
Web-Mining Agents

Prof. Dr. Ralf Möller
Dr. Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Tanya Braun (Lab)

Acknowledgements

•  Slides from AIMA book provided by Cristina Conati,
UBC
http://www.cs.ubc.ca/~conati/index.php

2

Overview

Ø Full Bayesian Learning

Ø MAP learning

Ø Maximun Likelihood Learning

Ø  Learning Bayesian Networks
•  Fully observable

•  With hidden (unobservable) variables

Full Bayesian Learning

•  In the learning methods seen in first lecture the idea
was always to find the best model that could explain
some observations (best concept in classification or
best polynomial coefficients in regression)

•  In contrast, full Bayesian learning sees learning as
Bayesian updating of a probability distribution over the
hypothesis space, given data
–  H is the hypothesis variable
–  Possible hypotheses (values of H) h1…, hn
–  P(H) = prior probability distribution over hypothesis

space
•  jth observation dj gives the outcome of random variable

Dj
–  training data d= d1,..,dk

Ø  Suppose we have 5 types of candy bags
•  10% are 100% cherry candies (h100)
•  20% are 75% cherry + 25% lime candies (h75)
•  40% are 50% cherry + 50% lime candies (h50)
•  20% are 25% cherry + 75% lime candies (h25)
•  10% are 100% lime candies (h0)

•  Then we observe candies drawn from some bag

Example

Ø  θ = the parameter that defines the fraction of cherry candy in a bag

 hθ = corresponding hypothesis

Ø  Which bag has generated my 10 observations? P(hθ |d).

Ø  What flavour will the next candy be? Prediction P(X|d)

•  Given the data so far, each hypothesis hi has a posterior
probability:
–  P(hi |d) = αP(d| hi) P(hi) (Bayes theorem)
–  where P(d| hi) is called the likelihood of the data under each

hypothesis
•  Predictions over a new entity X are a weighted average

over the prediction of each hypothesis:
–  P(X|d) =
 = ∑i P(X, hi |d)
 = ∑i P(X| hi,d) P(hi |d)
 = ∑i P(X| hi) P(hi |d)
 ~ ∑i P(X| hi) P(d| hi) P(hi)
–  The weights are given by the data likelihood and prior of each h

•  No need to pick one
best-guess hypothesis!

The data
does not add
anything to a
prediction
given an hp

Full Bayesian Learning

Example
Ø  If we re-wrap each candy and return it to the bag, our 10

observations are independent and identically distributed,
i.i.d, so
•  P(d| hθ) = ∏j P(dj| hθ) for j=1,..,10

Ø For a given hθ, the value of P(dj| hθ) is
•  P(dj = cherry| hθ) = θ; P(dj = lime|hθ) = (1-θ)

Ø Given observations, of which c are cherry and l = N-c lime
ℓℓ)1()1(|(

11
θθθθ −=−= ∏∏ ==

c
j

c

jθ)hP d
•  Binomial distribution: probability of # of successes in a sequence of N

independent trials with binary outcome, each of which yields success with probability
θ.

Ø For instance, after observing 3 lime candies in a row:
•  P([lime, lime, lime] | h50) = 0.53 because the probability of seeing

lime for each observation is 0.5 under this hypotheses

Ø  Initially, the hypothesis with higher priors dominate (h50 with prior = 0.4)

Ø  As data comes in, the finally best hypothesis (h0) starts dominating, as
the probability of seeing this data given the other hypotheses gets
increasingly smaller

•  After seeing three lime candies in a row, the probability that the bag
is the all-lime one starts taking off

P(h100|d)
P(h75|d)
P(h50|d)
P(h25|d)
P(h0|d)

P(hi |d) = αP(d| hi) P(hi)

All-limes: Posterior Probability of H

Prediction Probability

Ø The probability that the next candy is lime increases with
the probability that the bag is an all-lime one

∑i P(next candy is lime| hi) P(hi |d)

Overview

Ø Full Bayesian Learning

Ø MAP learning

Ø Maximun Likelihood Learning

Ø  Learning Bayesian Networks
•  Fully observable

•  With hidden (unobservable) variables

MAP approximation

Ø Full Bayesian learning seems like a very safe bet, but
unfortunately it does not work well in practice
•  Summing over the hypothesis space is often intractable (e.g.,

