
Özgür L. Özçep

Ontology-Based Data Access
Lecture 7: Motivation, Description Logics

6 December, 2017

Foundations of Ontologies and Databases
for Information Systems
CS5130 (Winter 17/18)

Recap of Lecture 6

Data Exchange
I Specific semantic integration scenario for two data sources

with possibly different schemata
I MappingM = (σ, τ,Mστ ,Mτ)

I σ: source schema
I τ : target schema
I Mστ : source target dependencies (mostly: st-tgds)
I Mτ : target dependencies

I Ultimate aim: For given σ instance find appropriate τ instance
(solution) to do query answering on it

I Chase construction gave universal model: model with weakest
assumptions

I Universal model may contain redundancies: considered cores;
but as universal models are sufficient and cores may be costly,
sticked to universal models

I Looked at certain answering and the use of rewriting to yield
certain answers

End of Recap
3 / 66

References

I ESSLLI 2010 Course by Calvanese and Zakharyaschev
http://www.inf.unibz.it/~calvanese/teaching/2010-08-ESSLLI-DL-QA/

I Reasoning Web Summer School 2014 course by Kontchakov
on Description Logics
http:

//rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf

I Lecture notes by Calvanese in 2013/2014 course on Ontology
and Database Systems
https://www.inf.unibz.it/~calvanese/teaching/14-15-odbs/lecture-notes/

I Course notes by Franz Baader on Description Logics
I Parts of Reasoning Web Summer School 2014 course by Ö. on

Ontology-Based Data Access on Temporal and Streaming Data
http://rw2014.di.uoa.gr/sites/default/files/slides/Ontology_Based_Data_Access_on_

Temporal_and_Streaming_Data.pdf

4 / 66

http://www.inf.unibz.it/~calvanese/teaching/2010-08-ESSLLI-DL-QA/
http://rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf
http://rw2014.di.uoa.gr/sites/default/files/slides/An_Introduction_to_Description_Logics.pdf
https://www.inf.unibz.it/~calvanese/teaching/14-15-odbs/lecture-notes/
http://rw2014.di.uoa.gr/sites/default/files/slides/Ontology_Based_Data_Access_on_Temporal_and_Streaming_Data.pdf
http://rw2014.di.uoa.gr/sites/default/files/slides/Ontology_Based_Data_Access_on_Temporal_and_Streaming_Data.pdf

Ontology-Based Data Access as Integration

I Data Exchange can be considered as semantic integration
purely on DB level

I OBDA can be considered as integration using an ontology
I Bridges DB world (closes world assumption) and ontology

world (open world assumption)

5 / 66

Closed World Assumption
I DB theory: closed-world assumption (CWA)

I All and only those facts mentioned in DB hold.
I Simple form of uncertain knowledge expressed by NULLs

I For one incomplete DB there are many completions
I Nonetheless: Type information on attribute constrains the

possible attribute instances

I In DE incompleteness generated by different schemata
Flight scenario: Source DB had no flight number, whilst target
DB has
=⇒ introduction of NULLs for flight number attribute

I Logical theories (ontologies) adhere to open world assumption
(OWA)

I If something is not told, then we do not know
I Logical theories (ontologies) may have many models

6 / 66

Closed World Assumption
I DB theory: closed-world assumption (CWA)

I All and only those facts mentioned in DB hold.
I Simple form of uncertain knowledge expressed by NULLs

I For one incomplete DB there are many completions
I Nonetheless: Type information on attribute constrains the

possible attribute instances

I In DE incompleteness generated by different schemata
Flight scenario: Source DB had no flight number, whilst target
DB has
=⇒ introduction of NULLs for flight number attribute

I Logical theories (ontologies) adhere to open world assumption
(OWA)

I If something is not told, then we do not know
I Logical theories (ontologies) may have many models

6 / 66

Closed World Assumption
I DB theory: closed-world assumption (CWA)

I All and only those facts mentioned in DB hold.
I Simple form of uncertain knowledge expressed by NULLs

I For one incomplete DB there are many completions
I Nonetheless: Type information on attribute constrains the

possible attribute instances

I In DE incompleteness generated by different schemata
Flight scenario: Source DB had no flight number, whilst target
DB has
=⇒ introduction of NULLs for flight number attribute

I Logical theories (ontologies) adhere to open world assumption
(OWA)

I If something is not told, then we do not know
I Logical theories (ontologies) may have many models

6 / 66

Closed World Assumption
I DB theory: closed-world assumption (CWA)

I All and only those facts mentioned in DB hold.
I Simple form of uncertain knowledge expressed by NULLs

I For one incomplete DB there are many completions
I Nonetheless: Type information on attribute constrains the

possible attribute instances

I In DE incompleteness generated by different schemata
Flight scenario: Source DB had no flight number, whilst target
DB has
=⇒ introduction of NULLs for flight number attribute

I Logical theories (ontologies) adhere to open world assumption
(OWA)

I If something is not told, then we do not know
I Logical theories (ontologies) may have many models

6 / 66

Close-World Assumption (CWA) for DBs

I “The world described by DBs is compete”

Example

University employee
ID Name
1 Sokrates
2 Platon
3 Aristotle

Professor
ID
1
2

“3” (= ID of Aristotle) not in table Professor
=⇒ Aristotle is not a professor

8 / 66

Close-World Assumption (CWA) for DBs

I “The world described by DBs is compete”

Example

Patient
ID Name
1 Sokrates
2 Platon
3 Aristotle

Blood sugar
ID value
1 90
2 120

“3” not in blood sugar table
=⇒? Aristotle has not blood sugar value?

8 / 66

NULLs

I NULLs intended to model incompleteness
I but semantics not clear and hence highly criticized

Lit: L. Libkin. SQL’s three-valued logic and certain answers. ACM Trans. Database

Syst., 41(1):1:1–1:28, 2016.

Example
Patient

ID Name
1 Sokrates
2 Platon
3 Aristotle

Bloo sugar
ID value [30-600]
1 90
2 120
3 NULL

Aristotle has a blood sugar value (30 or 31 or . . .)

9 / 66

NULLs
I NULLs intended to model incompleteness
I but semantics not clear and hence highly criticized

Lit: L. Libkin. SQL’s three-valued logic and certain answers. ACM Trans. Database

Syst., 41(1):1:1–1:28, 2016.

Example
Patient

ID Name
1 Sokrates
2 Platon
3 Aristotle
4 Xanthippe
5 Leda

Pregnancy
ID HCG value
1 NULL
2 NULL
3 NULL
4 NULL
5 130

I Male patient with NULL: no HCG test
I Female patient with NULL: not HCG test (but she has HCG

value) or HCG test & not known
9 / 66

Semi-Open-World in DBs and Certain answers

I NULLs require considering many models (completions of
incomplete DB)
(compare lectures on DE)

Definition (Certain answers over incomplete DB (informally))
cert(Q,T) = intersection of answers over all complete DBs

represented by T

10 / 66

OBDA: Motivation and Overview

Ontology-Based Data Access

I Use ontologies as interface
...

