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Overview 

Ø Full Bayesian Learning 

Ø MAP learning 

Ø Maximun Likelihood Learning 

Ø  Learning Bayesian Networks 
•  Fully observable 

•  With hidden (unobservable) variables 



Full Bayesian Learning 

•  In the learning methods seen in first lecture the idea 
was always to find the best model that could explain 
some observations (best concept in classification or 
best polynomial coefficients in regression) 

•  In contrast, full Bayesian learning sees learning as 
Bayesian updating of a probability distribution over the 
hypothesis space, given data 
–  H is the hypothesis variable 
–  Possible hypotheses (values of H) h1…, hn  
–  P(H) = prior probability distribution over hypothesis 

space 
•  jth observation dj gives the outcome of random variable 

Dj 
–  training data d= d1,..,dk 



Ø  Suppose we have 5 types of candy bags 
•  10% are 100% cherry candies (h100) 
•  20% are 75% cherry + 25% lime candies (h75) 
•  40% are 50% cherry + 50% lime candies (h50) 
•  20% are 25% cherry + 75% lime candies (h25) 
•  10% are 100% lime  candies (h0) 

•  Then we observe candies drawn from some bag 

Example 

Ø   θ = the parameter that defines the fraction of cherry candy in a bag  

     hθ =  corresponding hypothesis 

Ø  Which bag has generated my 10 observations? P(hθ |d). 

Ø  What flavour will the next candy be? Prediction P(X|d) 



•  Given the data so far, each hypothesis hi has a posterior 
probability: 
–  P(hi |d) = αP(d| hi) P(hi)  (Bayes theorem) 
–  where P(d| hi) is called the likelihood of the data under each 

hypothesis 
•  Predictions over a new entity X are a weighted average 

over the prediction of each hypothesis: 
–  P(X|d) =  
      = ∑i P(X, hi |d)  
      = ∑i P(X| hi,d) P(hi |d)  
      = ∑i P(X| hi) P(hi |d)  
      ~ ∑i P(X| hi) P(d| hi) P(hi)  
–  The weights are given by the data likelihood and prior of each h 

•  No need to pick one  
best-guess hypothesis! 

The data 
does not add 
anything to a  
prediction 
given an hp 

Full Bayesian Learning 



Example 
Ø  If we re-wrap each candy and return it to the bag, our 10 

observations are independent and identically distributed, 
i.i.d, so 
•  P(d| hθ) = ∏j P(dj| hθ)   for j=1,..,10 

Ø For a given hθ, the value of P(dj| hθ) is 
•  P(dj = cherry| hθ) = θ;   P(dj = lime|hθ) = (1-θ)  

Ø Given observations, of which c are cherry and l = N-c lime 
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•  Binomial distribution: probability of  # of successes in a sequence of N 

independent  trials with binary outcome, each of which yields success with probability 
θ.  

Ø For instance, after observing 3 lime candies in a row:  
•  P([lime, lime, lime] | h50) = 0.53 because the probability of seeing 

lime for each observation is 0.5 under this hypotheses 



Ø  Initially, the hypothesis with higher priors dominate (h50 with prior = 0.4) 

Ø  As data comes in, the finally best hypothesis (h0) starts dominating, as 
the probability of seeing this data given the other hypotheses gets 
increasingly smaller 

•  After seeing three lime candies in a row, the probability that the bag 
is the all-lime one starts taking off 

P(h100|d) 
P(h75|d) 
P(h50|d) 
P(h25|d) 
P(h0|d) 

P(hi |d) = αP(d| hi) P(hi) 

All-limes: Posterior Probability of H 



Prediction Probability 

Ø The probability that the next candy is lime increases with 
the probability that the bag is an all-lime one 

∑i P(next candy is lime| hi) P(hi |d) 



Overview 

Ø Full Bayesian Learning 

Ø MAP learning 

Ø Maximun Likelihood Learning 

Ø  Learning Bayesian Networks 
•  Fully observable 

•  With hidden (unobservable) variables 



MAP approximation 

Ø Full Bayesian learning seems like a very safe bet, but 
unfortunately it does not work well in practice 
•  Summing over the hypothesis space is often intractable (e.g., 