18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Ø Very common approximation: Maximum a posterior (MAP)
learning:
§  Instead of doing prediction by considering all possible hypotheses,

as in

o  P(X|d) = ∑i P(X| hi) P(hi |d)

§  Make predictions based on hMAP that maximizes P(hi |d)
o  I.e., maximize P(d| hi) P(hi)

o P(X|d)~ P(X| hMAP)

MAP approximation

Ø MAP is a good approximation when P(X |d) ≈ P(X| hMAP)
•  In our example, hMAP is the all-lime bag after only 3 candies,

predicting that the next candy will be lime with p =1

•  The Bayesian learner gave a prediction of 0.8, safer after seeing
only 3 candies

P(h100|d)
P(h75|d)
P(h50|d)
P(h25|d)
P(h0|d)

Bias

Ø As more data arrive, MAP and Bayesian prediction become
closer, as MAP’s competing hypotheses become less likely

Ø Often easier to find MAP (optimization problem) than deal
with a large summation problem

Ø P(H) plays an important role in both MAP and Full Bayesian
Learning (defines learning bias)

Ø Used to define a tradeoff between model complexity and its
ability to fit the data
•  More complex models can explain the data better => higher P(d| hi)

danger of overfitting

•  But they are less likely a priory because there are more of them
than simpler model => lower P(hi)

•  I.e., common learning bias is to penalize complexity

Overview

Ø Full Bayesian Learning

Ø MAP learning

Ø Maximum Likelihood Learning

Ø  Learning Bayesian Networks
•  Fully observable

•  With hidden (unobservable) variables

Maximum Likelihood (ML) Learning

Ø Further simplification over full Bayesian and MAP
learning
•  Assume uniform priors over the space of hypotheses

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximizing
P(d| hi)

Ø When is ML appropriate?

Howard, R.: Decision analysis: Perspectives on inference,
decision, and experimentation. Proceedings of the IEEE 58(5),
632-643, 1970

Maximum Likelihood (ML) Learning

Ø Further simplification over Full Bayesian and MAP learning
•  Assume uniform prior over the space of hypotheses

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximize P(d| hi)

Ø When is ML appropriate?
•  Used in statistics as the standard (non-bayesian) statistical learning

method by those who distrust subjective nature of hypotheses priors

•  When the competing hypotheses are indeed equally likely (e.g.
have same complexity)

•  With very large datasets, for which P(d| hi) tends to overcome the
influence of P(hi)

Overview

Ø Full Bayesian Learning

Ø MAP learning

Ø Maximum Likelihood Learning

Ø  Learning Bayesian Networks
•  Fully observable (complete data)

•  With hidden (unobservable) variables

A useful distinction for the beginning

•  We are going to describe methods for learning BNs
(parameters and structure)

•  As generated BN provides full joint prob. distribution
 one can do any kind of inference (prediction,
 classification, any probability of RVs) one is interested
- > Generative models

•  In contrast there are Discriminative models (s.a. neural
networks)
–  specifically designed and trained to maximize performance

of classification: P(Y | X)
 where Y is classification RV and X the vector of features
–  By focusing on modeling the conditional distribution, they

generally perform better on classification than generative
models when given a reasonable amount of training data

18

Learning BNets: Complete Data

Ø We start by applying ML to the simplest type of BNets
learning:
•  Known structure

•  Data containing observations for all variables

ü All variables are observable, no missing data

Ø The only thing that we need to learn are the network’s
parameters

ML learning: example
Ø Back to the candy example:

•  New candy manufacturer that does not provide data on the
probability of fraction θ of cherry candy in its bags

•  Any θ is possible: continuum of hypotheses hθ

•  Reasonable to assume that all θ are equally likely (we have no
evidence of the contrary): uniform distribution P(hθ)

•  θ is a parameter for this simple family of models, that we need to
learn

Ø Simple network to represent this problem
•  Flavor represents the event of drawing a cherry vs. lime

candy from the bag

•  P(F=cherry), or P(cherry) for brevity, is equivalent to the
fraction θ of cherry candies in the bag

Ø We want to infer θ by unwrapping N candies from the bag

Ø Unwrap N candies, c cherries and l = N-c lime (and return
each candy in the bag after observing flavor)