I to access (here: query)
I data stored in some format

...
I using mappings

ABox%

mappings%

TBox%

Ontology%

Query%

12 / 66

Ontology (Australia) Paradise

Backend DB Dungeon

Ontology-Based Data Access

I Use ontologies as interface
...

I to access (here: query)
I data stored in some format

...
I using mappings

ABox%

mappings%

TBox%

Ontology%

Query%

14 / 66

Ontologies

I Ontologies are triples of the form O = (σ, T ,A)
I Signature σ: Non-logical vocabulary
σ = Constσ ∪ Concσ ∪ Roleσ

I TBox T : set of σ-axioms in some logic to capture
terminological knowledge
This lecture: ontologies represented in Description Logics (DLs)

I ABox A: set of σ-axioms in (same logic) to capture
assertional/contingential knowledge

I Note: Sometimes only TBox termed ontology

I Semantics defined on the basis of σ-interpretations I
I I |= Ax iff I makes all axioms in Ax true
I Mod(Ax) = {I |= Ax}

15 / 66

Ontologies

I Ontologies are triples of the form O = (σ, T ,A)
I Signature σ: Non-logical vocabulary
σ = Constσ ∪ Concσ ∪ Roleσ

I TBox T : set of σ-axioms in some logic to capture
terminological knowledge
This lecture: ontologies represented in Description Logics (DLs)

I ABox A: set of σ-axioms in (same logic) to capture
assertional/contingential knowledge

I Note: Sometimes only TBox termed ontology

I Semantics defined on the basis of σ-interpretations I
I I |= Ax iff I makes all axioms in Ax true
I Mod(Ax) = {I |= Ax}

15 / 66

General Idea

I A: Represents facts in
domain of interest

I Open world assumption:
Mod(A) is not a singleton

I T : Constrains Mod(A)
with intended σ readings

I Usually one has only
approximations of intended
models IM

I Realize inference services on
the basis of the constrained
interpretations

Mod(σ)

Mod(A)

Mod(A ∪ T)

IM

16 / 66

General Idea

I A: Represents facts in
domain of interest

I Open world assumption:
Mod(A) is not a singleton

I T : Constrains Mod(A)
with intended σ readings

I Usually one has only
approximations of intended
models IM

I Realize inference services on
the basis of the constrained
interpretations

Mod(σ)

Mod(A)

Mod(A ∪ T)

IM

16 / 66

WARNING: A Misconception

I With ontologies one does not declare data structures

I ABox data in most cases show pattern of data structures
I One does not have to re-model patterns/constraints in the

ABox data
I Knowing “All A are B” in the ABox is different from stipulating

A v B (the former is known as integrity constraint)
I Add A v B, if you need to handle this relation for objects not

mentioned in the ABox

I Motto: Keep the TBox simple

17 / 66

Ontology-Based Data Access

I Use ontologies as interface
...

I to access (here: query)
I data stored in some format

...
I using mappings

ABox%

mappings%

TBox%

Ontology%

Query%

18 / 66

Reasoning Services
I Different standard and nonstandard reasoning services exists
I May be reducible to each other

Example

Reasoning Services consistency check, subsumption check,
taxonomy calculations, most specific subsumer, most specific
concept, matching, ...

I In classical OBDA focus on
I Consistency checking: Mod(A ∪ T) 6= ∅.
I Query answering

I Next to ABox and TBox language query language QL over σ is
a relevant factor for OBDA

I Certain query answering

cert(ψ(~x), T ∪ A) = {~a ∈ (Constσ)n | T ∪ A |= ψ[~x/~a]}

19 / 66

Reasoning Services
I Different standard and nonstandard reasoning services exists
I May be reducible to each other

Example

Reasoning Services consistency check, subsumption check,
taxonomy calculations, most specific subsumer, most specific
concept, matching, ...

I In classical OBDA focus on
I Consistency checking: Mod(A ∪ T) 6= ∅.
I Query answering

I Next to ABox and TBox language query language QL over σ is
a relevant factor for OBDA

I Certain query answering

cert(ψ(~x), T ∪ A) = {~a ∈ (Constσ)n | T ∪ A |= ψ[~x/~a]}

19 / 66

Ontology-Based Data Access

I Use ontologies as interface
...

I to access (here: query)
I data stored in some format

...
I using mappings

ABox%

mappings%

TBox%

Ontology%

Query%

20 / 66

Backend Data Sources

I Classically: relational SQL DBs with static data
I Possible extensions: non-SQL DBs

I datawarehouse repositories for statistical applications
I pure logfiles
I RDF repositories

I Non-static data
I historical data (stored in temporal DB)
I dynamic data coming in streams

I Originally intended for multiple DBs but ...

21 / 66

Federation

I ... we would have to deal
with federation

I not trivial in classical OBDA
...

I because one has to integrate
data from different DBs

I Ignore federation aspect: we
have one DB but possibly
many tables

ABox%

mappings%

TBox%

Ontology%

Query%

22 / 66

Ontology-Based Data Access

I Use ontologies as interface
...

I to access (here: query)
I data stored in some format

...
I using mappings

ABox%

mappings%

TBox%

Ontology%

Query%

23 / 66

Mappings

I Mappings have an important crucial role in OBDA
I Lift data to the ontology level

I Data level: (nearly) close world
I Ontology Level: open world

Definition (Schema of Mappings)

m : ψ(~f (~x))←− Q(~x , ~y)

I ψ(~f (~x)): Template (query) for generating ABox axioms
I Q(~x , ~y) : Query over the backend sources
I Function ~f translates backend instantiations of ~x to constants

I Mappings M over backend sources generates ABox A(M,DB).

24 / 66

Example Scenario: Measurements

I Example schema for measurement and event data in DB
SENSOR(SID, CID, Sname, TID, description)
SENSORTYPE(TID, Tname)
COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)
MEASUREMENT(MID, MtimeStamp, SID, Mval)
MESSAGE(MesID, MesTimeStamp, MesAssemblyID, catID, MesEventText)
CATEGORY(catID, catName)

I For mapping
m: Sens(x) ∧ name(x , y)←−

SELECT f(SID) as x, Sname as y FROM SENSOR

I the row data in SENSOR table
SENSOR
(123, comp45, TC255, TempSens, ‘A temperature sensor’)

I generates facts
Sens(f (123)), name(f (123),TempSens) ∈ A(m,DB)

25 / 66

Example Scenario: Measurements

I Example schema for measurement and event data in DB
SENSOR(SID, CID, Sname, TID, description)
SENSORTYPE(TID, Tname)
COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)
MEASUREMENT(MID, MtimeStamp, SID, Mval)
MESSAGE(MesID, MesTimeStamp, MesAssemblyID, catID, MesEventText)
CATEGORY(catID, catName)

I For mapping
m: Sens(x) ∧ name(x , y)←−

SELECT f(SID) as x, Sname as y FROM SENSOR

I the row data in SENSOR table
SENSOR
(123, comp45, TC255, TempSens, ‘A temperature sensor’)

I generates facts
Sens(f (123)), name(f (123),TempSens) ∈ A(m,DB)