18,446,744,073,709,551,616 Boolean functions of 6 attributes) 

Ø Very common approximation: Maximum a posterior (MAP) 
learning:  
§  Instead of doing prediction by considering all possible hypotheses, 

as in 

o   P(X|d)  = ∑i P(X| hi) P(hi |d)  

§  Make predictions based on hMAP that maximizes  P(hi |d)  
o  I.e., maximize P(d| hi) P(hi) 

o P(X|d)~ P(X| hMAP ) 



MAP approximation 

Ø MAP is a good approximation when P(X |d) ≈ P(X| hMAP)  
•  In our example, hMAP is the all-lime bag after only 3 candies, 

predicting that the next candy will be lime with p =1 

•  The Bayesian learner gave a prediction of 0.8, safer after seeing 
only 3 candies 

P(h100|d) 
P(h75|d) 
P(h50|d) 
P(h25|d) 
P(h0|d) 



Bias 

Ø As more data arrive, MAP and Bayesian prediction become 
closer, as MAP’s competing hypotheses become less likely 

Ø Often easier to find MAP (optimization problem) than deal 
with a large summation problem 

Ø P(H) plays an important role in both MAP and Full Bayesian 
Learning (defines learning bias) 

Ø Used to define a tradeoff between model complexity and its 
ability to fit the data 
•  More complex models can explain the data better => higher P(d| hi) 

danger of overfitting 

•  But they are less likely a priory because there are more of them 
than simpler model => lower P(hi)  

•  I.e., common learning bias is to penalize complexity 



Overview 

Ø Full Bayesian Learning 

Ø MAP learning 

Ø Maximum Likelihood Learning 

Ø  Learning Bayesian Networks 
•  Fully observable 

•  With hidden (unobservable) variables 



Maximum Likelihood (ML) Learning 

Ø Further simplification over full Bayesian and MAP 
learning 
•  Assume uniform priors over the space of hypotheses 

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximizing 
P(d| hi)  

Ø When is ML appropriate? 

Howard, R.: Decision analysis: Perspectives on inference, 
decision, and experimentation. Proceedings of the IEEE 58(5), 
632-643, 1970 



Maximum Likelihood (ML) Learning 

Ø Further simplification over Full Bayesian and MAP learning 
•  Assume uniform prior over the space of hypotheses 

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximize P(d| hi)  

Ø When is ML appropriate? 
•  Used in statistics as the standard (non-bayesian) statistical learning 

method by those who distrust subjective nature of hypotheses priors  

•  When the competing hypotheses are indeed equally likely (e.g. 
have same complexity) 

•  With very large datasets, for which P(d| hi) tends to overcome the 
influence of P(hi)  



Overview 

Ø Full Bayesian Learning 

Ø MAP learning 

Ø Maximum Likelihood Learning 

Ø  Learning Bayesian Networks 
•  Fully observable (complete data) 

•  With hidden (unobservable) variables 



A useful distinction for the beginning 

•  We are going to describe methods for learning BNs 
(parameters and structure) 

•  As generated BN provides full joint prob. distribution 
    one can do any kind of inference (prediction, 
    classification, any probability of RVs) one is interested 
- > Generative models  

•  In contrast there are Discriminative models (s.a. neural 
networks) 
–  specifically designed and trained to maximize performance 

of classification: P(Y | X)  
   where Y is classification RV and X the vector of features 
–  By focusing on modeling the conditional distribution, they 

generally perform better on classification than generative 
models when given a reasonable amount of training data 
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Learning BNets: Complete Data 

Ø We start by applying ML to the simplest type of BNets 
learning: 
•  Known structure 

•  Data containing observations for all variables 

ü All variables are observable, no missing data 

Ø The only thing that we need to learn are the network’s 
parameters 



ML learning: example 
Ø Back to the candy example: 

•  New candy manufacturer that does not provide data on the 
probability of fraction θ of cherry candy in its bags 

