Web-Mining Agents

Prof. Dr. Ralf Möller
Dr. Özgür Özçep
Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Lab Class)

Structural Causal Models

slides prepared by Özgür Özçep

Part I: Basic Notions
(SCMs, d-separation)

Literature

- J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics - A primer, Wiley, 2016.
(Main Reference)
- J. Pearl: Causality, CUP, 2000.

Color Conventions for part on SCMs

- Formulae will be encoded in this greenish color
- Newly introduced terminology and definitions will be given in blue
- Important results (observations, theorems) as well as emphasizing some aspects will be given in red
- Examples will be given with standard orange
- Comments and notes are given with post-it-yellow background

Motivation

- Usual warning:
"Correlation is not causation"
- But sometimes (if not very often) one needs causation to understand statistical data

A remarkable correlation? A simple causality!

Simpson's Paradox (Example)

- Record recovery rates of 700 patients given access to a drug

	Recovery rate with drug	Recovery rate without drug
Men	$81 / 87(93 \%)$	$234 / 270(87 \%)$
Women	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Combined	$273 / 350(78 \%)$	$289 / 350(83 \%)$

- Paradox:
- For men, taking drugs has benefit
- For women, taking drugs has benefit, too.
- But: for all persons taking drugs has no benefit

Resolving the Paradox (Informally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- In drug example
- Why has taking drug less benefit for women?

Answer: Estrogen has negative effect on recovery

- Data: Women more likely to take drug than men
- So: Choosing randomly any person will rather give a woman - and for these recovery is less beneficial
- In this case: Have to consider segregated data
(not aggregated data)

Resolving the Paradox Formally (Lookahead)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox

- Drug usage and recovery have common cause
- Gender is a confounder

Simpson Paradox (Again)

- Record recovery rates of 700 patients given access to a drug w.r.t. blood pressure (BP) segregation

	Recovery rate Without drug	Recovery rate with drug
Low BP	$81 / 87(93 \%)$	$234 / 270(87 \%)$
High BP	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Combined	$273 / 350(78 \%)$	$289 / 350(83 \%)$

- BP recorded at end of experiment
- This time segregated data recommend not using drug whereas aggregated does

Resolving the Paradox (Informally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- In this example
- Drug effect is: lowering blood pressure (but may have toxic effects)
- Hence: In aggregated population drug usage recommended
- In segregated data one sees only toxic effects

Resolving the Paradox Formally (Lookahead)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox

Ingredients of a Statistical Theory of Causality

- Working definition of causation
- Method for creating causal models
- Method for linking causal models with features of data
- Method for reasoning over model and data

Working Definition

A (random) variable X is a cause of a (random) variable Y if Y - in any way - relies on X for its value

Structural Causal Model: Definition

Definition

A structural causal model (SCM) consists of

- A set U of exogenous variables
- A set V of endogenous variables
- A set of functions f assigning each variable in V a value based on values of other variables from $\mathrm{V} \cup \mathrm{U}$
- Only endogenous variables are those that are descendants of other variables
- Exogenous variables are roots of model.
- Value instantiations of exogenous variables completely determine values of all variables in SCM

Causality in SCMs

Definition

1. X is a direct cause of Y iff $Y=f(\ldots, X, \ldots)$ for some f.
2. X is a cause of Y iff it is a direct cause of Y or there is Z s.t. X is a direct cause of Z and Z is a cause of Y.

Graphical Causal Model

- Graphical causal model associated with SCM
- Nodes = variables
- Edges $=$ from X to Y if $Y=f(\ldots, Y, \ldots)$
- Example SCM
$-U=\{X, Y\}$
$-\mathrm{V}=\{\mathrm{Z}\}$
$-F=\left\{f_{z}\right\}$
$-f_{Z}: Z=2 X+3 Y$
($Z=$ salary, $X=$ years experience, $Y=$ years profession)
- Associated graph

Graphical Models

- Graphical models capture only partially SCMs
- But very intuitive and still allow for conserving much of causal information of SCM
- Convention for the next lectures: Consider only Directed Acyclic Graphs (DAGs)