25 / 66

(Strange) Maps of a Different Kind

I Jacobs strange maps:
http://bigthink.com/articles?blog=strange-maps

26 / 66

http://bigthink.com/articles?blog=strange-maps

OBDA in the Classical Sense

I Keep the data where they are because of large volume
I ABox is virtual (no materialization)

ABox%
virtual%

%

mappings%

TBox%

Ontology%

Rewri8ng%

Qrew%

Unfolding%

Qunf%

Answers% Q%

27 / 66

OBDA in the Classical Sense

I First-order logic (FOL) perfect rewriting + unfolding for
realizing reasoning services

ABox%
virtual%

%

mappings%

TBox%

Ontology%

Rewri8ng%

Qrew%

Unfolding%

Qunf%

Answers% Q%

28 / 66

OBDA in the Classical Sense
I T language: Some logic of the DL-Lite family
I A language: assertions of the form A(a),R(a, b)

I QL : Unions of conjunctive queries (UCQs)
I Language of Qrew : safe FOL
I Allows for perfect rewriting (of consistency checking and)

UCQ answering

cert(Q, (σ, T ,A)) = ans(Qrew ,DB(A))

I and unfolding

cert(Q, (σ, T ,A(M,DB))) = ans(Qunf ,DB)

I Note that query language over DB is relevant for possibility of
unfolding

29 / 66

OBDA in the Classical Sense
I T language: Some logic of the DL-Lite family
I A language: assertions of the form A(a),R(a, b)

I QL : Unions of conjunctive queries (UCQs)
I Language of Qrew : safe FOL
I Allows for perfect rewriting (of consistency checking and)

UCQ answering

cert(Q, (σ, T ,A)) = ans(Qrew ,DB(A))

I and unfolding

cert(Q, (σ, T ,A(M,DB))) = ans(Qunf ,DB)

I Note that query language over DB is relevant for possibility of
unfolding

29 / 66

OBDA in the Classical Sense
I T language: Some logic of the DL-Lite family
I A language: assertions of the form A(a),R(a, b)

I QL : Unions of conjunctive queries (UCQs)
I Language of Qrew : safe FOL
I Allows for perfect rewriting (of consistency checking and)

UCQ answering

cert(Q, (σ, T ,A)) = ans(Qrew ,DB(A))

I and unfolding

cert(Q, (σ, T ,A(M,DB))) = ans(Qunf ,DB)

I Note that query language over DB is relevant for possibility of
unfolding

29 / 66

Extended OBDA

I Use more expressive TBox language
I ABDEO (Accessing very big data using expressive ontologies)
I Rewritability for UCQs not guaranteed
I Materialize ABox and use ABox modularization to answer

queries

I Use different (more expressive) QL
I E.g. SPARQL instead of UCQ; but no full existentials in

combination with DL-Lite
I OWL2QL + SPARQL used in Optique platform

I Use different reasoning/rewriting paradigm
I e.g. combined rewriting: First enhance ABox with TBox

information and then rewrite
I Streaming

30 / 66

Extended OBDA

I Use more expressive TBox language
I ABDEO (Accessing very big data using expressive ontologies)
I Rewritability for UCQs not guaranteed
I Materialize ABox and use ABox modularization to answer

queries

I Use different (more expressive) QL
I E.g. SPARQL instead of UCQ; but no full existentials in

combination with DL-Lite
I OWL2QL + SPARQL used in Optique platform

I Use different reasoning/rewriting paradigm
I e.g. combined rewriting: First enhance ABox with TBox

information and then rewrite
I Streaming

30 / 66

Extended OBDA

I Use more expressive TBox language
I ABDEO (Accessing very big data using expressive ontologies)
I Rewritability for UCQs not guaranteed
I Materialize ABox and use ABox modularization to answer

queries

I Use different (more expressive) QL
I E.g. SPARQL instead of UCQ; but no full existentials in

combination with DL-Lite
I OWL2QL + SPARQL used in Optique platform

I Use different reasoning/rewriting paradigm
I e.g. combined rewriting: First enhance ABox with TBox

information and then rewrite
I Streaming

30 / 66

Ontologies and Description Logics

Description Logics
Definition
Description logics (DLs) are logics for use in knowledge
representation with special attention on a good balance of
expressibility and feasibility of reasoning services

I Can be mapped to fragments of FOL

I Use
I as ontology representation language for conceptual modeling
I in particular in the semantic web
I Formal counterpart of standard web ontology language (OWL)
I and in particular for ontology-based data access (OBDA)

I Have been investigated for ca. 30 years now
I Many theoretical insights on various different purpose DLs
I General-purpose reasoners (RacerPro, Fact++, ...) and

specific reasoners (Quest,...)
I Various editing tools (most notably Protege)

32 / 66

Description Logics
Definition
Description logics (DLs) are logics for use in knowledge
representation with special attention on a good balance of
expressibility and feasibility of reasoning services

I Can be mapped to fragments of FOL

I Use
I as ontology representation language for conceptual modeling
I in particular in the semantic web
I Formal counterpart of standard web ontology language (OWL)
I and in particular for ontology-based data access (OBDA)

I Have been investigated for ca. 30 years now
I Many theoretical insights on various different purpose DLs
I General-purpose reasoners (RacerPro, Fact++, ...) and

specific reasoners (Quest,...)
I Various editing tools (most notably Protege)

32 / 66

Description Logics
Definition
Description logics (DLs) are logics for use in knowledge
representation with special attention on a good balance of
expressibility and feasibility of reasoning services

I Can be mapped to fragments of FOL

I Use
I as ontology representation language for conceptual modeling
I in particular in the semantic web
I Formal counterpart of standard web ontology language (OWL)
I and in particular for ontology-based data access (OBDA)

I Have been investigated for ca. 30 years now
I Many theoretical insights on various different purpose DLs
I General-purpose reasoners (RacerPro, Fact++, ...) and

specific reasoners (Quest,...)
I Various editing tools (most notably Protege)

32 / 66

Family of DLs

I Variable-free logics centered around concepts
I concepts = one-ary predicates in FOL = classes in OWL

Example (Concepts)

I Students (“students”)

I Students uMale (“ Male students”)

I ∃attends.MathCourse (“Those attending a math course”)

I ∀hasFriends.Freaks (“Those having only freaks as friends”)

I Person u ∀attends.(Course u ¬easy)
(“Persons attending only non-easy courses”)

33 / 66

An (Semi-)Expressive Logic: ALC
I Vocabulary: constants Ni , atomic concepts NC , roles NR

I Concept(description)s: syntax

C ::= A (for A ∈ NC) | C u C | C t C | ¬C |
∀r .C | ∃r .C (for r ∈ NR) | ⊥ | >

I Concept(description)s: semantics

I Interpretation I =

(∆I︸︷︷︸
domain

,

denotation function︷︸︸︷
·I)