•  Any θ is possible: continuum of hypotheses hθ 

•  Reasonable to assume that all θ are equally likely (we have no 
evidence of the contrary): uniform distribution  P(hθ) 

•  θ  is a parameter for this simple family of models, that we need to 
learn 

Ø Simple network to represent this problem 
•  Flavor represents the event of drawing a cherry vs. lime 

candy from the bag 

•  P(F=cherry), or P(cherry) for brevity, is equivalent to the 
fraction θ  of cherry candies in the bag 

Ø We want to infer θ by unwrapping N candies from the bag  



Ø Unwrap N candies, c cherries and l = N-c lime (and return 
each candy in the bag after observing flavor) 

Ø   As we saw earlier, this is described by a binomial distribution 
•   P(d| hθ) = ∏j P(dj| hθ) = θc (1- θ)l  

Ø With ML we want to find θ that maximizes this expression, or 
equivalently its log likelihood (L) 
•  L(P(d| hθ))  

    = log (∏j P(dj| hθ))  

    = log (θc (1- θ)l ) 

    = c log(θ)  + l log(1- θ) 

ML learning: example (cont’d) 



Ø To maximize, we differentiate L(P(d| hθ) with respect to θ 
and set the result to 0 

ML  learning: example (cont’d) 
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Frequencies as Priors 

Ø So this says that the proportion of cherries in the bag is 
equal to the proportion (frequency) of cherries in the 
data 

  

 

Ø Now we have justified why this approach provides a 
reasonable estimate of node priors 



General ML procedure 

Ø Express the likelihood of the data as a function of the 
parameters to be learned 

Ø Take the derivative of the log likelihood with respect to 
each parameter 

Ø Find the parameter value that makes the derivative 
equal to 0 

Ø The last step can be computationally very expensive in 
real-world learning tasks 



More complex example 

Ø The manufacturer chooses the color of the wrapper 
probabilistically for each candy based on flavor, following 
an unknown distribution 

•  If the flavour is cherry, it chooses a red wrapper with probability 
θ1 

•  If the flavour is lime, it chooses a red wrapper with probability θ2 

Ø The Bayesian network for this problem includes 3 
parameters to be learned 
•  θ, θ1, θ2  



More complex example 

Ø The manufacturer chooses the color of the wrapper 
probabilistically for each candy based on flavor, following 
an unknown distribution 

•  If the flavour is cherry, it chooses a red wrapper with probability θ1 

•  If the flavour is lime, it chooses a red wrapper with probability θ2 

Ø The Bayesian network for this problem includes 3 
parameters to be learned 
•  θ θ 1 θ 2  



Another example (cont’d) 
Ø  P( W=green,  F = cherry| hθθ1θ2) = (*) 

      = P( W=green|F = cherry, hθθ1θ2) P( F = cherry| hθθ1θ2)  

     = (1-θ 1) θ 

Ø We unwrap N candies 
•  c are cherry and l are lime 

•  rc cherry with red wrapper, gc cherry with green wrapper 

•  rl lime with red wrapper, gl lime with green wrapper 

•  every trial is  a combination of wrapper and candy flavor similar to event (*) 
above, so 

Ø  P(d| hθθ1θ2)  

      = ∏j P(dj| hθθ1θ2)  = θc (1-θ) l (θ 1) r
c (1-θ 1) g

c (θ 2) r
l (1-θ 2) g

l  



Another example (cont’d) 

Ø Maximize the log of this expression 
•  clogθ  + l log(1- θ) + rc log θ 1 + gc log(1- θ 1) + rl log θ 2 + g l log(1- θ 2)  

Ø Take derivative with respect of each of θ, θ 1 ,θ 2  
(The terms not containing the derivation variable disappear) 



ML parameter learning in Bayes nets 

Ø Frequencies again! 

Ø This process generalizes to every fully observable Bnet.  