SCMs and Probabilities

- Consider SCMs where all variables are random variables (RVs)
- Full specification of functions f not always possible
- Instead: Use conditional probabilities as in BNs
- $f_{X}(\ldots Y \ldots)$ becomes $P(X \mid \ldots Y \ldots)$
- Technically: Non-measurable RV U models (probabilistic) indeterminism:

$$
P(X \mid \ldots . Y \ldots)=f_{x}(\ldots Y \ldots, U)
$$

U not mentioned here

SCMs and Probabilities

- Product rule as in BNs used for full specification of joint distribution of all $\mathrm{RVs} \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\prod_{1 \leq i \leq n} P\left(x_{i} \mid \text { parentsof }\left(x_{i}\right)\right)
$$

- Can make same considerations on (probabilistic) (in)dependence of RVs.
- Will be done in the following systematically

Bayesian Networks vs. SCMs

- BNs model statistical dependencies
- Directed, but not necessarily cause-relation
- Inherently statistical
- Default application: discrete variables
- SCMs model causal relations
- SCMS with random variables (RVs) induce BNs
- Assumption: There is hidden causal (deterministic) structure behind statistical data
- More expressive than BNs: Every BN can be modeled by SCMs but not vice versa
- Default application: continuous variables

Reminder: Conditional Independence

- Event A independent of event B iff $P(A \mid B)=P(A)$
- RV X is independent of $R V Y$ iff
$P(X \mid Y)=P(X)$
iff
for every X-value of X and for every y-value Y
event $X=x$ is independent of event $Y=y$
Notation: $\quad(X \Perp Y)_{P}$ or even shorter: $(X \Perp Y)$
- X is conditionally independent of Y given Z iff
$P(X \mid Y, Z)=P(X \mid Z)$
Notation: $(X \Perp Y \mid Z)_{p}$ or even shorter: $(X \Perp Y \mid Z)$

Independence in SCM graphs

- Almost all interesting independences of RVs in an SCM can be identified in its associated graph
- Relevant graph theoretical notion: d-separation

```
Property
X is independent of Y (conditioned on Z) iff
X is d-separated from Y by Z
```

- D-separation in turn rests on 3 basic graph patterns
- Chains
- Forks
- Colliders

Independence in SCM graphs

```
Property
X is independent of Y (conditioned on Z) iff
X is d-separated from Y by Z
```

There are two conditions here:

- Markov condition:

If $\quad X$ is d-separated from Y by Z then X is independent of Y (conditioned on Z)

- Faithfulness:
- If X is independent of Y (conditioned on Z) then X is d-separated from Y by Z

Chains

Example (SCM 1)

($\mathrm{X}=$ school funding, $\mathrm{Y}=$ SAT score,
$Z=$ college acceptance)

$$
\begin{array}{lll}
-V=\{X, Y, Z\} & U=\left\{U_{X}, U_{Y}, U_{Z}\right\} & F=\left\{f_{X}, f_{Y}, f_{Z}\right\} \\
-f_{X}: X=U_{X} & f_{Y}: Y=x / 3+U_{Y} & f_{Z}: Z=y / 16+U_{Z}
\end{array}
$$

Chains

Example (SCM 2)

($X=$ switch, $Y=$ circuit, $Z=$ light bulb)
$-\mathrm{V}=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\} \quad \mathrm{U}=\left\{\mathrm{U}_{\mathrm{X}}, \mathrm{U}_{\mathrm{Y}}, \mathrm{U}_{\mathrm{Z}}\right\} \quad \mathrm{F}=\left\{\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{Y}}, \mathrm{f}_{\mathrm{Z}}\right\}$
$-f_{X}: X=U_{X}$
$-_{f_{Y}}: Y= \begin{cases}\text { closed } & \text { if }\left(X=\text { up } \& U_{Y}=0\right) \text { or }\left(X=\text { down } \& U_{Y}=1\right) \\ \text { open } & \text { otherwise }\end{cases}$
$-f_{Z}: Z= \begin{cases}\text { on } & \text { if }\left(Y=\text { closed } \& U_{z}=0\right) \text { or }\left(Y=\text { open } \& U_{z}=1\right) \\ \text { off } & \text { otherwise }\end{cases}$

Chains

Example (SCM 3)
 ($\mathrm{X}=$ work hours, $\mathrm{Y}=$ training, $\mathrm{Z}=$ race time)
 $-\mathrm{V}=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\} \quad \mathrm{U}=\left\{\mathrm{U}_{\mathrm{X}}, \mathrm{U}_{\mathrm{Y}}, \mathrm{U}_{\mathrm{Z}}\right\} \quad \mathrm{F}=\left\{\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{Y}}, \mathrm{f}_{\mathrm{Z}}\right\}$
 $-f_{X}: X=U_{X}$
 - $f_{Y}: Y=84-X+U_{Y}$
 $-f_{z}: Z=100 / y+U_{Z}$