I AI ⊆ ∆I for all A ∈ NC

I cI ∈ ∆I for all c ∈ Ni

I rI ⊆ ∆I ×∆I

for all r ∈ Nr

I (C u D)I = CI ∩ DI

I (C t D)I = CI ∪ DI

I ¬C = ∆I \ CI

I (∀r .C)I = {d ∈ ∆I | for all e ∈ ∆I :
If (d , e) ∈ rI then e ∈ CI}

I (∃r .C)I = {d ∈ ∆I | there is e ∈
∆I s.t. (d , e) ∈ rI and e ∈ CI}

34 / 66

An (Semi-)Expressive Logic: ALC
I Vocabulary: constants Ni , atomic concepts NC , roles NR

I Concept(description)s: syntax

C ::= A (for A ∈ NC) | C u C | C t C | ¬C |
∀r .C | ∃r .C (for r ∈ NR) | ⊥ | >

I Concept(description)s: semantics

I Interpretation I =

(∆I︸︷︷︸
domain

,

denotation function︷︸︸︷
·I)

I AI ⊆ ∆I for all A ∈ NC

I cI ∈ ∆I for all c ∈ Ni

I rI ⊆ ∆I ×∆I

for all r ∈ Nr

I (C u D)I = CI ∩ DI

I (C t D)I = CI ∪ DI

I ¬C = ∆I \ CI

I (∀r .C)I = {d ∈ ∆I | for all e ∈ ∆I :
If (d , e) ∈ rI then e ∈ CI}

I (∃r .C)I = {d ∈ ∆I | there is e ∈
∆I s.t. (d , e) ∈ rI and e ∈ CI}

34 / 66

An (Semi-)Expressive Logic: ALC
I Vocabulary: constants Ni , atomic concepts NC , roles NR

I Concept(description)s: syntax

C ::= A (for A ∈ NC) | C u C | C t C | ¬C |
∀r .C | ∃r .C (for r ∈ NR) | ⊥ | >

I Concept(description)s: semantics

I Interpretation I =

(∆I︸︷︷︸
domain

,

denotation function︷︸︸︷
·I)

I AI ⊆ ∆I for all A ∈ NC

I cI ∈ ∆I for all c ∈ Ni

I rI ⊆ ∆I ×∆I

for all r ∈ Nr

I (C u D)I = CI ∩ DI

I (C t D)I = CI ∪ DI

I ¬C = ∆I \ CI

I (∀r .C)I = {d ∈ ∆I | for all e ∈ ∆I :
If (d , e) ∈ rI then e ∈ CI}

I (∃r .C)I = {d ∈ ∆I | there is e ∈
∆I s.t. (d , e) ∈ rI and e ∈ CI}

34 / 66

An (Semi-)Expressive Logic: ALC
I Vocabulary: constants Ni , atomic concepts NC , roles NR

I Concept(description)s: syntax

C ::= A (for A ∈ NC) | C u C | C t C | ¬C |
∀r .C | ∃r .C (for r ∈ NR) | ⊥ | >

I Concept(description)s: semantics

I Interpretation I =

(∆I︸︷︷︸
domain

,

denotation function︷︸︸︷
·I)

I AI ⊆ ∆I for all A ∈ NC

I cI ∈ ∆I for all c ∈ Ni

I rI ⊆ ∆I ×∆I

for all r ∈ Nr

I (C u D)I = CI ∩ DI

I (C t D)I = CI ∪ DI

I ¬C = ∆I \ CI

I (∀r .C)I = {d ∈ ∆I | for all e ∈ ∆I :
If (d , e) ∈ rI then e ∈ CI}

I (∃r .C)I = {d ∈ ∆I | there is e ∈
∆I s.t. (d , e) ∈ rI and e ∈ CI}

34 / 66

An (Semi-)Expressive Logic: ALC
I Vocabulary: constants Ni , atomic concepts NC , roles NR

I Concept(description)s: syntax

C ::= A (for A ∈ NC) | C u C | C t C | ¬C |
∀r .C | ∃r .C (for r ∈ NR) | ⊥ | >

I Concept(description)s: semantics

I Interpretation I =

(∆I︸︷︷︸
domain

,

denotation function︷︸︸︷
·I)

I AI ⊆ ∆I for all A ∈ NC

I cI ∈ ∆I for all c ∈ Ni

I rI ⊆ ∆I ×∆I

for all r ∈ Nr

I (C u D)I = CI ∩ DI

I (C t D)I = CI ∪ DI

I ¬C = ∆I \ CI

I (∀r .C)I = {d ∈ ∆I | for all e ∈ ∆I :
If (d , e) ∈ rI then e ∈ CI}

I (∃r .C)I = {d ∈ ∆I | there is e ∈
∆I s.t. (d , e) ∈ rI and e ∈ CI}

34 / 66

TBox and ABox
I Terminological Box (TBox) T

I Finite set of general concept inclusions (GCIs)
I GCI: axioms of form C v D (for arbitrary concept descriptions)

C ≡ D abbreviates {C v D,D v C}
I Semantics: I |= C v D iff CI ⊆ DI .

I Assertional Box (ABox) A
I Finite set of assertions
I Assertion: C (a) (concept assertion), r(a, b) (role assertion)
I Semantics:
I |= C (a) iff aI ∈ CI

I |= r(a, b) iff (aI , bI) ∈ rI .

I Ontology: (σ, T ,A)

We follow the bad CS practice of calling KBs in DLs
ontologies. We apologize to all philosophers for this use ;)

35 / 66

TBox and ABox
I Terminological Box (TBox) T

I Finite set of general concept inclusions (GCIs)
I GCI: axioms of form C v D (for arbitrary concept descriptions)

C ≡ D abbreviates {C v D,D v C}
I Semantics: I |= C v D iff CI ⊆ DI .

I Assertional Box (ABox) A
I Finite set of assertions
I Assertion: C (a) (concept assertion), r(a, b) (role assertion)
I Semantics:
I |= C (a) iff aI ∈ CI

I |= r(a, b) iff (aI , bI) ∈ rI .

I Ontology: (σ, T ,A)

We follow the bad CS practice of calling KBs in DLs
ontologies. We apologize to all philosophers for this use ;)

35 / 66

TBox and ABox
I Terminological Box (TBox) T

I Finite set of general concept inclusions (GCIs)
I GCI: axioms of form C v D (for arbitrary concept descriptions)

C ≡ D abbreviates {C v D,D v C}
I Semantics: I |= C v D iff CI ⊆ DI .

I Assertional Box (ABox) A
I Finite set of assertions
I Assertion: C (a) (concept assertion), r(a, b) (role assertion)
I Semantics:
I |= C (a) iff aI ∈ CI

I |= r(a, b) iff (aI , bI) ∈ rI .