Ø  As we saw earlier, this is described by a binomial distribution
•  P(d| hθ) = ∏j P(dj| hθ) = θc (1- θ)l

Ø With ML we want to find θ that maximizes this expression, or
equivalently its log likelihood (L)
•  L(P(d| hθ))

 = log (∏j P(dj| hθ))

 = log (θc (1- θ)l)

 = c log(θ) + l log(1- θ)

ML learning: example (cont’d)

Ø To maximize, we differentiate L(P(d| hθ) with respect to θ
and set the result to 0

ML learning: example (cont’d)

N
c

=θ

θθ −
−=
1
ℓc
θ

θθ
∂

+∂)) -log(1 log(ℓc

Ø Doing the math gives

0
1

=
−

−
−=

θθ
cNc

Frequencies as Priors

Ø So this says that the proportion of cherries in the bag is
equal to the proportion (frequency) of cherries in the
data

Ø Now we have justified why this approach provides a
reasonable estimate of node priors

General ML procedure

Ø Express the likelihood of the data as a function of the
parameters to be learned

Ø Take the derivative of the log likelihood with respect to
each parameter

Ø Find the parameter value that makes the derivative
equal to 0

Ø The last step can be computationally very expensive in
real-world learning tasks

More complex example

Ø The manufacturer chooses the color of the wrapper
probabilistically for each candy based on flavor, following
an unknown distribution

•  If the flavour is cherry, it chooses a red wrapper with probability
θ1

•  If the flavour is lime, it chooses a red wrapper with probability θ2

Ø The Bayesian network for this problem includes 3
parameters to be learned
•  θ, θ1, θ2

More complex example

Ø The manufacturer chooses the color of the wrapper
probabilistically for each candy based on flavor, following
an unknown distribution

•  If the flavour is cherry, it chooses a red wrapper with probability θ1

•  If the flavour is lime, it chooses a red wrapper with probability θ2

Ø The Bayesian network for this problem includes 3
parameters to be learned
•  θ θ 1 θ 2

Another example (cont’d)
Ø  P(W=green, F = cherry| hθθ1θ2) = (*)

 = P(W=green|F = cherry, hθθ1θ2) P(F = cherry| hθθ1θ2)

 = (1-θ 1) θ

Ø We unwrap N candies
•  c are cherry and l are lime

•  rc cherry with red wrapper, gc cherry with green wrapper

•  rl lime with red wrapper, gl lime with green wrapper

•  every trial is a combination of wrapper and candy flavor similar to event (*)
above, so

Ø  P(d| hθθ1θ2)

 = ∏j P(dj| hθθ1θ2) = θc (1-θ) l (θ 1) r
c (1-θ 1) g

c (θ 2) r
l (1-θ 2) g

l

Another example (cont’d)

Ø Maximize the log of this expression
•  clogθ + l log(1- θ) + rc log θ 1 + gc log(1- θ 1) + rl log θ 2 + g l log(1- θ 2)

Ø Take derivative with respect of each of θ, θ 1 ,θ 2
(The terms not containing the derivation variable disappear)

ML parameter learning in Bayes nets

Ø Frequencies again!

Ø This process generalizes to every fully observable Bnet.

Ø With complete data and ML approach:
•  Parameters learning decomposes into a separate learning

problem for each parameter (CPT), because of the log likelihood
step

•  Each parameter is given by the frequency of the desired child
value given the relevant parents values

Very Popular Application

Ø Naïve Bayes models: very simple
Bayesian networks for classification
•  Class variable (to be predicted) is the root node

•  Attribute variables Xi (observations) are the leaves

Ø  Naïve because it assumes that the attributes are conditionally
independent of each other given the class

Ø  Deterministic prediction can be obtained by picking the most likely class

Ø  Scales up really well: with n boolean attributes we just need…….

C

X1
Xn

X2

∏==
i

n
n

n
n C)(x(C)

),..,x,x(x
),..,x,xx(C),..,x,x(C|x |,

21

21
21 PP

P
PP α

...

