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Organizational Issues: Lab Exercises 

•  Start: Wed, 18.10., 2-4pm, IFIS 2032, Class also Thu 
2-4pm, IFIS 2032 (2rd floor)  

•  Lab: Fr. 2-4pm, Building 64, IFIS 2032 (2rd floor) 
(registration via Moodle right after this class) 

•  Lab sheet provided via Moodle after class on Thu. 
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Organizational Issues: Exam 

•  Registration in class required to be able to 
participate in oral exam at the end of the semester 
(2 slots) 
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Search Engines: State of the Art 

•  Input: Strings (typed or via audio), images, ... 
•  Public services:  

–  Links to web pages plus mini synopses via GUI 
–  Presentations of structured information via GUI 

excerpts from the Knowledge Vault  
http://videolectures.net/kdd2014_murphy_knowledge_vault/ 
(previously known as Knowledge Graph) 

•  NSA services: ? 
•  Methods: Information retrieval, machine learning  
•  Data: Grabbed from free resources (win-win 

suggested) 
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Search Results 

Web Results 
have not 
changed 



Search Results 

This is what’s new 

•  Map 

•  General info 

•  Upcoming Events 

•  Points of interest 

*The type of information that 
appears in this panel depends 
on what you are searching for 



Search Engines: State of the Art 

•  Input: Strings (typed or via audio), images, ... 
•  Public services:  

–  Links to web pages plus mini synopses via GUI 
–  Presentations of structured information via GUI 

excerpts from the Knowledge Vault  
(previously known as Knowledge Graph) 

•  NSA services: ? 
•  Methods: Information retrieval, machine learning 
•  Data: Grabbed from many resources (win-win 

suggested): 
–  Web, Wikipedia (DBpedia, Wikidata, …), DBLP, 

Freebase, ... 
7 



Search Engines 

•  Find documents: Papers, articles, presentations, ... 
–  Extremely cool 
–  But… 

•  Hardly any support for interpreting documents w.r.t. 
certain goals (Knowledge Vault is just a start) 

•  No support for interpreting data 
 
•  Claim: Standard search engines provide services 

but copy documents (and possibly data) 
•  Why can’t individuals provide similar services on 

their document collections and data? 
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Personalized Information Engines 

•  Keep data, provide information 
•  Invite „agents“ to „view“ (i.e., interpret) local 

documents and data, without giving away all data 
•  Let agents take away „their“ interpretation of local 

documents and data (just like in a reference library). 
•  Doc/data provider benefits from other agents by 

(automatically) interacting with them 
–  Agents should be provided with incentives to have 

them „share“ their interpretations 
•  No GUI-based interaction, but … 
… semantic interaction via agents 
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Courses@IFIS 

•  Web and Data Science 
–  Module: Web-Mining Agents 

•  Machine Learning / Data Mining (Wednesdays) 
•  Agents / Information Retrieval (Thursdays) 
•  Requirements:  

–  Algorithms and Data Structures, Logics, Databases,  
Linear Algebra and Discrete Structures, Stochastics 

–  Module: Foundations of Ontologies and Databases 
•  (Wednesdays 16.00-18.30) 

•  Web-based Information Systems 
•  Data Management 

–  Mobile and Distributed Databases 
–  Semantic Web 
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Complementary Courses@UzL 

•  Algorithmics, Logics, and Complexity  
•  Signal Processing / Computer Vision 
•  Machine Learning 
•  Pattern Recognition 
•  Artificial Neural Networks (Deep Learning) 
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Introduction 
 

Overview ML, Data Mining, Uncertainty, 
Probability 



Literature 

•  Stuart Russell, Peter Norvig, Artificial Intelligence –  
A Modern Approach, Pearson, 2009 (or 2003 ed.) 

•  Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining: 
Practical Machine Learning Tools and Techniques, 
Morgan Kaufmann, 2011 

•  Ethem Alpaydin, Introduction to Machine Learning, MIT 
Press, 2009 

•  Numerous additional books, presentations, and videos 
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What We Mean by “Learning” 

•  Machine learning (ML) is programming computers /
developing algorithms for  
–  optimizing a performance criterion  
–  using example data or “past experience”  
–  by constructing general models that are good and 

useful approximations of the data 

•  Role of Statistics: Building mathematical models, 
core task is inference from a sample 

•  Role of CS: Efficient algorithms to 
–  solve the optimization problem 
–  and  represent and evaluate the model for inference 14 



Why and When “Learn” ? 