I Ontology: (σ, T ,A)

We follow the bad CS practice of calling KBs in DLs
ontologies. We apologize to all philosophers for this use ;)

35 / 66

Example (University)

T = { GradStudent v Student,

GradStudent v ∃takesCourse.GradCourse }
A = { GradStudent(john) }

Consider the following interpretations

36 / 66

Example (University)

T = { GradStudent v Student,

GradStudent v ∃takesCourse.GradCourse }
A = { GradStudent(john) }

Consider the following interpretations

I I1 :
I johnI1 = j
I GradStudentI1 = {j}
I StudentI1 = {j}
I GradCourseI1 = {s}
I takesCourseI1 = {(j , s)}

I I1 |= T ∪ A

I I2 :
I johnI2 = j
I GradStudentI2 = {j}
I StudentI2 = {j}
I GradCourseI2 = {j}
I takesCourseI2 = {(j , j)}

I I2 |= T ∪ A

36 / 66

Example (University)

T = { GradStudent v Student,

GradStudent v ∃takesCourse.GradCourse }
A = { GradStudent(john) }

Consider the following interpretations

I I3 :
I johnI1 = j
I GradStudentI1 = {j}
I StudentI1 = {j}
I GradCourseI1 = ∅
I takesCourseI1 = ∅

I I3 6|= T ∪ A

36 / 66

Stricter notion of TBox

I Above definition of TBox very general
I “Meanings” of concept names determined only implicitly in the

whole ontology
I No guarantee for unique extensions

I Early notion of TBox more related to idea of explicitly defining
concept names

I C ≡ D used as abbreviation for C v D and D v C

I Concept definition: A ≡ D (where A atomic)

Definition
A TBox in a strict sense is a finite set of concept definitions not
defining a concept multiple times or in a cyclic manner. Defined
concepts occur on the lhs, primitive concept on the rhs of
definitions.

37 / 66

Implicit vs. Explicit Definability

I Sometimes a general TBox may fix the denotation of a concept
name w.r.t. denotations of the others =⇒ implicit definability

I Maybe then it can also be defined explicitly?

Definition
Given an FOL theory Ψ over signature σ and a predicate symbol R .
I R is implicitly defined in Ψ iff

for any two models A |= Ψ and B |= Ψ agreeing on σ \ {R}
one has RA = RB.

I R is explicitly defined in Ψ by a formula φ(~x) not containing R
iff Ψ � ∀~xR(~x)↔ φ(~x)

38 / 66

Beth Definability Theorem

I For FOL both notions of definition coincide

Theorem
An FOL theory defines a predicate implicitly iff it defines it explicitly

I Though DLs are embedable into FOL, this coincidence does
not transfer necessarily to DLs

I At least it does for ALC theories
Lit: B. ten Cate, E. Franconi, and I. Seylan. Beth definability in expressive

description logics. J. Artif. Int. Res., 48(1): 347–414, Oct. 2013.

39 / 66

Reasoning services
I Semantical notions as in FOL but additional notions due to

focus on concepts
I Let O = (σ, T ,A)

Definition (Basic Semantical Notions)

I Model: I |= O iff I |= T ∪ A

I Satisfiability: O is satisfiable iff T ∪ A is satisfiable

I Coherence: O is coherent iff T ∪ A has a model I s.t. for all
concept names AI 6= ∅

I Concept satisfiability: C is satisfiable w.r.t. O iff there is
I |= O s.t. CI 6= ∅

I Subsumption: C is subsumed by D w.r.t. O iff O � C v D
iff T ∪ A � C v D

I Instance check: a is an instance of C w.r.t. O iff O � C (a) 40 / 66

Reduction Examples

I Many of the semantical notions are reducible to each other
I We give only one example—which is the content of Exercise

7.3.

Exercise
Show that subsumption can be reduced to satisfiability tests
(allowing the introduction of new constants). More concretely:

C v D w.r.t. O iff (σ ∪ {b}, T ,A ∪ {C (b),¬D(b)}) is not
satisfiable (where b is a fresh constant).

41 / 66

Extended Reasoning Services

Definition

I Instance retrieval: Find all constants x s.t. O � C (x)

I Query answering: Certain answers
cert(φ(x),O) = {~a ∈ Constσ | O � φ[~x/~a]}

I Classification: Compute the subsumption hierarchy of all
concept names

I Realization: Compute the most specific concept name to which
a given constant belongs

I Pinpointing, matching, . . .

42 / 66

Example (Certain Answers for Conjunctive Queries)

T = { > v Male t Female,Male u Female v ⊥ }
A = { friend(john, susan), friend(john, andrea), female(susan),

loves(susan, andrea), loves(andrea, bill),Male(bill) }

Q(x) = ∃y , z(friend(x , y) ∧ Female(y) ∧ loves(y , z) ∧Male(z))

I cert(Q(x),O) =?

I We have to consider all possible models of the ontology
I But there actually two classes:

Andrea is male vs. Andrea is not male.

43 / 66

Example (Certain Answers for Conjunctive Queries)

T = { > v Male t Female,Male u Female v ⊥ }
A = { friend(john, susan), friend(john, andrea), female(susan),

loves(susan, andrea), loves(andrea, bill),Male(bill) }

Q(x) = ∃y , z(friend(x , y) ∧ Female(y) ∧ loves(y , z) ∧Male(z))

Class of models 1

john

♀andrea susan ♀

bill ♂

fr
ie
nd

friend

loves
loves

Class of models 2

john

♂andrea susan ♀

bill ♂
fr
ie
nd

friend

loves
loves

cert(Q(x),O) = {john}
44 / 66

Embedding into FOL
I Most DLs (such as ALC) can be embedded into FOL
I Notion of embedding is well-defined as FOL structures are

used for semantics of DLs.

I Correspondence idea
Concept names = unary predicates, roles = binary predicates,
GCI = ∀ rules

I Define for any concept description and variable x its
corresponding x-open formula τx(C)

I τx(A) = A(x)
I τx(C u D) = τx(C) ∧ τx(D)
I τx(C t D) = τx(C) ∨ τx(D)
I τx(¬C) = ¬τx(C)
I τx(∀r .C) = ∀y(r(x , y)→ τy (C))
I τx(∃r .C) = ∃y(r(x , y) ∧ τy (C))

I ABox axioms not changed
I TBox axioms: C v D becomes ∀x(τx(C)→ τx(D))

45 / 66

Embedding into FOL
I Most DLs (such as ALC) can be embedded into FOL
I Notion of embedding is well-defined as FOL structures are

used for semantics of DLs.

I Correspondence idea
Concept names = unary predicates, roles = binary predicates,
GCI = ∀ rules

I Define for any concept description and variable x its
corresponding x-open formula τx(C)

I τx(A) = A(x)
I τx(C u D) = τx(C) ∧ τx(D)
I τx(C t D) = τx(C) ∨ τx(D)
I τx(¬C) = ¬τx(C)
I τx(∀r .C) = ∀y(r(x , y)→ τy (C))
I τx(∃r .C) = ∃y(r(x , y) ∧ τy (C))

I ABox axioms not changed
I TBox axioms: C v D becomes ∀x(τx(C)→ τx(D))

45 / 66

Embedding into FOL
I Most DLs (such as ALC) can be embedded into FOL
I Notion of embedding is well-defined as FOL structures are

used for semantics of DLs.