2n+1 parameters

Problem with ML parameter learning

Ø With small datasets, some of the frequencies may be 0 just
because we have not observed the relevant data

Ø Generates very strong incorrect predictions:
•  Common fix: initialize the count of every relevant event to 1 before

counting the observations

Probability from Experts

Ø An alternative to learning probabilities from data is to get them
from experts

Ø Problems
•  Experts may be reluctant to commit to specific probabilities that cannot

be refined

•  How to represent the confidence in a given estimate

•  Getting the experts and their time in the first place

Ø One promising approach is to leverage both sources when
they are available
•  Get initial estimates from experts

•  Refine them with data

Combining Experts and Data

Ø Get the expert to express her belief on event A as the pair
 <n,m>

i.e. how many observations of A they have seen (or expect to see) in m
trials

Ø Combine the pair with actual data
•  If A is observed, increment both n and m

•  If ¬A is observed, increment m alone

Ø The absolute values in the pair can be used to express the
expert‘s level of confidence in her estimate
•  Small values (e.g., <2,3>) represent low confidence

•  The larger the values, the higher the confidence as it takes more and
more data to dominate the initial estimate (e.g. <2000, 3000>)

Overview

Ø Full Bayesian Learning

Ø MAP learning

Ø Maximum Likelihood Learning

Ø  Learning Bayesian Networks
•  Fully observable (complete data)

•  With hidden (unobservable) variables

Learning Parameters with Hidden Variables

Ø So far we have assumed that we can collect data on all
variables in the network

Ø What if this is not true, i.e. the network has hidden variables?

Ø Clearly we can‘t use the frequency approach, because we are
missing all the counts involving H

Quick Fix

•  Each variable has 3 values (low, moderate, high)

•  the numbers attached to the nodes represent how many parameters
need to be specified for the CPT of that node

•  78 probabilities to be specified overall

Ø Get rid of the hidden variables.

Ø  It may work in the simple network given earlier, but what
about the following one?

Not Necessarily a Good Fix

Ø The symptom variables are no longer conditionally
independent given their parents
•  Many more links, and many more probabilities to be specified: 708

overall

•  Need much more data to properly learn the network

Example: The cherry/lime candy world again

Ø  Two bags of candies (1 and 2) have been mixed together

Ø  Candies are described by 3 features: Flavor and Wrapper as before,
plus Hole (whether they have a hole in the middle)

Ø  Candies‘ features depend probabilistically from the bag they originally
came from

Ø  We want to predict for each candy, which was its original bag, from its
features: Naïve Bayes model

θ= P(Bag = 1)
θFj = P(Flavor = cherry|Bag = j)
θWj = P(Wrapper = red|Bag = j)
θHj = P(Hole = yes|Bag = j)

j =1,2

Expectation-Maximization (EM)

Ø  If we keep the hidden variables, and want to learn the network
parameters from data, we have a form of unsupervised
learning
•  The data do not include information on the true nature of each data

point (i.e. no categorization label)

Ø Expectation-Maximization
•  General algorithm for learning model parameters from incomplete data

•  We‘ll see how it works on learning parameters for Bnets with discrete
variables

EM: general idea

Ø  If we had data for all the variables in the network, we could
learn the parameters by using ML (or MAP) models
•  Frequencies of the relevant events as we saw in previous examples

Ø  If we had the parameters in the network, we could estimate
the posterior probability of any event, including the hidden
variables P(H|A,B,C)

EM: General Idea

Ø The algorithm starts from “invented” (e.g., randomly
generated) information to solve the learning problem, i.e.

•  Determine the network parameters

Ø  It then refines this initial guess by cycling through two
basic steps

•  Expectation (E): update the data with predictions generated via
the current model

•  Maximization (M): given the updated data, update the model
parameters using the Maximum Likelihood (ML) approach

ü This is the same step that we described when learning
parameters for fully observable networks

EM: How it Works on Naive Bayes

Ø Consider the following data,

•  N examples with Boolean attributes X1, X2, X3, X4

Ø which we want to categorize in one of three possible
values of class C = {1,2,3}

Ø We use a Naive Bayes classifier with hidden variable C

?
?
?
?
?

EM: Initialization

Ø The algorithm starts from “invented” (e.g., randomly
generated) information to solve the learning problem, i.e.
•  Determine the network parameters

?
?
?
?
?

Define
arbitrary
parameters

EM: Expectation Step (Get Expected Counts)

Ø What would we need to learn the network parameters using

 the ML approach?
•  P(C = i) = #(data with C=i) / #(all datapoints) for i=1,2,3

•  P(Xh = valk |C = i) = #(data with Xh = valk and C=i) / #(data with C=i)

 for all values valk of Xh and i=1,2,3

?
?
?
?
?