(In)Dependences in Chains

- Z and Y are likely dependent (For some z,y: $P(Z=z \mid Y=y) \neq P(Z=z)$)
- Y and X are likely dependent
(...)
- Z and X are likely dependent
- Z and X are independent, conditional on Y
(For all $x, z, y: P(Z=z \mid X=x, Y=y)=P(Z=z \mid Y=y)$)

Intransitive Dependence

Example (SCM 4)

$$
\begin{aligned}
V & =\{X, Y, Z\} \quad U=\left\{U_{x}, U_{Y}, U_{Z}\right\} \quad F=\left\{f_{X}, f_{Y}, f_{Z}\right\} \\
& -f_{X}: X=U_{X}
\end{aligned}
$$

$$
-f_{Y}: Y= \begin{cases}a & \text { if } X=1 \& U_{Y}=1 \\ b & \text { if } X=2 \& U_{Y}=1 \\ c & \text { if } U_{Y}=2\end{cases}
$$

$$
-f_{z}: Z= \begin{cases}i & \text { if } Y=c \text { or } U_{Z}=1 \\ j & \text { if } Y \neq c \& U_{Z}=2\end{cases}
$$

- Y depends on X, Z depends on Y but
Z does not depend on X

Independence Rule in Chains

Rule 1 (Conditional Independence in Chains)

Variables X and Z are independent given set of variables Y iff
there is only one path between X and Z and this path is unidirectional and Y intercepts that path

Forks

Example (SCM 5)

($\mathrm{X}=$ Temperature, $\mathrm{Y}=$ Ice cream sale, $\mathrm{Z}=$ Crime)

- $\mathrm{V}=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$
$U=\left\{U_{x}, U_{Y}, U_{z}\right\}$
$F=\left\{f_{x}, f_{Y}, f_{z}\right\}$
$-f_{X}: X=U_{X}$
$-f_{Y}: Y=4 x+U_{y}$
$-f_{Z}: Z=x / 10+U_{Z}$

Forks

Example (SCM 5)

$$
\text { (} \mathrm{X}=\text { switch, } \mathrm{Y}=\text { light bulb } 1, \mathrm{Z}=\text { light bulb } 2 \text {) }
$$

$$
-V=\{X, Y, Z\} \quad U=\left\{U_{X}, U_{Y}, U_{Z}\right\} \quad F=\left\{f_{X}, f_{Y}, f_{Z}\right\}
$$

$$
-f_{x}: X=U_{x}
$$

$$
-_{f_{Y}:}:= \begin{cases}\text { on } & \text { if }\left(X=\text { up } \& U_{Y}=0\right) \text { or }\left(X=\text { down } \& U_{Y}=1\right) \\ \text { of } & \text { fotherwise }\end{cases}
$$

$$
-f_{z}: Z=\left\{\begin{array}{l}
\text { on if }\left(X=\text { up } \& U_{Z}=0\right) \text { or }\left(X=\text { down \& } U_{Z}=1\right) \\
\text { off otherwise }
\end{array}\right.
$$

(In)Dependences in Forks

- X and Z are likely dependent

$$
(\exists z, y: P(X=x \mid Z=z) \neq P(X=x))
$$

- Y and Z are likely dependent
- Z and Y are likely dependent
- Y and Z are independent, conditional on X
$(\forall x, z, y: P(Y=y \mid Z=z, X=x)=P(Y=y \mid X=x))$

Independence Rule in Forks

Rule 2 (Conditional Independence in Forks)
If variable X is a common cause of variables
Y and Z, and there is only one path between Y, Z
then Y and Z are independent conditional on X.

Colliders

Example (SCM 6)

($\mathrm{X}=$ musical talent, $\mathrm{Y}=$ grade point, $\mathrm{Z}=$ scholarship)

- $V=\{X, Y, Z\}$
$U=\left\{U_{\gamma}, U_{\gamma}, U_{z}\right\} \quad F=\left\{f_{x}, f_{\gamma}, f_{z}\right\}$
- $f_{X}: X=U_{X}$
- $f_{Y}: X=U_{Y}$
$-f_{\mathrm{z}}: Z= \begin{cases}\text { yes } & \text { if } X=\text { yes or } Y>80 \% \\ \text { no } & \text { otherwise }\end{cases}$