Ø With complete data and ML approach: 
•  Parameters learning decomposes into a separate learning 

problem for each parameter (CPT), because of the log likelihood 
step 

•  Each parameter is given by the frequency of the desired child 
value given the relevant parents values 



Very Popular Application  

Ø Naïve Bayes models: very simple  
Bayesian networks for classification 
•  Class variable (to be predicted) is the root node 

•  Attribute variables Xi (observations) are the leaves 

Ø  Naïve because it assumes that the attributes are conditionally 
independent of each other given the class 

Ø  Deterministic prediction can be obtained by picking the most likely class 

Ø  Scales up really well: with n boolean attributes we just need……. 
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Problem with ML parameter learning 

Ø With small datasets, some of the frequencies may be 0 just 
because we have not observed the relevant data  

Ø Generates very strong incorrect predictions: 
•  Common fix: initialize the count of every relevant event to 1 before 

counting the observations 



Probability from Experts 

Ø An alternative to learning probabilities from data is to get them 
from experts 

Ø Problems 
•  Experts may be reluctant to commit to specific probabilities that cannot 

be refined 

•  How to represent the confidence in a given estimate 

•  Getting the experts and their time in the first place 

Ø One promising approach is to leverage both sources when 
they are available 
•  Get initial estimates from experts 

•  Refine them with data 



Combining Experts and Data 

Ø Get the expert to express her belief on event A as the pair 
                <n,m> 

i.e. how many observations of A they have seen (or expect to see) in m 
trials 

Ø Combine the pair with actual data 
•  If A is observed, increment both n and m 

•  If ¬A is observed, increment m alone 

Ø The absolute values in the pair can be used to express the 
expert‘s level of confidence in her estimate 
•  Small values (e.g., <2,3>) represent low confidence 

•  The larger the values, the higher the confidence as it takes more and 
more data to dominate the initial estimate (e.g. <2000, 3000>) 



Overview 

Ø Full Bayesian Learning 

Ø MAP learning 

Ø Maximum Likelihood Learning 

Ø  Learning Bayesian Networks 
•  Fully observable (complete data) 

•  With hidden (unobservable) variables 



Learning Parameters with Hidden Variables 

Ø So far we have assumed that we can collect data on all 
variables in the network 

Ø What if this is not true, i.e. the network has hidden variables? 

Ø Clearly we can‘t use the frequency approach, because we are 
missing all the counts involving H 



Quick Fix 

•  Each  variable has 3 values (low, moderate, high) 

•  the numbers attached to the nodes represent how many parameters  
need to be specified for the CPT of that node  

•  78 probabilities to be specified overall 

Ø Get rid of the hidden variables. 

Ø  It may work in the simple network given earlier, but what 
about  the following one?  



Not Necessarily a Good Fix 

Ø The symptom variables are no longer conditionally 
independent given their parents 
•  Many more links, and many more probabilities to be specified: 708 

overall 

•  Need much more data to properly learn the network 



Example: The cherry/lime candy world again 
 
Ø  Two bags of candies (1 and 2) have been mixed together 

Ø  Candies are described by 3 features: Flavor and Wrapper as before, 
plus Hole (whether they have a hole in the middle) 

Ø  Candies‘ features depend probabilistically from the bag they originally 
came from 

Ø  We want to predict for each candy, which was its original bag, from its 
features: Naïve Bayes model 

θ= P(Bag = 1) 
θFj = P(Flavor = cherry|Bag = j) 
θWj = P(Wrapper = red|Bag = j) 
θHj = P(Hole = yes|Bag = j) 
 
j =1,2 



Expectation-Maximization (EM) 

Ø  If we keep the hidden variables, and want to learn the network 
parameters from data, we have a form of unsupervised 
learning 
•  The data do not include information on the true nature of each data 

point (i.e. no categorization label) 

Ø Expectation-Maximization 
•  General algorithm for learning model parameters from incomplete data 

•  We‘ll see how it works on learning parameters for Bnets with discrete 
variables 



EM: general idea 

Ø  If we had data for all the variables in the network, we could 
learn the parameters by using ML (or MAP) models  
•  Frequencies of the relevant events as we saw in previous examples 

Ø  If we had the parameters in the network, we could estimate 
the posterior probability of any event, including the hidden 
variables P(H|A,B,C) 



EM: General Idea 

Ø The algorithm starts from “invented” (e.g., randomly 
generated) information to solve the learning problem, i.e. 