Remember that the equations result from our already derived knowledge
that the most likely paramters (CPTs) are given by frequencies!

EM: Expectation Step (Get Expected Counts)

Ø We only have #(all datapoints) = N and

 counts of instantiations for non-hidden RVs within data

Ø We approximate all other necessary counts with expected
counts derived from the model with “invented” parameters

Ø Expected count is the sum, over all N examples
in my dataset, of the probability that each example is in
category i

N̂(C = i) = P(C = i | attribute values of example e j
j=1

N

∑)

= P(C = i | x1j, x2 j, x3j, x4 j
j=1

N

∑)

i) (CN̂ =

EM: Expectation Step (Get Expected Counts)

Ø  How do we get the necessary probabilities from the model?

Ø  Easy with a Naïve bayes network

) x4, x3, x2,x1|iP(C

)e example of attributes|iP(C i) (CN̂

N

1j
jjjj

N

1j
j

∑

∑

=

=

==

===

) x4, x3, x2,P(x1
)ii)P(CC|P(x4 i)..,C|P(x1

) x4, x3, x2,P(x1
) x4, x3, x2, x1i,P(C

) x4, x3, x2,x1|iP(C

jjjj

jj

jjjj

jjjj
jjjj

===
=

=
==

Naïve bayes “invented
parameters” (“old” P(C=i)) Also available from Naïve Bayes. You do

the necessary transformations

Ø By a similar process we obtain the expected counts of
examples with attribute Xh= valk and belonging to category
i.

Ø These are needed later for estimating P(Xh | C):

•  for all values valk of Xh and i=1,2,3

EM: Expectation Step (Get Expected Counts)

) x4, x3, x2t,x1|iP(C 1) C t,(XN̂
tXwith e

jjjj1
1j

∑
=

=====

P(Xh = valk |C = i) = Exp.-#(examples with Xh = valk and C = i)
Exp.-#(examples with C = i)

=
N̂(Xh = valk, C = i)

N̂(C = i)

Ø For instance

Again, get these probabilities from model
with current parameters

EM: General Idea

Ø The algorithm starts from “invented” (e.g., randomly
generated) information to solve the learning problem,
i.e.
•  the network parameters

Ø  It then refines this initial guess by cycling through two
basic steps
•  Expectation (E): compute expected counts based on the

generated via the current model

•  Maximization (M): given the expected counts, update the model
parameters using the Maximum Likelihood (ML) approach

ü This is the same step that we described when learning
parameters for fully observable networks

Ø Now we can refine the network parameters by applying ML
to the expected counts

Maximization Step: (Refining Parameters)

•  for all values valk of Xj and i=1,2,3

N

i) (CN̂ i)P(C =
==

P(Xj = valk |C = i) =
N̂(Xj = valk, C = i)

N̂(C = i)

EM Cycle

Ø Ready to start the E-step again

Expected Counts
(“Augmented data”) Probabilities

Note: Actually you never
generate any data in E-step

Procedure EM(X,D,k)
 Inputs: X set of features X={X1,...,Xn} ; D data set on features {X1,...,Xn}; k number of classes
 Output: P(C), P(Xi|C) for each i∈{1:n}, where C={1,...,k}.
 Local
 real array A[X1,...,Xn,C]
 real array P[C]
 real arrays Mi[Xi,C] for each i∈{1:n}
 real arrays Pi[Xi,C] for each i∈{1:n}
 s← number of tuples in D
 Assign P[C], Pi[Xi,C] arbitrarily
 repeat
 // E Step
 for each assignment 〈X1=v1,...,Xn=vn〉∈D do
 let m ←|〈X1=v1,...,Xn=vn〉∈D|
 for each c ∈{1:k} do
 A[v1,...,vn,c]←m×P(C=c|X1=v1,...,Xn=vn)
 end for each
 end for each
 // M Step
 for each i∈{1:n} do
 Mi[Xi,C]=∑X1,...,Xi-1,Xi+1,...,Xn A[X1,...,Xn,C]
 Pi[Xi,C]=(Mi[Xi,C])/(∑C Mi[Xi,C])
 end for each
 P[C]=∑X1,...,Xn A[X1,...,Xn,C]/s
 until probabilities do not change significantly
end procedure