(In)dependence in Colliders

- X and Z are likely dependent

$$
(\exists z, y: P(X=x \mid Z=z) \neq P(X=x))
$$

- Y and Z are likely dependent
- X and Y are independent
- X and Y are likely dependent, conditional on Z

$$
(\exists x, z, y: P(X=x \mid Y=y, Z=z) \neq P(X=x \mid Z=z))
$$

If scholarship received (Z) but not musically talented (X), then must have high grade (Y) is statistical but not causal

(In)dependence in Colliders (Extended)

Example (SCM 7)

($X=$ coin flip, $Y=$ second coinflip, $Z=$ bell rings, $W=$ bell witness)
$-\mathrm{V}=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}\} \quad \mathrm{U}=\left\{\mathrm{U}_{\mathrm{X}}, \mathrm{U}_{\mathrm{Y}}, \mathrm{U}_{\mathrm{Z}}, \mathrm{U}_{\mathrm{W}}\right\} \quad \mathrm{F}=\left\{\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{Y}},, \mathrm{f}_{\mathrm{W}}\right\}$
$-f_{X}: X=U_{X}$
$-f_{Y}: Y=U_{Y}$
$-f_{z:} Z= \begin{cases}\text { yes } & \text { if } X=\text { head or } Y=\text { head } \\ \text { no } & \text { otherwise }\end{cases}$
$-f_{W}: W=\left\{\begin{array}{l}\text { yes if } Z=\text { yes or }(Z=\text { no and } \\ \left.U_{W}=1 / 2\right) \\ \text { no otherwise }\end{array}\right.$
X and Y are depend conditional on Z and on W .

Independence Rule in Colliders

Rule 3 (Conditional Independence in Colliders)
If $\quad a$ variable Z is the collision node between variables X and Y and there is only one path between X, Y,
then X and Y are unconditionally independent, but are dependent conditional on Z and any descendant of Z

D-separation

Property
 X independent of Y (conditioned on Z) w.r.t a probability distribution iff
 X d-separated from Y by Z in graph

Definition (informal)

X is d-separated from Y by Z
Z blocks every possible path X and Y

- Z prohibits the "‘flow" of statistical effects/ dependence between X and Y
- Must block every path

Pipeline metaphor

- Need only one blocking variable for each path

Blocking Conditions

Definition (formal)

A path p in G (between X and Y) is blocked by Z iff

1. p contains chain $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ or fork $\mathrm{A} \leftarrow \mathrm{B} \rightarrow \mathrm{C}$ s.t. $B \in Z$ or
2. p contains collider $\mathrm{A} \rightarrow \mathrm{B} \leftarrow \mathrm{C}$ s.t. $\mathrm{B} \ddagger \mathrm{Z}$ and all descendants of B are $\notin Z$

If Z blocks every path between X and Y, then X and Y are d-separated conditional on Z, for short: $(X \Perp Y \mid Z)_{G}$

In particular: X and Y are unconditionally independent iff $X-Y$ paths contain collider.

Example 1 (d-separation)

- Unconditional relation between Z and Y ?
- D-separated because of collider on only path. Hence unconditionally independent

Example 1 (d-separation)

- Relation between Z and Y conditional on $\{\mathrm{W}\}$?
- Not d-separated
- because fork $X \notin\{W\}$
- and collider $\in\{W\}$
- Hence conditionally dependent on $\{\mathrm{W}\}$ (and

Example 1 (d-separation)

- Relation between Z and Y conditional on $\{\mathrm{W}, \mathrm{X}\}$?
- d-separated
- Because fork X blocks
- Hence conditionally independent on $\{\mathrm{W}, \mathrm{X}\}$

Example 2 (d-separation)

- Relation between Z and Y ?
- Not d-separated because second path not blocked (no collider)
- Hence not unconditionally independent

Example 2 (d-separation)

- Relation between Z and Y conditionally on $\{R\}$?
- d-separated by \{R\} because
- First path blocked by fork R
- second path blocked by collider $\mathrm{W} \notin\{\mathrm{R}\}$)
- Hence independent conditional on $\{R\}$

Example 2 (d-separation)

- Relation between Z and Y conditionally on $\{R, W\}$?
- Not d-separated by \{R,W\} because W unblocks second path
- Hence not independent conditional on $\{R, W\}$

Example 2 (d-separation)

- Relation between Z and Y conditionally on \{R,W,X\}?
- d-separated by $\{R, W, X\}$ because
- Now second path blocked by fork X
- Hence independent conditional on $\{R, W, X\}$