I Correspondence idea
Concept names = unary predicates, roles = binary predicates,
GCI = ∀ rules

I Define for any concept description and variable x its
corresponding x-open formula τx(C)

I τx(A) = A(x)
I τx(C u D) = τx(C) ∧ τx(D)
I τx(C t D) = τx(C) ∨ τx(D)
I τx(¬C) = ¬τx(C)
I τx(∀r .C) = ∀y(r(x , y)→ τy (C))
I τx(∃r .C) = ∃y(r(x , y) ∧ τy (C))

I ABox axioms not changed
I TBox axioms: C v D becomes ∀x(τx(C)→ τx(D))

45 / 66

Embedding into FOL
I Most DLs (such as ALC) can be embedded into FOL
I Notion of embedding is well-defined as FOL structures are

used for semantics of DLs.

I Correspondence idea
Concept names = unary predicates, roles = binary predicates,
GCI = ∀ rules

I Define for any concept description and variable x its
corresponding x-open formula τx(C)

I τx(A) = A(x)
I τx(C u D) = τx(C) ∧ τx(D)
I τx(C t D) = τx(C) ∨ τx(D)
I τx(¬C) = ¬τx(C)
I τx(∀r .C) = ∀y(r(x , y)→ τy (C))
I τx(∃r .C) = ∃y(r(x , y) ∧ τy (C))

I ABox axioms not changed
I TBox axioms: C v D becomes ∀x(τx(C)→ τx(D))

45 / 66

Embedding into FOL

I For translation two variables are sufficient (“2 finger
movement”)

I Hence: DLs embeddable into known 2-variable fragment of
FOL

I Also the fragment is a guarded fragment: one quantifies over
variables fixed within atom.

Wake-Up Exercise

Calculate τx(∀r .(A u ∃r .B)) using only two variables.

46 / 66

Embedding into FOL

I For translation two variables are sufficient (“2 finger
movement”)

I Hence: DLs embeddable into known 2-variable fragment of
FOL

I Also the fragment is a guarded fragment: one quantifies over
variables fixed within atom.

Wake-Up Exercise

Calculate τx(∀r .(A u ∃r .B)) using only two variables.

Solution:

∀y [r(x , y)→ (A(y) ∧ ∃x [r(y , x) ∧ B(x)])]

NB: There are free and bound occurrences of x

46 / 66

DL Family

I Different DLs for different purposes
I What is more important: Expressivity or feasibility?
I Which kinds of reasoning services does one have to provide?

I Differences regarding
I the allowed set of concept constructors
I the allowed set of role constructors
I the allowed types of TBox axioms
I the allowed types of ABox axioms
I the allowance of concrete domains and attributes (such as

hasAge with range the domain of integers)

47 / 66

Family of DLs and their Namings
I AL: attributive language
I C: (full) complement/negation
I I: inverse roles ((r−1)I = {(d , e) ∈ ∆I ×∆I | (e, d) ∈ rI})
I H: role inclusions (hasFather v hasParent)

I S: ALC + transitive roles (trans isReachable)

I N : unqualified number restrictions
((≥ n r)I = {d ∈ ∆I | #({e | (d , e) ∈ rI}) ≥ n))

I O: nominals {b}I = {bI}
I Q: qualified number restrictions

((≥ n r .C)I = {d ∈ ∆I | #({e | (d , e) ∈ rI} and e ∈ CI) ≥ n))

I F : functionality constraints I |= (func R) iff RI is a function

I R: role chains and ∃R.Self (hasFather ◦ hasMother v hasgrandMa)

(narcist ≡ ∃likes.Self)

I OWL 2 is SROIQ
48 / 66

Lightweight DLs
I Lightweight DLs favor feasibility over expressibility by, roughly,

dis-allowing disjunction
I In principle three lightweight logics that have corresponding

OWL 2 profiles (https://www.w3.org/TR/owl2-profiles/)

I EL (OWL 2 EL)
I No inverses, no negation, no ∀
I polynomial time algorithms for all the standard reasoning tasks

with large ontologies
I DL-Lite (OWL 2 QL)

I TBox: No qualified existentials on lhs
I Feasible CQ answering using rewriting and unfolding leveraging

RDBS technology
I RL (OWL 2 RL)

I TBox restriction: “Only concept names on the rhs”
I Polynomial time algorithms leveraging rule-extended database

technologies operating directly on RDF triples

49 / 66

https://www.w3.org/TR/owl2-profiles/

Lightweight DLs
I Lightweight DLs favor feasibility over expressibility by, roughly,

dis-allowing disjunction
I In principle three lightweight logics that have corresponding

OWL 2 profiles (https://www.w3.org/TR/owl2-profiles/)

I EL (OWL 2 EL)
I No inverses, no negation, no ∀
I polynomial time algorithms for all the standard reasoning tasks

with large ontologies
I DL-Lite (OWL 2 QL)

I TBox: No qualified existentials on lhs
I Feasible CQ answering using rewriting and unfolding leveraging

RDBS technology
I RL (OWL 2 RL)

I TBox restriction: “Only concept names on the rhs”
I Polynomial time algorithms leveraging rule-extended database

technologies operating directly on RDF triples

49 / 66

https://www.w3.org/TR/owl2-profiles/

Lightweight DLs
I Lightweight DLs favor feasibility over expressibility by, roughly,

dis-allowing disjunction
I In principle three lightweight logics that have corresponding

OWL 2 profiles (https://www.w3.org/TR/owl2-profiles/)

I EL (OWL 2 EL)
I No inverses, no negation, no ∀
I polynomial time algorithms for all the standard reasoning tasks

with large ontologies
I DL-Lite (OWL 2 QL)

I TBox: No qualified existentials on lhs
I Feasible CQ answering using rewriting and unfolding leveraging

RDBS technology
I RL (OWL 2 RL)

I TBox restriction: “Only concept names on the rhs”
I Polynomial time algorithms leveraging rule-extended database

technologies operating directly on RDF triples

49 / 66

https://www.w3.org/TR/owl2-profiles/

Lightweight DLs
I Lightweight DLs favor feasibility over expressibility by, roughly,

dis-allowing disjunction
I In principle three lightweight logics that have corresponding

OWL 2 profiles (https://www.w3.org/TR/owl2-profiles/)

I EL (OWL 2 EL)
I No inverses, no negation, no ∀
I polynomial time algorithms for all the standard reasoning tasks

with large ontologies
I DL-Lite (OWL 2 QL)

I TBox: No qualified existentials on lhs
I Feasible CQ answering using rewriting and unfolding leveraging

RDBS technology
I RL (OWL 2 RL)

I TBox restriction: “Only concept names on the rhs”
I Polynomial time algorithms leveraging rule-extended database

technologies operating directly on RDF triples

49 / 66

https://www.w3.org/TR/owl2-profiles/

Comparison

RL EL QL
inverse roles + - +
rhs qual. exist - + +
lhs qual. exist. + + -

50 / 66

Complexity

I A nearly complete picture of reasoning services for DLs
I Research in DL community as of now resembles complexity

farming
I DL complexity navigator:

http://www.cs.man.ac.uk/~ezolin/dl (Last update 2013)

51 / 66

http://www.cs.man.ac.uk/~ezolin/dl

Tableaux Calculus for ALC

I Efficient calculi are at the core of DL reasoners

I Tableaux calculi have been implemented successfully

I Refutation calculus based on disjunctive normal form

I We demonstrate it here at an example for ALC TBoxes
I For a full description and proofs see handbook article by

Baader
Lit: F. Baader and W. Nutt. Basic description logics. In F. Baader et al.,

editors, The Description Logic Handbook, pages 43–95. Cambridge University

Press, 2003.