•  There is no need to “learn” to calculate payrolls 
•  Learning is used in the following cases: 

–  No human expertise    
   (navigating on planet X) 
–  Humans are unable to explain their expertise  

(speech recognition) 
–  Solution changes in time  
    (routing on a computer network) 
–  Solution needs to be adapted to particular cases  
   (user biometrics) 
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Data Mining 

Application of machine learning methods to large 
databases is called ‘’Data mining”.  
 

•  Retail: Market basket analysis, customer relationship 
management (CRM, also relevant for wholesale) 

•  Finance: Credit scoring, fraud detection 
•  Manufacturing: Optimization, troubleshooting 
•  Medicine: Medical diagnosis 
•  Telecommunications: Quality of service optimization 
•  Bioinformatics: Sequence or structural motifs, 

alignment 
•  Web mining: Search engines 
•  ... 
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Standard Data Mining Life Cycle 
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But don‘t let the schema fool 
you  
•  No full automatism 
•  Handling DM tools require 

expert knowledge & 
intervention 



Sample of ML Applications 

•  Learning Associations 
•  Supervised Learning 

–  Classification 
–  Regression 

•  Unsupervised Learning 
•  Reinforcement Learning 
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Learning Associations 

•  Basket analysis  
 P (Y | X ) probability that somebody who buys X 
also buys Y where X and Y are products/services. 
 Example: P ( chips | beer ) = 0.7 

•  If we know more about customers or make a 
distinction among them: 
–  P (Y | X, D )  

where D is the customer profile (age, gender, marital 
status, …) 

–  In case of a web portal, items correspond to links to 
be shown/prepared/downloaded in advance 
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Classification 

•  Example: Credit 
scoring 

•  Differentiating 
between low-risk 
and high-risk 
customers from 
their income and 
savings 
Discriminant: IF income > θ1 AND savings > θ2  

    THEN low-risk ELSE high-risk 
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Classification: Applications 

•  Aka Pattern recognition 
•  Character recognition: Different handwriting styles. 
•  Face recognition: Pose, lighting, occlusion (glasses, 

beard), make-up, hair style  
•  Speech recognition: Temporal dependency 

– Use of a dictionary for the syntax of the language  
– Sensor fusion: Combine multiple modalities; e.g., 

visual (lip image) and acoustic for speech 
•  Medical diagnosis: From symptoms to illnesses 
•  Reading text: 
•  ... 
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Regression 

•  Example: Price of a 
used car 

•  x :    car attribute 
 y :    price 
 y = g (x | θ ): functional    

                        dependeny 
 g ( ):  model, 
 θ:  parameters 

y = wx+w0 

22 

In classification and regression the learned data structures  
Are straight forward (concepts, function resp. 
In next lecture we will consider other more complex structures  
(bayesian networks) for learning  



Supervised Learning: Uses 

•  Prediction of future cases: Use the rule to predict the 
output for future inputs 

•  Knowledge extraction: The rule is easy to 
understand 

•  Compression: The rule is simpler than the data it 
explains 

•  Outlier detection: Exceptions that are not covered by 
the rule, e.g., fraud 
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Unsupervised Learning 

•  Learning “what normally happens” 
•  No output (we do not know the right answer) 
•  Clustering: Grouping similar instances 
•  Example applications 

–  Customer segmentation in CRM (customer relationship manag.) 
•  Company may have different marketing approaches for different groupings 

of customers 
–  Document classification in unknown domains 
–  Image compression: Color quantization 

•  Instead of using 24 bits to represent 16 million colors, reduce to 6 bits and 
64 colors, if the image only uses those 64 colors 

–  Bioinformatics: Learning motifs (sequences of amino acids in 
proteins) 
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Reinforcement Learning 

•  Learning a policy: A sequence of actions/outputs 
•  No supervised output but delayed reward 
•  Credit assignment problem 
•  Game playing 
•  Robot in a maze 
•  Multiple agents, partial observability, ... 
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New Trends in ML 

•  In older ML approaches one assumes that the 
relevant features (of data and target) are given  

(i.e., human-hand-made) 

•  Finding the right features is not trivial 

•  Learn features automatically  
 (-> Deep Learning)  

 
•  Find (computationally) appropriate feature space 

–  Transform (reduce) feature space 
(-> SVMs, Kernels)   26 



Overview 
Supervised Learning 
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Learning a Class from Examples 

•  Class C of a “family car” 
–  Prediction: Is car x a family car? 
–  Knowledge extraction: What do people expect from a 

family car? 
•  Output:  

  Positive (+) and negative (–) examples 
•  Input representation:  

  x1: price, x2: engine power 
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Training set X 