•  Determine the network parameters 

Ø  It then refines this initial guess by cycling through two 
basic steps 

•  Expectation (E): update the data with predictions generated via 
the current model 

•  Maximization (M): given the updated data, update the model 
parameters using the Maximum Likelihood (ML) approach 

ü This is the same step that we described when learning 
parameters for fully observable networks 



EM: How it Works on Naive Bayes 

Ø Consider the following data,  

•  N examples with Boolean attributes X1, X2, X3, X4 

 

Ø which we want to categorize in one of three possible 
values of class C = {1,2,3} 

Ø We use a Naive Bayes classifier with hidden variable C 

? 
? 
? 
? 
? 



EM: Initialization 

Ø The algorithm starts from “invented” (e.g., randomly 
generated) information to solve the learning problem, i.e. 
•  Determine the network parameters 

? 
? 
? 
? 
? 

Define  
arbitrary  
parameters 



EM: Expectation Step (Get Expected Counts) 

Ø What would we need to learn the network parameters using 

    the ML approach? 
•  P(C = i) = #(data with C=i) / #(all datapoints)                  for  i=1,2,3 

•  P(Xh = valk |C = i) = #(data with Xh = valk and C=i) / #(data with C=i) 

                                                     for all values valk  of Xh and  i=1,2,3 

? 
? 
? 
? 
? 

Remember that the equations result from our already derived knowledge  
that the most likely paramters (CPTs) are given by frequencies!  



EM: Expectation Step (Get Expected Counts) 

Ø We only have #(all datapoints) = N    and  

    counts of instantiations for non-hidden RVs within data 

Ø We approximate all other necessary counts with expected  
counts derived from the model with “invented” parameters 

Ø Expected count                is the sum, over all N examples 
in my dataset, of the probability that each example is in 
category i 

 

N̂(C =  i) =  P(C = i | attribute values of example e j
j=1

N

∑ )

=  P(C = i | x1j, x2 j, x3j, x4 j
j=1
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EM: Expectation Step (Get Expected Counts) 

Ø  How do we get the necessary probabilities from the model?  

Ø  Easy with a Naïve bayes network 
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Naïve bayes “invented 
parameters” (“old” P(C=i))  Also available from Naïve Bayes. You do 

the necessary transformations 



Ø By a similar process we obtain the expected counts of 
examples with attribute Xh= valk and belonging to category 
i. 

Ø These are needed later for estimating P(Xh | C): 

 

•  for all values valk  of Xh and  i=1,2,3 

 

 

 

EM: Expectation Step (Get Expected Counts) 

) x4, x3, x2t,x1|iP(C  1)  C t,(XN̂
tXwith e

jjjj1
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P(Xh = valk |C = i) =  Exp.-#(examples with Xh  =  valk  and C = i)
Exp.-#(examples with C = i)

=
N̂(Xh  =  valk, C = i)

N̂(C = i)

 

Ø For instance 

Again, get these probabilities from model 
with current parameters 



EM: General Idea 

Ø The algorithm starts from “invented” (e.g., randomly 
generated) information  to solve the learning problem, 
i.e. 
•  the network parameters 

Ø  It then refines this initial guess by cycling through two 
basic steps 
•  Expectation (E): compute expected counts based on the 

generated via the current model 

•  Maximization (M): given the expected counts, update the model 
parameters using the Maximum Likelihood (ML) approach 

ü This is the same step that we described when learning 
parameters for fully observable networks 



Ø Now we can refine the network parameters by applying ML 
to the expected counts 

Maximization Step: (Refining Parameters) 

•  for all values valk  of Xj and  i=1,2,3 

 
N

i)  (CN̂ i)P(C =
==

P(Xj  =  valk |C = i) =
N̂(Xj  =  valk, C =  i)

N̂(C =  i)
 



EM Cycle 

Ø Ready to start the E-step again 

 

