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Color Conventions for part on SCMs
» Formulae will be encoded in this greenish color

* Newly introduced terminology and definitions will be
given in blue

* Important results (observations, theorems) as well as
emphasizing some aspects will be given in red

- Examples will be given with standard orange

« Comments and notes are given with
post-it-yellow background
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Motivation

» Usual warning:
,Correlation is not causation”

« But sometimes (if not very often) one needs
causation to understand statistical data
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A remarkable correlation”? A simple causality!

—————
“~
-~

°  ASTEROIDEN ; |

IMMER

IN KRATERN .~

L4
*

g
-
-
e=="
- -




Simpson’s Paradox

* Record recovery rates of 700 patients given access
to a drug

Recovery rate Recovery rate
with drug without drug
Men 81/87 (93%) 234/270 (87%)
Women 192/263 (73%) 55/80 (69%)
Combined 273/350 (78%) 289/350 (83%)
 Paradox:

— For men, taking drugs has benefit
— For women, taking drugs has benefit, too.
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Resolving the Paradox (Informally)

* We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox

* In
— Why has taking drug less benefit for women?
Answer: Estrogen has negative effect on recovery
— Data: Women more likely to take drug than men

— So: Choosing randomly any person will rather give a
woman — and for these recovery is less beneficial

* In this case: Have to consider segregated data
(not aggregated data)




Resolving the Paradox Formally (Lookahead)

* We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox

Gender

Drug usage Recovery

* Drug usage and recovery have common cause
» Gender is a confounder
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Simpson Paradox (Again)

* Record recovery rates of 700 patients given access
to a drug w.r.t. blood pressure (BP) segregation

Recovery rate Recovery rate

Without drug with drug
Low BP 81/87 (93%) 234/270 (87%)
High BP  192/263 (73%) 55/80 (69%)
Combined 273/350 (78%) 289/350 (83%)

 BP recorded at end of experiment

« This time segregated data recommend not using
drug whereas aggregated does
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Resolving the Paradox (Informally)

* We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox

* In
— Drug effect is: lowering blood pressure (but may have
toxic effects)

— Hence: In aggregated population drug usage
recommended

— In segregated data one sees only toxic effects
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Resolving the Paradox Formally (Lookahead)

* We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox

Blood pressure

[ )
Drug usage Recovery
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Ingredients of a Statistical Theory of Causality

Working definition of causation
Method for creating causal models

Method for linking causal models with features of
data

Method for reasoning over model and data
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Working Definition

A (random) variable X is a cause of a (random)
variable Y if Y - in any way - relies on X for its value
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Structural Causal Model: Definition

Definition
A structural causal model (SCM) consists of
— A set U of exogenous variables

— A set V of endogenous variables

— A set of functions f assigning each variable in \V a value
based on values of other variables from V U U

« Only endogenous variables are those that are descendants
of other variables

« Exogenous variables are roots of model.

« Value instantiations of exogenous variables completely
determine values of all variables in SCM

15



Causality in SCMs

Definition
1. Xisadirectcauseof Y iff Y =1(...,X,...) for some f.

2. XisacauseofY iff itis a direct cause of Y or there is
/Z s.t. Xis adirect cause of Z and Z is a cause of V.
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Graphical Causal Model

* Graphical causal model associated with SCM

— Nodes = variables
— Edges =from Xto Yif Y =1(...,)Y, ....)

 Example SCM * Associated graph
— U ={X,Y}
- V={ .
- F ={f;}
—f,:Z2=2X+3Y

( Z = salary, X = years experience,
Y = years profession )

|-

.....
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Graphical Models

* Graphical models capture only partially SCMs

« But very intuitive and still allow for conserving much
of causal information of SCM

« Convention for the next lectures: Consider only
Directed Acyclic Graphs (DAGSs)
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SCMs and Probabilities

 Consider SCMs where all variables are random
variables (RVs)

 Full specification of functions f not always possible

* |nstead: Use conditional probabilities as in BNs

— fy(...Y ...) becomes P(X|...Y...)