X = {xt ,rt }t=1
N
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Class C 

p1 ≤  price ≤  p2( )  AND e1 ≤  engine power ≤  e2( )
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Hypothesis class H 
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Multiple Classes, Ci i=1,...,K 
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Regression 
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Dimensions of a Supervised Learner 

1.  Model:  
   

2.  Loss function: 
   

3.  Optimization 
procedure: 
    

( )θ|xg

( ) ( )( )∑ θ=θ
t

tt g,rLE || xX

θ*= arg min
θ
E θ |X( )

In most of ML: It‘s all about optimization  



Model Selection & Generalization 

•  Learning is an ill-posed problem;  
data is not sufficient to find a unique solution 

•  The need for inductive bias, assumptions about 
hypothesis space H 

•  Generalization: How well a model performs on new 
data 

•  Overfitting: H more complex than concept C                  
                      (function f, resp. )   
•  Underfitting: H less complex than C (resp.  f) 
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Triple Trade-Off 

There is a trade-off between three factors  
(Dietterich, 2003): 

1.  Complexity of H, for short c(H), 
2.  Training set size, N,  
3.  Generalization error, E, on new data 

•  As N↑, E↓ 
•  As c (H) ↑, first E↑ and then E↓	
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Dietterich, T. G. 2003. “Machine Learning.” In Nature Encyclopedia of Cognitive  
Science. London: Macmillan 
 
 

How then do we chose the right hypothesis space?  



Cross-Validation 

•  To estimate generalization error, we need data 
unseen during training. We split the data as 
–  Training set (50%)          
    [ training, say, n models  g1(θ*1), … gn(θ*n) ] 
–  Validation set (25%)               
[ choosing best model: 

           gj(θ*j) = min arggi(θ*i) E(gi(θ*i)| VS) ] 
–  Test (publication) set (25%)   
[ estimating generalization error of  best model: 

             E(g(θ*j) | TS) ] 
•  Resampling when there is few data 
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Agents and Environments 

 
 
 
•  The agent function maps from percept histories to 

actions:        [f: P* à A] 
•  The agent program runs on the physical architecture to 

produce f 
•  agent = architecture + program 

architecture: PC, robotic car, … 
38 



Special case: Information Retrieval Agents 

•  Agent should be allowed to “extract information” 
from their host environment … 

•  ... and “make the information available” to their 
creator (owner) 

•  Very simple example: Linear regression 
–  Percepts = Tuples from a database table 
–  Extract information = compute a model (here: a line 

with parameters w0, w1) of the data  
–  “Make information available” = send the model  
    (w0, w1) to the creator, not the data 
–  Data would be too large anyway in general settings 
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Handling Uncertainty with Probability 
 



Uncertainty 

Let action At = leave for airport t minutes before flight  
Will At get me there on time? 
 
Problems: 

1.  partial observability (road state, other drivers' plans, etc.) 
2.  noisy sensors (traffic reports) 
3.  uncertainty in action outcomes (flat tire, etc.) 
4.  immense complexity of modeling and predicting traffic 

 
Hence, it seems that a purely logical approach either 

1.  risks falsehood: “A25 will get me there on time”, or 
2.  leads to conclusions that are too weak for decision making: 

 
“A25 will get me there on time if there's no accident on the bridge and it doesn't 

rain and my tires remain intact etc etc.” 
 
(A1440 might reasonably be said to get me there on time but I'd have to stay 

overnight in the airport …) 
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Methods for handling uncertainty 

•  Logic: 
–  Assume my car does not have a flat tire 
–  Assume A25 works unless contradicted by evidence 

•  Issues: What assumptions are reasonable? How to handle 
contradiction? 

•  Rules with fudge factors (belief in the rule): 
–  A25 ⊢0.3 get there on time 
–  Sprinkler ⊢0.99 WetGrass 
–  WetGrass ⊢ 0.7 Rain 

•  Issues: Problems with combination, e.g., Sprinkler causes Rain?? 

•  Probability 
–  Model agent's degree of belief 
–  Given the available evidence, 
     A25 will get me there on time with probability 0.04 
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Probability 

Probabilistic assertions summarize effects of 
•  laziness: failure to enumerate exceptions, qualifications, etc. 
•  theoretical ignorance: no complete theory 
•  practical ignorance: lack of relevant facts, initial conditions, tests, 

etc. 
 

Subjective probability: 
•  Probabilities relate propositions to agent's own state of knowledge 

  e.g., P(A25 | no reported accidents) = 0.06 
 

These are not assertions about the world 
 

Probabilities of propositions change with new evidence: 
  e.g., P(A25 | no reported accidents, 5 a.m.) = 0.15 
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Probability theory: Representation formalism 

•  Basic element: Random variable (RV) 
 

•  Similar to propositional logic: possible worlds defined by assignment of values to 
random variables. 