Expected Counts 
(“Augmented data”) Probabilities 

Note: Actually you never  
generate any data in E-step 



Procedure EM(X,D,k)  
   Inputs: X set of features X={X1,...,Xn} ;  D data set on features {X1,...,Xn};  k number of classes    
  Output: P(C), P(Xi|C) for each i∈{1:n}, where C={1,...,k}.  
   Local 
                    real array A[X1,...,Xn,C]  
                    real array P[C]  
                    real arrays Mi[Xi,C] for each i∈{1:n}  
                    real arrays Pi[Xi,C] for each i∈{1:n}  
          s← number of tuples in D  
          Assign P[C], Pi[Xi,C] arbitrarily  
          repeat 
                    // E Step  
                    for each assignment 〈X1=v1,...,Xn=vn〉∈D do  
                              let m ←|〈X1=v1,...,Xn=vn〉∈D|  
                              for each c ∈{1:k} do  
                                        A[v1,...,vn,c]←m×P(C=c|X1=v1,...,Xn=vn)  
                              end for each 
                    end for each 
                    // M Step  
                    for each i∈{1:n} do  
                              Mi[Xi,C]=∑X1,...,Xi-1,Xi+1,...,Xn A[X1,...,Xn,C]  
                              Pi[Xi,C]=(Mi[Xi,C])/(∑C Mi[Xi,C])  
                    end for each 
                    P[C]=∑X1,...,Xn A[X1,...,Xn,C]/s  
          until probabilities do not change significantly  
end procedure 



Example: Back to the cherry/lime candy world 
 
Ø  Two bags of candies (1 and 2) have been mixed together 

Ø  Candies are described by 3 features: Flavor and Wrapper as before, 
plus Hole (whether they have a hole in the middle) 

Ø  Candies‘ features depend probabilistically from the bag they originally 
came from 

Ø  We want to predict for each candy, which was its original bag, from its 
features: Naïve Bayes model 

θ    =  P(Bag = 1) 
θFj  =  P(Flavor = cherry|Bag = j) 
θWj =  P(Wrapper = red|Bag = j) 
θHj  =  P(Hole = yes|Bag = j) 
 
j =1,2 



Data 

Ø Assume that the true parameters are 
•  θ= 0.5;  

•  θF1 = θW1 = θH1 = 0.8;  

•  θF2 = θW2 = θH2 = 0.3; 

Ø The  following counts are “generated” from P(C, F, W, H) 
(N = 1000) 

Ø We want to re-learn the true parameters using EM 



EM: Initialization  

Ø Assign arbitrary initial parameters 
•  Usually done randomly; here we select numbers convenient for 

computation 
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Ø We‘ll work through one cycle of EM to compute θ(1). 



E-step 
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Ø  First, we need the expected count of candies from Bag 1,  
•  Sum of the probabilities that each of the N data points comes from bag 1 

•  Be flavorj, wrapperj, holej the values of the corresponding attributes for 
the jth datapoint 
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E-step 
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Ø  This summation can be broken down into the 8 candy groups in the 
data table.  

•  For instance the sum over the  273 cherry candies with red wrap and hole 
(first entry in the data table) gives 
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M-step 

Ø  If we do compute the sums over the other 7 candy groups we get 

4.612 1)  (BagN̂ ==

Ø  At this point, we can perform the M-step to refine θ, by taking the 
expected frequency of the data points that come from Bag 1 

6124.0 
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=

=θ



One More Parameter 

Ø  If we want to do the same for parameter θF1  

Ø  E-step: compute the expected count of cherry candies from Bag 1 

N̂(Bag =1 ∧Flavor = cherry) =  P(Bag =1 | Flavorj = cherry ,wrapperj
j:Flavorj=cherry
∑ ,holej )
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=∧=
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BagN
cherryFlavorBagN

Fθ

Ø  M-step: refine θF1  by computing the corresponding expected 
frequencies 

Ø  Can compute the above value from the Naïve model as we did earlier 

Ø  TRY AS AN EXCERCISE 



Ø  For any set of parameters, we can compute the log likelihood as we 
did in the previous class 

 

Learning Performance 
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Ø  After a complete cycle through all the parameters, we get  

Ø  It can be seen that the log likelihood increases with each EM iteration 

 