Example: Back to the cherry/lime candy world

Ø  Two bags of candies (1 and 2) have been mixed together

Ø  Candies are described by 3 features: Flavor and Wrapper as before,
plus Hole (whether they have a hole in the middle)

Ø  Candies‘ features depend probabilistically from the bag they originally
came from

Ø  We want to predict for each candy, which was its original bag, from its
features: Naïve Bayes model

θ = P(Bag = 1)
θFj = P(Flavor = cherry|Bag = j)
θWj = P(Wrapper = red|Bag = j)
θHj = P(Hole = yes|Bag = j)

j =1,2

Data

Ø Assume that the true parameters are
•  θ= 0.5;

•  θF1 = θW1 = θH1 = 0.8;

•  θF2 = θW2 = θH2 = 0.3;

Ø The following counts are “generated” from P(C, F, W, H)
(N = 1000)

Ø We want to re-learn the true parameters using EM

EM: Initialization

Ø Assign arbitrary initial parameters
•  Usually done randomly; here we select numbers convenient for

computation

4.0

 ;6.0
 ;6.0

)0()0()0(

)0()0()0(

)0(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

Ø We‘ll work through one cycle of EM to compute θ(1).

E-step

∑
=

==
=

N

j jjj

jjj

holewrapperP(flavor
))P(Bag|BagholewrapperP(flavor

1),,
11,,

Ø  First, we need the expected count of candies from Bag 1,
•  Sum of the probabilities that each of the N data points comes from bag 1

•  Be flavorj, wrapperj, holej the values of the corresponding attributes for
the jth datapoint

N̂(Bag = 1) = P(Bag =1 | flavorj ,wrapperj
j=1

N

∑ ,holej) =

∑∑= ====

====
=

N

j
i

jjj

jjj

i)i)P(Bag|Bagi)P(hole|Bagri)P(wrappe|BagP(flavor
))P(Bag|Bag)P(hole|Bag)P(wrapper|BagP(flavor

1

1111

E-step

97.227
1552.0
1296.0273

4.00.6
0.6273

)1(

273

44

4

)0()0()0()0()0()0()0()0(

)0()0()0()0(

222111

111

==
+

=
−+

=
θθθθθθθθ

θθθθ

HWFHWF

HWF

Ø  This summation can be broken down into the 8 candy groups in the
data table.

•  For instance the sum over the 273 cherry candies with red wrap and hole
(first entry in the data table) gives

∑∑= ====

====N

j
i

jjj

jjj

i)i)P(Bag|Bagi)P(hole|Bagri)P(wrappe|BagP(flavor
))P(Bag|Bag)P(hole|Bag)P(wrapper|BagP(flavor

1

1111

4.0

 ;6.0
 ;6.0

)0()0()0(

)0()0()0(

)0(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

M-step

Ø  If we do compute the sums over the other 7 candy groups we get

4.612 1) (BagN̂ ==

Ø  At this point, we can perform the M-step to refine θ, by taking the
expected frequency of the data points that come from Bag 1

6124.0
N

1) (BagN̂ (1) =
=

=θ

One More Parameter

Ø  If we want to do the same for parameter θF1

Ø  E-step: compute the expected count of cherry candies from Bag 1

N̂(Bag =1 ∧Flavor = cherry) = P(Bag =1 | Flavorj = cherry ,wrapperj
j:Flavorj=cherry
∑ ,holej)

)1(ˆ

)1(ˆ
)1(

1

=

=∧=
=

BagN
cherryFlavorBagN

Fθ

Ø  M-step: refine θF1 by computing the corresponding expected
frequencies

Ø  Can compute the above value from the Naïve model as we did earlier

Ø  TRY AS AN EXCERCISE

Ø  For any set of parameters, we can compute the log likelihood as we
did in the previous class

Learning Performance

;3827.0 ;3817.0 ;3887.0

 ;658.0 ;6483.0 ;6684.0
 ;6124.0

)1()1()1(

)1()1()1(

)1(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

Ø  After a complete cycle through all the parameters, we get

Ø  It can be seen that the log likelihood increases with each EM iteration

Ø  EM tends to get stuck in local maxima, so it is often combined with
gradient-based techniques in the last phase of learning