 
•  Boolean random variables 

e.g., Cavity (do I have a cavity?). Domain is < true , false > 
 

•  Discrete random variables 
e.g., Weather is one of < sunny, rainy, cloudy, snow > 
 

•  Domain values must be exhaustive and mutually exclusive 
 
•  Elementary propositions are constructed by assignment of a value to a 

random variable: e.g.,  
–  Weather = sunny,  
–  Cavity = false (abbreviated as ¬cavity) 
–  Cavity = true (abbreviated as cavity) 

 
•  Complex propositions formed from elementary propositions and standard logical 

connectives, e.g., Weather = sunny ∨ Cavity = false 
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Syntax 

•  Atomic event: A complete specification of the state of the 
world about which the agent is uncertain 
 
E.g., if the world is described by only two Boolean 
variables:     Cavity and Toothache,  

    then there are 4 distinct atomic events: 
 

Cavity = false ∧Toothache = false 
Cavity = false ∧ Toothache = true 
Cavity = true ∧ Toothache = false 
Cavity = true ∧ Toothache = true 
 

•  Atomic events are mutually exclusive and exhaustive 
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Axioms of probability 

For any propositions A, B 
–  0 ≤ P(A) ≤ 1 
–  P(true) = 1 and P(false) = 0 
   ( true stands for a tautology such as (A v ¬A); 
    false stands for a contradiction such as A & ¬A) ) 

–  P(A ∨ B) = P(A) + P(B) - P(A ∧ B) 
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Example (Dentist problem with four variables) 


Toothache (I have a toothache)


Cavity (I have a cavity)


Catch (steel probe catches in my tooth)


Weather (sunny,rainy,cloudy,snow )





Example World 
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Prior probability 

•  Prior or unconditional probabilities of propositions 
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 

correspond to belief prior to arrival of any (new) evidence 
 

•  Probability distribution  
gives values for all possible assignments: 
P(Weather) = <0.72,0.1,0.08,0.1>  

(normalized, i.e., sums to 1 because one must be the case) 
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Full joint probability distribution 
    

•  Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables 

P(Cavity,Whether)  describes a 2 × 4 matrix of values: 
 

 

 Weather =   sunny  rainy  cloudy  snow  
 Cavity = true   0.144  0.02  0.016  0.02 
 Cavity = false   0.576  0.08  0.064  0.08 

 
 

•  Full joint probability distribution: all random variables involved 
–  P(Toothache, Catch, Cavity, Weather) 

•  Every query about a domain can be answered by the full joint distribution 
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Probability for continuous variables 

50 

P(a <= X <= b ) = ∫ba U(x) dx  



Discrete random variables: Notation 

•  Dom(W) = {sunny, rainy, cloudy, snow} and Dom(W) 
disjoint from domain of other random variables: 
–  Atomic event “W=rainy” often written as “rainy” 
–  Example: P(rainy), the random variable W is 

instantiated by the value rainy 
•  Boolean variable C 

–  Atomic event “C=true” written as “c” 
–  Atomic event “C=false” written as “¬c” 
–  Examples: P(c) or P(¬c) 
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Conditional probability 

•  Conditional or posterior probabilities 
e.g., P(cavity | toothache) = 0.8 
             or: <0.8> 
i.e., given that toothache is all I know 

 
•  (Notation for conditional distributions: 

P(Cavity | Toothache) = 2-element vector of 2-element vectors) 
 
•  If we know more, e.g., cavity is also given, then we have 

P(cavity | toothache,cavity) = 1 
 
•  New evidence may be irrelevant, allowing simplification, e.g., 

P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8 
 

•  This kind of inference, sanctioned by domain knowledge, is crucial 
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Conditional probability 

•  Definition of conditional probability (in terms of unconditional probability): 
P(a | b) = P(a ∧ b) / P(b) if  P(b) > 0 

 

•  Product rule gives an alternative formulation (∧ is commutative): 
P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a) 

 

•  A general version holds for whole distributions, e.g., 
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity) 

        
      View as a set of 4 × 2 equations, not matrix mult. 

    (1,1) P(Weather=sunny |Cavity=true) P(Cavity=true) 
        (1,2) P(Weather=sunny |Cavity=false) P(Cavity=false), …. 