Ø  EM tends to get stuck in local maxima, so it is often combined with  
gradient-based  techniques in the last phase of learning 



Ø  For any set of parameters, one computes the log likelihood as we did 
in the previous class 

Learning Performance 
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Ø  After a complete cycle through all the parameters, we get  

Ø  It can be shown that the log 
likelihood increases with each EM 
iteration, surpassing even the 
likelihood of the original model 
after only 3 iterations -2025
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EM: Discussion 

Ø For more complex Bnets the algorithm is basically the 
same 
•  In general, I may need to compute the conditional probability 

parameter for each variable Xi given its parents Pai 

•  θijk= P(Xi = xij|Pai = paik) 

θijk =
N̂(Xi = xij;Pai = paik )

N̂(Pai = paik )

Ø The expected counts are computed by summing over the 
examples, after having computed all the necessary  
P(Xi = xij,Pai = paik) using any Bnet inference algorithm 

Ø The inference can be intractable, in which case there are 
variations of EM that use sampling algorithms for the E-
Step 

θijk =
N̂(Xi = xij;Pai = paik )

N̂(Pai = paik )



EM: Discussion 

Ø The algorithm is sensitive to “degenerated” local maxima 
due to extreme configurations 
•  e.g., data with outliers can generate categories that include only 1 

outlier each because these models have the highest log 
likelihoods 

•  Possible solution: re-introduce priors over the learning hypothesis 
and use the MAP version of EM 
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Bayesian learning 

•  We saw three ways of Bayesian learning: 
–  Full Bayesian Learning aka BMA (Bayesian Model 

Averaging) 
–  MAP (Maximum A Posteriori) hypothesis 
–  MLE (Maximum Likelihood Estimate) 

•  Another principle (see later lectures) is  
–  MDL (Minimum Description Length) principle:  

Use some encoding to model the complexity of the 
hypothesis, and the fit of the data to the 
hypothesis, then minimize the overall description 
length of hi + D 
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Parameter estimation 

•  Assume known structure 
•  Goal: estimate BN parameters θ 

–  CPT entries  P(X | Parents(X)) 

•  A parameterization θ  is good if it is likely to generate 
the observed data: 

 
•  Maximum Likelihood Estimation  

(MLE) Principle: Choose θ*   
so as to maximize Score 

Score(θ) = P(D | θ) = P(x[m] | θ)
m
∏

i.i.d. samples 
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Learning Bayesian network structures  

•  Given training set 
•  Find model that best matches D 

–  model selection  
–  parameter estimation 
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Some of the following slides from an AI course „Graphical models“ 
by Burgard/De Raedt/Kersting/Nebel  
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Model selection 

Goal: Select the best network structure, given the 
data 

Input: 
– Training data 
– Scoring function 

Output: 
– A network that maximizes the score 
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Structure selection: Scoring 

•  Bayesian: prior over parameters and structure 
–  get balance between model complexity and fit to data as 

a byproduct 

•  ScoreD (G) = log P(G|D) = α log [P(D|G) P(G)] 
•  Marginal likelihood just comes from our parameter 

estimates 
•  Prior on structure can be any measure we want; 

typically a function of the network complexity (MDL 
principle) Same key property: Decomposability 

Score(structure) = Σi Score(substructure of Xi) 

Does G explain D with ML? Prior w.r.t. MDL Can we learn G’s params from D? 
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Heuristic search 
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That‘s fine.  
But what to do if we have  
non-complete data?? 
 