Ø  For any set of parameters, one computes the log likelihood as we did
in the previous class

Learning Performance

;3827.0 ;3817.0 ;3887.0

 ;658.0 ;6483.0 ;6684.0
 ;6124.0

)1()1()1(

)1()1()1(

)1(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

)|()|()(
2

)(
2

)(
2

)(
1

)(
1

)(
1

)()(
2

)(
2

)(
2

)(
1

)(
1

)(
1

)(

1000

1
 i

H
i
W

i
F

i
H

i
W

i
F

ii
H

i
W

i
F

i
H

i
W

i
F

i hdPhP
j

j θθθθθθθθθθθθθθ ∏
=

=d

Ø  After a complete cycle through all the parameters, we get

Ø  It can be shown that the log
likelihood increases with each EM
iteration, surpassing even the
likelihood of the original model
after only 3 iterations -2025

-2020
-2015
-2010
-2005
-2000
-1995
-1990
-1985
-1980
-1975

0 20 40 60 80 100 120

Lo
g-

lik
el

ih
oo

d
L

Iteration number

EM: Discussion

Ø For more complex Bnets the algorithm is basically the
same
•  In general, I may need to compute the conditional probability

parameter for each variable Xi given its parents Pai

•  θijk= P(Xi = xij|Pai = paik)

θijk =
N̂(Xi = xij;Pai = paik)

N̂(Pai = paik)

Ø The expected counts are computed by summing over the
examples, after having computed all the necessary
P(Xi = xij,Pai = paik) using any Bnet inference algorithm

Ø The inference can be intractable, in which case there are
variations of EM that use sampling algorithms for the E-
Step

θijk =
N̂(Xi = xij;Pai = paik)

N̂(Pai = paik)

EM: Discussion

Ø The algorithm is sensitive to “degenerated” local maxima
due to extreme configurations
•  e.g., data with outliers can generate categories that include only 1

outlier each because these models have the highest log
likelihoods

•  Possible solution: re-introduce priors over the learning hypothesis
and use the MAP version of EM

63

Bayesian learning

•  We saw three ways of Bayesian learning:
–  Full Bayesian Learning aka BMA (Bayesian Model

Averaging)
–  MAP (Maximum A Posteriori) hypothesis
–  MLE (Maximum Likelihood Estimate)

•  Another principle (see later lectures) is
–  MDL (Minimum Description Length) principle:

Use some encoding to model the complexity of the
hypothesis, and the fit of the data to the
hypothesis, then minimize the overall description
length of hi + D

64

Parameter estimation

•  Assume known structure
•  Goal: estimate BN parameters θ

–  CPT entries P(X | Parents(X))

•  A parameterization θ is good if it is likely to generate
the observed data:

•  Maximum Likelihood Estimation

(MLE) Principle: Choose θ*
so as to maximize Score

Score(θ) = P(D | θ) = P(x[m] | θ)
m
∏

i.i.d. samples

65

Learning Bayesian network structures

•  Given training set
•  Find model that best matches D

–  model selection
–  parameter estimation

]}[],...,1[{ MxxD =

Data D

Inducer

C

A

E B

!
!
!
!

"

#

$
$
$
$

%

&

⋅⋅⋅⋅

⋅⋅⋅⋅

][][][][

]1[]1[]1[]1[

MCMAMBME

CABE

Some of the following slides from an AI course „Graphical models“
by Burgard/De Raedt/Kersting/Nebel

66

Model selection

Goal: Select the best network structure, given the
data

Input:
– Training data
– Scoring function

Output:
– A network that maximizes the score

67

Structure selection: Scoring

•  Bayesian: prior over parameters and structure
–  get balance between model complexity and fit to data as

a byproduct

•  ScoreD (G) = log P(G|D) = α log [P(D|G) P(G)]
•  Marginal likelihood just comes from our parameter

estimates
•  Prior on structure can be any measure we want;

typically a function of the network complexity (MDL
principle) Same key property: Decomposability

Score(structure) = Σi Score(substructure of Xi)

Does G explain D with ML? Prior w.r.t. MDL Can we learn G’s params from D?

68

Heuristic search

B E

A

C

B E

A

C

B E

A

C

B E

A

C

69

That‘s fine.
But what to do if we have
non-complete data??