— Technically: Non-measurable RV U models
(probabilistic) indeterminism:

PX|....Y ...)=f(...Y ..., U)

U not mentioned here

s«ﬁi UNIVERSITAT ZU LUBECK IM FOCUS DAS LEBEN 19

SIS INSTITUT FOR INFORMATIONSSYSTEME
————




SCMs and Probabilities

* Product rule as in BNs used for full specification of
joint distribution of all RVs X, ..., X,

P(X;=Xq, ..., X, = X,) =[] g« P( X | parentsof(x;) )

« Can make same considerations on (probabilistic)
(in)dependence of RVs.

« Will be done in the following systematically
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Bayesian Networks vs. SCMs

 BNs model statistical dependencies
— Directed, but not necessarily cause-relation
— Inherently statistical
— Default application: discrete variables
« SCMs model causal relations
— SCMS with random variables (RVs) induce BNs

— Assumption: There is hidden causal (deterministic)
structure behind statistical data

— More expressive than BNs: Every BN can be
modeled by SCMs but not vice versa

— Default application: continuous variables
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Reminder: Conditional Independence

 Event A independent of event B iff P(A | B) = P(A)
« RV Xisindependentof RVY iff
P(X|Y)=P(X) iff
for every x-value of X and for every y-value Y
event X = x is independent of event Y =y
Notation: (X 1L Y), oreven shorter: (X 1Y)
« X is conditionally independent of Y given Z iff
P(X|Y, Z)=P(X|Z)
Notation: (X 1L Y |Z), or even shorter: (X 1L Y|Z)
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Independence in SCM graphs

* Almost all interesting independences of RVs in an
SCM can be identified in its associated graph

* Relevant graph theoretical notion: d-separation

Property
X is independent of Y (conditioned on Z) iff
X is d-separated from Y by Z

* D-separation in turn rests on 3 basic graph patterns
— Chains
— Forks
— Colliders

RSI
SERSIT,

23



Independence in SCM graphs

Property
X is independent of Y (conditioned on Z) iff
X is d-separated from Y by Z

There are two conditions here:
 Markov condition:
If  Xis d-separated from Y by Z
then X is independent of Y (conditioned on Z)

* Faithfulness:
« If Xisindependent of Y (conditioned on Z)
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Chains

Example (SCM 1)
( X =school funding, Y = SAT score,
Z = college acceptance )
- V={X)Y,Z} U={UyU,U;} F = {ffy.T2}
— fy: X = Uy f,: Y =x/3+Uy f: Z=y/M16 + U,

N A -
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Chains

Example (SCM 2)
( X = switch, Y = circuit, Z = light bulb )

- V={X,Y,Z} U ={UyUy,Uz} F={fy.fy.f}

— fyo X = Uy

- ., _ [closed if (X=up & Uy =0) or (X=down & Uy,=1)
Y= "_open otherwise

— f,:z=_] on if (Y=closed & U,=0) or (Y=open & U,=1)
_off otherwise

—




Chains

Example (SCM 3)
( X =work hours, Y = training, Z = race time )

- V={X)Y,Z} U={Ux,Uy,Uzt F={ff.f
— fyo X = Uy
— f,:Y=84-x+U,
— f,:Z=100/y + U, Ux '\.
Uy \x X
U, Y
.\x i
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(In)Dependences in Chains

« Zand Y are likely|dependent
(Forsomezy:. P(Z=z | Y =y)#P(Z=2))
Y and X are @dependent
(...)
- Z and X are |likely|dependent
 Z and X are independent, conditional on Y
(Forallx,z)y: P(Z=z | X=x,Y =y)=P(Z=z|Y =vy))
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Intransitive Dependence

Example (SCM 4)

V ={X,Y,Z} U ={Uy,U,Uz} F={f.f}
— fy: X = Uy
T a ifX=18&U,~=1 Uy
—f:Y= = b ifX=2&Uy=1 Ny

_c ifU,=2 y
\XY
£z {i ifY=cor U,=1
—fZ= _ Z”
j fY#c&U,= 2\
* Y depends on X, Z depends oanut\

Z does not depend on X Typo in book of Pear et al.
«wvariable level” graph hides independencecu: ous icecn 20