Cannot use decomposability 
 
=> Reran parameter estimation  



Local Search in Practice 

G1 G3 G2 

Parametric 
optimization 

(EM) 

Parameter space 

Local Maximum 

G4 Gn 

•  Perform EM for each candidate graph 
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Local Search in Practice 

•  Perform EM for each candidate graph 
G1 G3 G2 

Parametric 
optimization 

(EM) 

Parameter space 

Local Maximum 

G4 Gn ◆  Computationally expensive: 
●  Parameter optimization via EM — non-trivial 
●  Need to perform EM for all candidate structures 
●  Spend time even on poor candidates 

⇒ In practice, considers only a few candidates 
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Structural EM [Friedman et al. 98]  
 
Recall, in complete data we had 

– Decomposition ⇒ efficient search 

Idea:  
•  Instead of optimizing the real score…  
•  Find decomposable alternative score 
•  Such that maximizing new score  

 ⇒ improvement in real score 
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Structural EM  
 

Idea:  
•  Use current model to help evaluate new 

structures 
 
Outline: 
•  Perform search in (Structure, Parameters) space 
•  At each iteration, use current model for finding 

either: 
– Better scoring parameters: “parametric” EM step 
or 
– Better scoring structure: “structural” EM step 
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•  Score for structure G and parameterization Θ given data 
over observed RVs O 

       ScoreO (G, Θ) = log P(O:G,Θ) – Pen(G, Θ,O) 
•  Handle hiddens H (non-observed) by conditionalizing 

(like in full bayesian learning) using current structure G* 
and parameterization Θ* 

         Q(G, Θ :G*, Θ*) = Eh~P(h|O:G*, Θ*)[logP(O,h:G, Θ)] – Pen(G, Θ,O) 
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Alternating model selecetion EM 
Choose G0 and Θ0 randomly 
Loop for n= 0,1, … until convergence 
    Find Gn+1, Θn+1  s.t.  Q(Gn+1, Θn+1: Gn, Θn) > Q(Gn, Θn: Gn, Θn) 
 



Training 
Data 

Expected Counts 
N(X1) 
N(X2) 
N(X3) 
N(H, X1, X1, X3) 
N(Y1, H) 
N(Y2, H) 
N(Y3, H) 

Computation 

X1 X2 X3 

H 

Y1 Y2 Y3 

X1 X2 X3 

H 

Y1 Y2 Y3 

+

Score  
& 

 Parameterize 

Reiterate 

N(X2,X1) 
N(H, X1, X3) 
N(Y1, X2) 
N(Y2, Y1, H) 

X1 X2 X3 

H 

Y1 Y2 Y3 
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Structural EM  
 



Structure Learning: incomplete data 

 EM-algorithm: 
iterate until convergence 

Current model 

   
  S  X  D  C  B 
 <?  0  1  0  1>   
 <1  1  ?  0  1> 
 <0  0  0  ?  ?> 
 <?  ?  0  ?  1>      ……… 

Data 

   
  S  X  D  C  B 
  1  0  1  0  1   
  1  1  1  0  1 
  0  0  0  0  0 
  1  0  0  0  1      ……….. 

Expected  
  counts 

Expectation  
          Inference:  
P(S|X=0,D=1,C=0,B=1) 

Maximization  
Parameters  
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Structure Learning: incomplete data 

SEM-algorithm: 
iterate until convergence 

Current model 

   
  S  X  D  C  B 
 <?  0  1  0  1>   
 <1  1  ?  0  1> 
 <0  0  0  ?  ?> 
 <?  ?  0  ?  1>      ……… 

Data 

   
  S  X  D  C  B 
  1  0  1  0  1   
  1  1  1  0  1 
  0  0  0  0  0 
  1  0  0  0  1      ……….. 

Expected  
  counts 

Expectation  
          Inference:  
P(S|X=0,D=1,C=0,B=1) 

Maximization  
Parameters  
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in
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Maximization 
Structure 

E B 

A 

E 

B 

A 
E 

B A 

E 

B A 

E B 

A 
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Variations on a theme 

•  Known structure, fully observable: only need to 
do parameter estimation 

•  Known structure, hidden variables:  
use expectation maximization (EM) to estimate 
parameters 

•  Unknown structure, fully observable: do heuristic 
search through structure space, then parameter 
estimation 

•  Unknown structure, hidden variables: structural 
EM Though we have a procedure for learning parameters  

and structure, the resulting structure is not -prima facie – 
guaranteed to reflect causal relationships.  
(Remember burglary example with ``wrong‘‘ non-causal order of RVs.) 
 This motivates considering other algorithms and – of course – considering  
causality in more detail (see next lectures) 