52 / 66

Tableaux Calculus for ALC

I Efficient calculi are at the core of DL reasoners

I Tableaux calculi have been implemented successfully

I Refutation calculus based on disjunctive normal form

I We demonstrate it here at an example for ALC TBoxes
I For a full description and proofs see handbook article by

Baader
Lit: F. Baader and W. Nutt. Basic description logics. In F. Baader et al.,

editors, The Description Logic Handbook, pages 43–95. Cambridge University

Press, 2003.

52 / 66

Tableaux Example

I ALC tableau gives tests for satisfiability of ABox

I by checking whether obvious contradictions (clashes with
complementary literals) are contained

I An ABox that is complete (no rules applicable anymore) and
open (no clashes) describes a model

I Algorithm applies tableau rules to extend ABox

53 / 66

Rules
I Starts with an ABox A0 which is in negation normal form

(NNF, ¬ in front of concept names)

I Apply rules to construct new ABoxes; indeterminism due to t
rule

Rule Condition ; Effect
;u (C u D)(x) ∈ A ; A ∪ {C (x),D(x)}
;t (C t D)(x) ∈ A ; A ∪ {C (x)}or A ∪ {D(x)}
;∃ (∃r .C)(x) ∈ A ; A ∪ {r(x , y),C (y)} for fresh y
;∀ (∀r .C)(x), r(x , y) ∈ A ; A ∪ {C (y)}

I Rules only applicable if they lead to an addition of assertion
I One obtains a tree with ABoxes (due to indeterminism)
I Within each ABox a tree-like structure is established

(tree-model property)

54 / 66

Rules
I Starts with an ABox A0 which is in negation normal form

(NNF, ¬ in front of concept names)

I Apply rules to construct new ABoxes; indeterminism due to t
rule

Rule Condition ; Effect
;u (C u D)(x) ∈ A ; A ∪ {C (x),D(x)}
;t (C t D)(x) ∈ A ; A ∪ {C (x)}or A ∪ {D(x)}
;∃ (∃r .C)(x) ∈ A ; A ∪ {r(x , y),C (y)} for fresh y
;∀ (∀r .C)(x), r(x , y) ∈ A ; A ∪ {C (y)}

I Rules only applicable if they lead to an addition of assertion
I One obtains a tree with ABoxes (due to indeterminism)
I Within each ABox a tree-like structure is established

(tree-model property)

54 / 66

Rules
I Starts with an ABox A0 which is in negation normal form

(NNF, ¬ in front of concept names)

I Apply rules to construct new ABoxes; indeterminism due to t
rule

Rule Condition ; Effect
;u (C u D)(x) ∈ A ; A ∪ {C (x),D(x)}
;t (C t D)(x) ∈ A ; A ∪ {C (x)}or A ∪ {D(x)}
;∃ (∃r .C)(x) ∈ A ; A ∪ {r(x , y),C (y)} for fresh y
;∀ (∀r .C)(x), r(x , y) ∈ A ; A ∪ {C (y)}

I Rules only applicable if they lead to an addition of assertion
I One obtains a tree with ABoxes (due to indeterminism)
I Within each ABox a tree-like structure is established

(tree-model property)

54 / 66

Rules
I Starts with an ABox A0 which is in negation normal form

(NNF, ¬ in front of concept names)

I Apply rules to construct new ABoxes; indeterminism due to t
rule

Rule Condition ; Effect
;u (C u D)(x) ∈ A ; A ∪ {C (x),D(x)}
;t (C t D)(x) ∈ A ; A ∪ {C (x)}or A ∪ {D(x)}
;∃ (∃r .C)(x) ∈ A ; A ∪ {r(x , y),C (y)} for fresh y
;∀ (∀r .C)(x), r(x , y) ∈ A ; A ∪ {C (y)}

I Rules only applicable if they lead to an addition of assertion
I One obtains a tree with ABoxes (due to indeterminism)
I Within each ABox a tree-like structure is established

(tree-model property)

54 / 66

Example

I Given: T = {GoodStudent ≡ Smart u Studious}
I Subsumption test:
T � ∃knows.Smart u ∃knows.Studious v ∃knows.GoodStudent

I Reduction to ABox satisfiability:
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.GoodStudent)(a)} satisfiable?

I Expansions of definition
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.(Smart u Studious))(a)}
satisfiable?

I Transform to NNF
{∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
satisfiable?

I GCIs can be transformed to definitions (i.e. axioms of the form
A ≡ C) using additional symbols

55 / 66

Example

I Given: T = {GoodStudent ≡ Smart u Studious}
I Subsumption test:
T � ∃knows.Smart u ∃knows.Studious v ∃knows.GoodStudent

I Reduction to ABox satisfiability:
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.GoodStudent)(a)} satisfiable?

I Expansions of definition
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.(Smart u Studious))(a)}
satisfiable?

I Transform to NNF
{∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
satisfiable?

I GCIs can be transformed to definitions (i.e. axioms of the form
A ≡ C) using additional symbols

55 / 66

Example

I Given: T = {GoodStudent ≡ Smart u Studious}
I Subsumption test:
T � ∃knows.Smart u ∃knows.Studious v ∃knows.GoodStudent

I Reduction to ABox satisfiability:
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.GoodStudent)(a)} satisfiable?

I Expansions of definition
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.(Smart u Studious))(a)}
satisfiable?

I Transform to NNF
{∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
satisfiable?

I GCIs can be transformed to definitions (i.e. axioms of the form
A ≡ C) using additional symbols

55 / 66

Example

I Given: T = {GoodStudent ≡ Smart u Studious}
I Subsumption test:
T � ∃knows.Smart u ∃knows.Studious v ∃knows.GoodStudent

I Reduction to ABox satisfiability:
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.GoodStudent)(a)} satisfiable?

I Expansions of definition
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.(Smart u Studious))(a)}
satisfiable?

I Transform to NNF
{∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
satisfiable?

I GCIs can be transformed to definitions (i.e. axioms of the form
A ≡ C) using additional symbols

55 / 66

Example

I Given: T = {GoodStudent ≡ Smart u Studious}
I Subsumption test:
T � ∃knows.Smart u ∃knows.Studious v ∃knows.GoodStudent

I Reduction to ABox satisfiability:
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.GoodStudent)(a)} satisfiable?

I Expansions of definition
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.(Smart u Studious))(a)}
satisfiable?

I Transform to NNF
{∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
satisfiable?

I GCIs can be transformed to definitions (i.e. axioms of the form
A ≡ C) using additional symbols

55 / 66

Example

I Given: T = {GoodStudent ≡ Smart u Studious}
I Subsumption test:
T � ∃knows.Smart u ∃knows.Studious v ∃knows.GoodStudent

I Reduction to ABox satisfiability:
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.GoodStudent)(a)} satisfiable?