Independence Rule in Chains

Rule 1 (Conditional Independence in Chains)
Variables X and Z are independent given set of
variables Y iff

there is only one path between X and Z and this path
IS unidirectional and Y intercepts that path

Ux.\‘

X
UY.\x
Uz.\xY

........ .
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Forks

Example (SCM 5)

( X = Temperature, Y = Ice cream sale, Z = Crime)

- V={X)Y,Z}

— fyo X = Uy

- fyrY=4x+ U,
— f,:Z=x/M10 + U,

U ={Ux.Uy,Uz} F = {fxfy.fz}

IM FOCUS DAS LEBEN
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Forks

Example (SCM 5)
( X = switch, Y = light bulb 1, Z = light bulb 2)

- V={X)Y,Z} U ={Uy,Uy,Uz} F = {ffy.f2

— fyo X = Uy

- —on if (X=up & Uy, =0)or (X=down & U,=1)
Y = "_of fotherwise

gu—

— f,; 2 =_] on if (X=up & U,=0) or (X=down & U,=1)
_off otherwise

IM FOCUS DAS LEBEN
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(In)Dependences in Forks

- X and Z are likely dependent
(Azy: P(X=x|Z=2)#P(X=X))
* Y and Z are likely dependent

« Z and Y are likely dependent
* Y and Z are independent, conditional on X
(VX,z,y: P(Y=y | Z=z,X=X)=P(Y =y | X=X))
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Independence Rule in Forks

Rule 2 (Conditional Independence in Forks)
If variable X is a common cause of variables

Y and Z, and there is only one path between Y Z
then Y and Z are independent conditional on X.
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Colliders

Example (SCM 6)

( X = musical talent, Y = grade point, Z = scholarship)
- V={X)Y,Z} U= {Ux Uy, Uz} F={f.f.f2)
— fyo X = Uy
- f,: X=Uy

£z yes if X=yes orY >80%
z = no otherwise
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(In)Jdependence in Colliders

- X and Z are likely dependent
(3Azy: P(X=x|Z=2)#P(X=X))
* Y and Z are likely dependent

« X and Y are independent
« Xand Y are likely dependent, conditional on Z

( Ax,z,y: PX=x|Y=yZ=2)# PX=x|4Z=2))

If scholarship received (Z) but
not musically talented (X), U U
then must have high grade (Y) X Y

X-Y dependence (conditionally) on Z X Y
Is statistical but not causal
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(In)Jdependence in Colliders (Extended)

Example (SCM 7)

( X = coin flip, Y = second coinflip, Z = bell rings, W =

bell withess)
o V = {X7Y,Z,VV} U - {UX’UY’UZ, Uw}
£ o “yes if X=head orY = head
- lz&— = )
no otherwise
£ W = " yes if Z= yes or (Z=no and
= Iw- VW = _va = 1)
no otherwise

Xand Y are depend conditional on Z
and on W.

:
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F = {f.fy fw}

Ux Uy
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Independence Rule in Colliders

Rule 3 (Conditional Independence in Colliders)

If a variable Z is the collision node between
variables X and Y and there is only one path
between X, Y,

then X and Y are unconditionally independent, but are
dependent conditional on Z and any descendant of Z
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D-separation

Property

X independent of Y (conditioned on Z) w.r.t a
probability distribution iff

X d-separated from Y by Z in graph

Definition (informal)
X is d-separated from Y by Z Iff
Z blocks every possible path X and Y

« Z prohibits the "“flow” of statistical effects/
dependence between X and Y

— Must block every path Plpeline metaphor
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Blocking Conditions

Definition (formal)
A path p in G (between X and Y) is blocked by Z iff

1. p contains chainA—B — Corfork A« B — C
st.Be Zor

2. p contains colliderA— B «— Cs.t. B¢ Z and all
descendants of B are ¢ Z

If Z blocks every path between X and Y, then Xand Y
are d-separated conditional on Z, for short: (X L Y | Z)5

In particular: X and Y are unconditionally independent
iff X-Y paths contain collider.

40



Example 1 (d-separation)

Unconditional relation between Z and Y ?

— D-separated because of collider on only path.