 

•  Chain rule is derived by successive application of product rule: 
 

P(X1, …,Xn)  = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1) 
                  = P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1) 
                   = … 
                   =  ∏n

i=1  P(Xi | X1, … ,Xi-1) 
 

53 



Bayes‘ Rule (…is at the heart of everything) 
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Inference by enumeration 

•  Start with the joint probability distribution: 

 
 

•  For any proposition φ, sum the atomic events where φ is 
true: P(φ) = Σω:ω⊨φ P(ω) 
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Inference by enumeration 

•  Start with the joint probability distribution: 

 
 
 

•  For any proposition φ, sum the atomic events where it is true:  
     P(φ) = Σω:ω╞φ P(ω) 
 
•  P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 
•  Unconditional or marginal probability of toothache 

•  Marginalization:    P(Y) = Σz ∈ ZP(Y,z) 
•  Conditioning on Z:                        P(Y) = Σz ∈ ZP(Y|z)P(z) 
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Inference by enumeration 

•  Start with the joint probability distribution: 
 

 
For any proposition φ, sum  over the atomic events ω where it is true:  

P(φ) = Σω:ω⊨φ P(ω) 
 
•  P(cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008+ 0.016 + 

0.064 = 0.28 
 
(P(cavity ∨ toothache) = P(cavity) + P(toothache) – P(cavity ∧ toothache)) 
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Inference by enumeration 

•  Start with the joint probability distribution: 

 
•  Can also compute conditional probabilities: 

 P(¬cavity | toothache)  =       P(¬cavity ∧ toothache) 
           P(toothache) 

                             =        0.016+0.064 
              0.108 + 0.012 + 0.016 + 0.064 
     =   0.4 

      P(cavity | toothache) = 0.108+0.012/0.2 = 0.6 
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Normalization 

•  Denominator P(z) (or P(toothache) in the example before) can be viewed as 
a normalization constant α 

P(Cavity | toothache) = α P(Cavity,toothache)  
= α [P(Cavity,toothache,catch) + P(Cavity,toothache,¬ catch)] 
= α [<0.108,0.016> + <0.012,0.064>]  
= α <0.12,0.08> = <0.6,0.4> 
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Inference by enumeration, contd. 

•  Typically interested in   P(Y | E = e) = ? 
–  Posterior joint distribution of Y under evidence E = e 
–  Y = query variables 
–  E = evidence variables  
–  X := Y ⋃ Y ⋃ H = all RVs 
–  H = hidden variables  

 

•  Calculated by summing out the hidden variables: 
P(Y | E = e) =  P(Y,E = e)/P(E=e)  = αP(Y,E = e) =   
                   = αΣhP(Y,E= e, H = h) 

•  Obvious problems 
1. Worst-case time complexity O(dn)            (d = largest 

         domain cardinality and n = #RVs )  
2. Space complexity O(dn) to store the joint distribution 
3. How to calculate joint distribution? 60 



Independence 

•  A and B are independent iff                P(A, B) = P(A) P(B)        
     (or alternatively:               iff    one of the following holds: 

1.  P(A|B) = P(A)  and P(A) ≠ 0 and P(B) ≠ 0 
2.  P(A) = 0 or P(B) = 0)        ) 

 

 
 
 
P(Toothache, Catch, Cavity, Weather)    
 = P(Toothache, Catch, Cavity) P(Weather) 

 
•  32 (=  2 x 2 x2 x 4) entries reduced to 12 (= 2x2x2 + 4);  
•  for n independent biased coins, O(2n) →O(n) 
•  Absolute independence powerful but rare 

•  Dentistry is a large field with hundreds of variables, none of which 
are independent. What to do? 
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Conditional independence 

•  P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries  
 
•  If I have a cavity, the probability that the probe catches in it doesn't 

depend on whether I have a toothache: 
(1) P(catch | toothache, cavity) = P(catch | cavity) 

•  The same independence holds if I haven't got a cavity: 
(2) P(catch | toothache,¬cavity) = P(catch | ¬cavity) 

 

•  Catch is conditionally independent of Toothache given Cavity: 
P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

•  Equivalent statements: 
P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
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Conditional independence contd. 

•  Write out full joint distribution using chain rule: 
 P(Toothache, Catch, Cavity) 

 = P(Toothache | Catch, Cavity) P(Catch, Cavity) 
 

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 
 

 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) 
       (with conditional independence) 
 

 i.e., 2 + 2 + 1 = 5 independent numbers 

•  In most cases, the use of conditional independence 
reduces the size of the representation of the joint 
distribution from exponential in n to linear in n. 

•  Conditional independence is our most basic and robust 
form of knowledge about uncertain environments. 
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