I Expansions of definition
{∃knows.Smart u ∃knows.Studious u ¬(∃knows.(Smart u Studious))(a)}
satisfiable?

I Transform to NNF
{∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
satisfiable?

I GCIs can be transformed to definitions (i.e. axioms of the form
A ≡ C) using additional symbols

55 / 66

Example (A Tableau Derivation)

I {∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
I Abbreviation: {∃r .A u ∃r .B u ∀r .(¬A t ¬B)(a)}

A0 = ∃r .A u ∃r .B u ∀r .(¬A t ¬B)(a)

A1 = A0 ∪ {(∃r .A)(a), (∃r .B)(a), (∀r .(¬A t ¬B))(a)}

;u (2 times)

A2 = A1 ∪ {r(a, b),A(b), r(a, c),B(c)}

;∃ (2 times)

A3 = A2 ∪ {(¬A t ¬B)(b), (¬A t ¬B)(c)}

;∀ (2 times)

A4.1 = A3 ∪ {(¬A)(b)}

;t

A4.2 = A3 ∪ {(¬B)(b)}

;t

A5.11 =
A4.1 ∪ {¬A(c)}

A5.12 =
A4.1 ∪ {¬B(c)}

;t ;t

A5.21 =
A4.2 ∪ {¬A(c)}

A5.22 =
A4.2 ∪ {¬B(c)}

;t ;t

clash clashclash

56 / 66

Example (The partial tree model in the ABoxes)

I {∃knows.Smart u ∃knows.Studious u ∀knows.(¬Smart t ¬Studious)(a)}
I Abbreviation: {∃r .A u ∃r .B u ∀r .(¬A t ¬B)(a)}

a ∃r .A u ∃.B u ∀r .(¬A t ¬B)
∃r .A, ∃r .B, ∀r .(¬A t ¬B)

b

A
¬A t ¬B

¬A ¬B

c

B
¬A t ¬B

¬A ¬B

rr

I Canonical tree model(s) can be directly read off:
I = ({a, b, c}, ·I) with
rI = {(a, b), (a, c)} AI = {b} BI = {c}

57 / 66

Tableaux Calculus

I The tableau calculus for ALC is complete, correct, and
terminates.

I Hence, the following properties hold

Theorem

I ALC ABox satisfiability (concept satisfiability, subsumption...)
is decidable

I ALC has the finite model property, i.e.
if an ALC ontology has a model, then it has a finite model.

I ALC has the tree model property

58 / 66

Solutions to Exercise 6

Exercise 6.1 (6 bonus points)

Show the following technical lemma:
(*) If T ∈ SolM(S), then also T′ ∈ SolM(S), where T′ results

from T by substituting all marked nulls ⊥1, . . . ,⊥n occurring
in T (consistently) with new constants ci .

Solution: See book of Murlak et al, p. 57.
I Clearly T′ is in Rep(T).

I Assume for contradiction that T′ /∈ SolM(S). Hence T 6|= Σt . There are two
cases

1. T′ falsifies a tgd, say φ(~x)→ ∃~yψ(~x , ~y). Hence there exists ~a of elements
from dom(T′) such that T′ |= φ(~a) and T′ 6|= ∃~yψ(~a, ~y). Let
~a′ = ~a[c1/⊥1, . . . cn/⊥n]. Then T |= φ(~a′) and T 6|= ∃~yψ(~a′, ~y) because
there is a one-to-one homomorphism from T to T′ sending each ⊥i to a
fresh ci . But then T /∈ SolM(S). Contradiction.

2. T falsifies an egd. Similar argumentation.

60 / 66

Exercise 6.2 (4 points)
Show that the first definition of universal solutions USol1(T) entails
the second definition of universal solutions USol2(T). Lemma (*)
from Exercise 6.1 may be helpful.

Solution: (See book of Murlak et al. p 58.)
I Remember

USol1(T) : {T′ ∈ SOLM(S) | T′ complete} ⊆ Rep(T)

USol2(T) : Rep(T′) ⊆ Rep(T) for every T′ ∈ SOLM(S)

I Assume T′ ∈ SOLM(S) is an arbitrary solution.
I ⊥1, . . . ,⊥m = nulls in Dom(T′)
I T′′ = substitution result from T′ as in the lemma above.
I As T′′ ∈ SolM(S) and does not contain nulls it follows from Usol1(T) that

T′′ ∈ Rep(T).
I A homomorphism h witnessing T′′ ∈ Rep(T) can be changed into mapping h′

from Dom(T) into Dom(T′) by setting h′(⊥) = ⊥i whenever h(⊥) = ci and
otherwise h′ is the same as h.

I h′ is a homomorphism from T into T′.
I Take arbitrary T∗ ∈ Rep(T′) and let h′′ be homomorphism from T′ to T∗. Then

h′′ ◦ h′ is a homomorphism from T to T∗.
61 / 66

Exercise 6.3 (6 Points)
1. Prove that every finite graph has a core (2 points)
2. Prove that two cores of the same graph are isomorphic. (4

points)

Solution
1. Stepwise eliminate edges and vertices (more generally in DB

setting: eliminate row entries in tables) until no sub-graph
(sub-instance) can be embedded homomorphically into it. Will
reach core after finite steps as graph is finite.

2. Take two cores of a graph S1 and S2. There is
h1 : S

hom−→ S1 and h2 : S
hom−→ S2. The restriction h1′ of h1

to S2 must be a surjective homomorphism (otherwise the
image of the restriction h1′[S2] would be a proper subgraph of
S1 into which h1′ ◦ h2 would give a homomorphic embedding
of S). Similarly for h2. Hence S1 and S2 have surjective
homomorphisms into each other and so they are isomorphic.

62 / 66

Exercise 7 (14 points)

Exercise 7.1 (4 points)

1. Give a DL formalization of the following concept description
“Father who has only children that are doctors or managers ”

2. Give a DL formalization of the following assertion:
“A busy female lecturer is a person who teaches at least three
courses”

64 / 66

Exercise 7.2 (7 points)
Consider the following TBox T

A v B

B v C

C v ∃R.D
D v ¬A

1. In which DL is T ?
2. Is T satisfiable? If so, give a model, else argue why it is not

satisfiable.
3. Is the concept D satisfiable w.r.t. T , i.e., is there a model of
T in which D is not interpreted by the empty set? If yes, give
such a model else argue why it is not satisfiable

4. Is D u A satisfiable w.r.t. T ? If so, give a model, else argue
why it is not satisfiable.

65 / 66

Exercise 7.2 (3 points)

Show that subsumption can be reduced to satisfiability tests
(allowing the introduction of new constants). More concretely:

C v D w.r.t. O iff (σ ∪ {b}, T ,A ∪ {C (b),¬D(b)}) is not
satisfiable (where b is a fresh constant).

66 / 66

	Recap of Lecture 6
	OBDA: Motivation and Overview
	Ontologies and Description Logics