Hence unconditionally independent

41



Example 1 (d-separation)

« Relation between Z and Y conditional on {\W}?
— Not d-separated

« and collider € {W}
— Hence conditionally dependent on {\W} (and {T})



Example 1 (d-separation)

» Relation between Z and Y conditional on {\W,X}?
— d-separated

— Hence conditionally independent on {\W,X}
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Example 2 (d-separation)

Relation between Z and Y?

— Not d-separated because
(no collider)

— Hence not unconditionally independent

not blocked
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Example 2 (d-separation)

* Relation between Z and Y conditionally on {R}?

— d-separated by {R} because
* First path blocked by fork R
« second path blocked by collider W & {R} )

-« — Hence independent conditional on {R}

25 *3";
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Example 2 (d-separation)

* Relation between Z and Y conditionally on {R,W}?

— Not d-separated by {R,\W} because W unblocks
second path

— Hence not independent conditional on {R,W}
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Example 2 (d-separation)

* Relation between Z and Y conditionally on
{R,W,X}?
— d-separated by {R,W, X} because
* Now second path blocked by fork X

— Hence independent conditional on {R,W,X}

aaaaaaa
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Using D-separation

 Verifying/falsifying causal models on observational
data
1. G =SCM to test for
2. Calculate independencies I; entailed by G using d-
separation

3. Calculate independencies I, from data (by counting)
and compare with |

4. Iflg =1y SCMis a good solution. Otherwise identify
problematic | € |5 and change G locally to fit
corresponding I’ € |y
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Using D-separation

* This approach is local

— If 15 not equal I, then can manipulate G w.r.t. RVs
only involved in incompatibility

— Usually seen as benefit w.r.t. global approaches via
likelihood with scores, say

— Note: In score-based approach one always considers
score of whole graph

(But: one also aims at decomposability/locality of
scoring functions)

» This approach is qualitative and constraint based

* Known algorithms: PC (Spirtes) , IC (Verma&Pearl)
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Equivalent Graphs

* One learns graphs that are (observationally)
equivalent w.r.t. entailed independence assumptions
* Formalization

— Vv(G) = v-structure of G = set of colliders in G of form
A—B«C where A and C not adjacent

— sk(G) = skeleton of G = undirected graph resulting
from G

Definition
G, is equivalent to G, iff v(G,) = v(G,) and sk(G,) = sk(G,)

ST
XY

5 WU © UNIVERSITAT ZU LUBECK 50
38550 ¢ INSTITUT FUR INFORMATIONSSYSTEME

e e



Equivalent graphs

Theorem
Equivalent graphs entail same set of d-separations

Intuitively clear:

* Forks and chains have similar role w.r.t.
Independence

 Collider has different role
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Equivalent Graphs

* v(G) = v-structure of G = set of colliders in G of form
A—B<«C where A and C not adjacent

+ sk(G) = skeleton of G = undirected graph resulting
from G

Definition
G, is equivalent to G, iff v(G,) = v(G,) and sk(G,) = sk(G,)

X1 Season X1 Season
v(G) =v(G))
sk(G) = sk(G’)
X3 X2 X3 X2
Sprinkler rain Sprinkler Rain « Hence equivalent
X4 Wet X4 Wet

. 1
X5 slippery G X5 slippery
52




Equivalent Graphs

* v(G) = v-structure of G = set of colliders in G of form
A—B<«C where A and C not adjacent

+ sk(G) = skeleton of G = undirected graph resulting
from G

Definition
G, is equivalent to G, iff v(G,) = v(G,) and sk(G,) = sk(G,)

X1 Season X1 Season
v(G) # v(G)
sk(G) = sk(G’)
X3 X2 X3 X2
Sprinkler rain Sprinkler Rain « Hence not
equivalent
X4 Wet X4 Wet

. 1
X5 slippery G X5 slippery
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|C-Algorithm (Verma & Pearl, 1990)

Input
P resp.
P-independencies

Output
Pattern
(represents compatible class of

Algorithm equivalent DAGS)
(CLA|B) é c
(CLDIB) Steps 1-3 A B E
(D LA|B)
(E L A|B)
(E 1L B|C,D) -
Definition