Cannot use decomposability

=> Reran parameter estimation

Local Search in Practice

G1 G3 G2

Parametric
optimization

(EM)

Parameter space

Local Maximum

G4 Gn

•  Perform EM for each candidate graph

- L
ea

rn
in

g

Local Search in Practice

•  Perform EM for each candidate graph
G1 G3 G2

Parametric
optimization

(EM)

Parameter space

Local Maximum

G4 Gn ◆  Computationally expensive:
●  Parameter optimization via EM — non-trivial
●  Need to perform EM for all candidate structures
●  Spend time even on poor candidates

⇒ In practice, considers only a few candidates

- L
ea

rn
in

g

Structural EM [Friedman et al. 98]

Recall, in complete data we had

– Decomposition ⇒ efficient search

Idea:
•  Instead of optimizing the real score…
•  Find decomposable alternative score
•  Such that maximizing new score

 ⇒ improvement in real score

- L
ea

rn
in

g

Structural EM

Idea:
•  Use current model to help evaluate new

structures

Outline:
•  Perform search in (Structure, Parameters) space
•  At each iteration, use current model for finding

either:
– Better scoring parameters: “parametric” EM step
or
– Better scoring structure: “structural” EM step

- L
ea

rn
in

g

•  Score for structure G and parameterization Θ given data
over observed RVs O

 ScoreO (G, Θ) = log P(O:G,Θ) – Pen(G, Θ,O)
•  Handle hiddens H (non-observed) by conditionalizing

(like in full bayesian learning) using current structure G*
and parameterization Θ*

 Q(G, Θ :G*, Θ*) = Eh~P(h|O:G*, Θ*)[logP(O,h:G, Θ)] – Pen(G, Θ,O)

74

Alternating model selecetion EM
Choose G0 and Θ0 randomly
Loop for n= 0,1, … until convergence
 Find Gn+1, Θn+1 s.t. Q(Gn+1, Θn+1: Gn, Θn) > Q(Gn, Θn: Gn, Θn)

Training
Data

Expected Counts
N(X1)
N(X2)
N(X3)
N(H, X1, X1, X3)
N(Y1, H)
N(Y2, H)
N(Y3, H)

Computation

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

H

Y1 Y2 Y3

+

Score
&

 Parameterize

Reiterate

N(X2,X1)
N(H, X1, X3)
N(Y1, X2)
N(Y2, Y1, H)

X1 X2 X3

H

Y1 Y2 Y3

- L
ea

rn
in

g

Structural EM

Structure Learning: incomplete data

 EM-algorithm:
iterate until convergence

Current model

 S X D C B
 <? 0 1 0 1>
 <1 1 ? 0 1>
 <0 0 0 ? ?>
 <? ? 0 ? 1> ………

Data

 S X D C B
 1 0 1 0 1
 1 1 1 0 1
 0 0 0 0 0
 1 0 0 0 1 ………..

Expected
 counts

Expectation
 Inference:
P(S|X=0,D=1,C=0,B=1)

Maximization
Parameters

- L
ea

rn
in

g

E

B A

Structure Learning: incomplete data

SEM-algorithm:
iterate until convergence

Current model

 S X D C B
 <? 0 1 0 1>
 <1 1 ? 0 1>
 <0 0 0 ? ?>
 <? ? 0 ? 1> ………

Data

 S X D C B
 1 0 1 0 1
 1 1 1 0 1
 0 0 0 0 0
 1 0 0 0 1 ………..

Expected
 counts

Expectation
 Inference:
P(S|X=0,D=1,C=0,B=1)

Maximization
Parameters

- L
ea

rn
in

g

Maximization
Structure

E B

A

E

B

A
E

B A

E

B A

E B

A

78

Variations on a theme

•  Known structure, fully observable: only need to
do parameter estimation

•  Known structure, hidden variables:
use expectation maximization (EM) to estimate
parameters

•  Unknown structure, fully observable: do heuristic
search through structure space, then parameter
estimation

•  Unknown structure, hidden variables: structural
EM Though we have a procedure for learning parameters

and structure, the resulting structure is not -prima facie –
guaranteed to reflect causal relationships.
(Remember burglary example with ``wrong‘‘ non-causal order of RVs.)
 This motivates considering other algorithms and – of course – considering
causality in more detail (see next lectures)

