 (2 Points)

Argue why (in particular within the DB community) one imposes
safety conditions for Datalog rules.

Solution

I Unsafe negation would lead to infinite answer sets (if domain
is infinite.)

I Variables occurring only in head would lead to domain
dependence. For example, for ans(x)← R(a) all bindings for x
in the domain of a DB where R(a) is contained, would have to
be in the set of answers. So the answer would not depend only
on R(a), i.e., only on the query, but also on the domain of the
variables one allows.
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Solution to Exercise 4.4 (4 points)

Give examples of general program rules for which
1. No fixed point exists at all (Hint: “This sentence is not true”)
2. Has two minimal fixed points (Hint: “The following sentence is

false. The previous sentence is true.”)
Solution We consider propositional variables as 0-ary predicates. An extension of a
propositional variable is then either the empty set ∅ which is interpreted as the truth
value false, for short 0, or is the set consisting of the empty tuple {()} which is
interpreted as the truth value true, for short 1. Truthvalue assignments ν can be
identified by the set of propositional variables which are assigned the value 1. So, e.g.,
ν(p) = 1, ν(q) is represented by {p}, whereas ν(p) = 1, ν(q) = 1 is represented by
{p, q}. So minimality on models becomes minimality w.r.t. set inclusion.
I No fixed point: p ← ¬p
I Two minimal fixed points.

q ← ¬p
p ← ¬q

Has minimal fixed points {p} and {q}.
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Exercise 5 (16 points)



Exercise 5.1 (6 Points)

A tuple-generating dependency (tgd) is a FOL formula of the form

∀~x~y(φ(~x , ~y) −→ ∃~z ψ(~x , ~z))

where φ, ψ are conjunctions of atoms over τ .
1. Foxy asserts that one can also use existentials in the body

(that is in the part before the −→) without adding
expressivity. Is he right? Argue for your answer!

2. Smarty asserts that one can safely assume that ψ is just an
atom rather than a conjunction of atoms. Is he right? Argue
for your answer!

3. Dumby asserts similarly that one can safely assume that φ is
just an atom rather than a conjunction of atoms. Is he right?
Argue for your answer!

58 / 60



Exercise 5.2 (4 Points)

Prove the folklore proposition that conjunctive queries are preserved
under homomorphisms, i.e., show that if there is a homomorphism
h from a DB instance T to a DB instance T′, then for any CQ φ(~x):

{h(~d) | ~d ∈ ans(φ(~x),T)} ⊆ ans(φ(~x),T′)

59 / 60



Exercise 5.3 (6 Points)

1. Testing subsumption of CQs is in NP. What about the
subsumption of arbitrary FOLs?

2. Show that every CQ (under the usual set semantics) is
monotonic and satisfiable.

3. The semantics of CQs is given by the usual FOL set semantics.
Inform yourself on the so-called multi-set semantics (aka: bag
semantics) for queries and answer the following questions:
3.1 Why should one consider multi-set semantics—in particular if

one is interested in SQL queries?
3.2 What does one know about the (complexity of the)

sumbsumption test for CQs under multi-set semantics?
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