Pattern = partially directed DAG
= DAG with directed and non-directed edges

Directed edge A-> B in pattern: in any of the DAGs the edge is A->B
Undirected edge A-B: There exists (equivalent) DAGs with A->B in one and

B ->A in the other

Verma, T. & Pearl, J: Equivalence and synthesis of causal models.
Proceedings of the 6. conference on Uncertainty in Al, 220-227, 1990.
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|C-Algorithm (Informally)
1. Find all pairs of variables that are dependent of
each other (applying standard statistical method on

the database) and eliminate indirect dependencies

2. + 3. Determine directions of dependencies

RSI
SERSIT,

$ 4
H ‘%‘45 UNIVERSITAT ZU LUBECK 55
EY :

3



Note: ,Possible” in step 3 means: if you can find two patterns such that in the
first the edge A-B becomes A->B but in the other A<-B, then do not orient.

|C-Algorithm (schema)

1. Add (undirected) edge A-B iff there is no set of RVs
Z such that (A1LB|Z), Otherwise let Z,; denote
some set Z with (ALLB|Z).

2. If A-B-C and not A-C, then A—-B«C Iff
B ¢€Z,-
3. Orient as many of the undirected edges as possible,
under the following constraints:
« orientation should not create a new v-structure and
« orientation should not create a directed cycle.

Steps 1 and step 3 leave out details of search
» Hierarchical refinement of step 1 gives PC algorithm (next slide)
“i] * Arefinement of step 3 possible with 4 rules (thereafter)
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PC algorithm (Spirtes & Glymour, 1991)

« Remember Step 1 of IC

1. Add (undirected) edge A-B iff there is no set of RVs
Z such that (A1B|Z), Otherwise let Z,; denote
some set Z with (ALB|Z).

« Have to search all possible sets Z of RVs for given
nodes A,B
— Done systematically by sets of cardinality 0,1,2,3...

— Remove edges from graph as soon as independence
found

— Polynomial time for graphs of finite degree (because
can restricted search for Z to nodes adjacent to A,B)

P.Spirtes, C. Glymour: An algorithm for fast recovery of sparse
causal graphs. Social Science Computer Review 9: 62-72, 1991.
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|C-Algorithm (with rule-specified last step)
1. as before
2. as before

3. Orient undirected edges as follows

« B— C into B—C if there is an arrow A—B s.t. Aand C
are not adjacent;

- A— B into A—B if there is a chain A—~C—B;

- A— B into A—B if there are two chains A—C—B and
A—D—B such that C and D are nonadjacent;

- A— B into A—B if there are two chains A—C—D and
C—D—B s.t. C and B are nonadjacent;




|C algorithm

Theorem

The 4 rules specified in step 3 of the IC algorithm are
necessary (Verma & Pearl, 1992) and sufficient (Meek, 95)
for getting a maximally oriented DAGs compatible with the
Input-independencies.

T. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies
has a causal explanation.

In D. Dubois and M. P. Wellman, editors, UAI '92: Proceedings of the Eighth

Annual Conference on Uncertainty in Artificial Intelligence, 1992, pages 323-330.
Morgan Kaufmann, 1992.

Christopher Meek: Causal inference and causal explanation
with background knowledge. UAI 1995: 403-410, 1995.
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Stable Distribution

* The IC algorithm accepts stable distributions P (over
set of variables) as input, i.e. distribution P s.t. there
iIs DAG G giving exactly the P-independencies

« Extension IC* works also for sampled distributions
generated by so-called latent structures

— A latent structure (LS) specifies additionally a

(subset) of observation variables for a causal
structure

— A LS not determined by independencies
— |C* not discussed here, see, e.g.,
J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.
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Criticism and further developments

Definition
The problem of ignorance denotes the fact there are RVs
A,B and sets of RVs Z such that it is not known whether

(ALB|Z), or not (ALB|Z).

* Problem of ignorance ubiquitous in science practice

 |C faces the problem of ignorance (Leuridan 2009)

* (Leuridan 2009) approaches this with adaptive logic
(see later lectures)

B. Leuridan. Causal discovery and the problem of ignorance: an adaptive
logic approach. JOURNAL OF APPLIED LOGIC, 7(2):188-205, 20009.
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