Using D-separation

- Verifying/falsifying causal models on observational data

1. $G=S C M$ to test for
2. Calculate independencies I_{G} entailed by G using dseparation
3. Calculate independencies I_{D} from data (by counting) and compare with I_{G}
4. If $\mathrm{I}_{\mathrm{G}}=\mathrm{I}_{\mathrm{D}}$ SCM is a good solution. Otherwise identify problematic $I \in I_{G}$ and change G locally to fit corresponding $l^{\prime} \in I_{D}$

Using D-separation

- This approach is local
- If I_{G} not equal I_{D}, then can manipulate G w.r.t. RVs only involved in incompatibility
- Usually seen as benefit w.r.t. global approaches via likelihood with scores, say
- Note: In score-based approach one always considers score of whole graph
(But: one also aims at decomposability/locality of scoring functions)
- This approach is qualitative and constraint based
- Known algorithms: PC (Spirtes) , IC (Verma\&Pearl)

Equivalent Graphs

- One learns graphs that are (observationally) equivalent w.r.t. entailed independence assumptions
- Formalization
$-v(G)=v$-structure of $G=$ set of colliders in G of form $A \rightarrow B \leftarrow C$ where A and C not adjacent
- sk(G) = skeleton of $G=$ undirected graph resulting from G

Definition

G_{1} is equivalent to G_{2} iff $v\left(G_{1}\right)=v\left(G_{2}\right)$ and $\operatorname{sk}\left(G_{1}\right)=\operatorname{sk}\left(G_{2}\right)$

Equivalent graphs

Theorem
 Equivalent graphs entail same set of d-separations

Intuitively clear:

- Forks and chains have similar role w.r.t. independence
- Collider has different role

Equivalent Graphs

- $v(G)=v$-structure of $G=$ set of colliders in G of form $A \rightarrow B \leftarrow C$ where A and C not adjacent
- $\operatorname{sk}(\mathrm{G})=$ skeleton of $G=$ undirected graph resulting from G

Definition

G_{1} is equivalent to G_{2} iff $v\left(G_{1}\right)=v\left(G_{2}\right)$ and $\operatorname{sk}\left(G_{1}\right)=s k\left(G_{2}\right)$

- $\quad \mathrm{v}(\mathrm{G})=\mathrm{v}\left(\mathrm{G}^{\prime}\right)$
- $\quad s k(G)=s k\left(G^{\prime}\right)$
- Hence equivalent

Equivalent Graphs

- $v(G)=v$-structure of $G=$ set of colliders in G of form $A \rightarrow B \leftarrow C$ where A and C not adjacent
- $\operatorname{sk}(\mathrm{G})=$ skeleton of $G=$ undirected graph resulting from G

Definition

G_{1} is equivalent to G_{2} iff $v\left(G_{1}\right)=v\left(G_{2}\right)$ and $\operatorname{sk}\left(G_{1}\right)=s k\left(G_{2}\right)$

- $\quad \mathrm{v}(\mathrm{G}) \neq \mathrm{v}\left(\mathrm{G}^{\prime}\right)$
- $\quad \operatorname{sk}(G)=s k\left(G^{\prime}\right)$
- Hence not
equivalent

IC-Algorithm (Verma \& Pearl, 1990)

Input
P resp.
P-independencies
$(C \Perp A \mid B)$
$(C \Perp D \mid B)$
$(D \Perp A \mid B)$
$(E \Perp A \mid B)$
(E $\Perp B \mid C, D)$

Output
Pattern
(represents compatible class of equivalent DAGs)

Definition

Pattern = partially directed DAG
= DAG with directed and non-directed edges
Directed edge A-> B in pattern: in any of the DAGs the edge is A->B
Undirected edge $A-B$: There exists (equivalent) DAGs with $A->B$ in one and
$B->A$ in the other

IC-Algorithm (Informally)

1. Find all pairs of variables that are dependent of each other (applying standard statistical method on the database) and eliminate indirect dependencies
2. +3 . Determine directions of dependencies

Note: „Possible" in step 3 means: if you can find two patterns such that in the first the edge $A-B$ becomes $A->B$ but in the other $A<-B$, then do not orient.

IC-Algorithm (schema)

1. Add (undirected) edge A-B iff there is no set of RVs Z such that $(A \Perp B \mid Z)_{P}$. Otherwise let $Z_{A B}$ denote some set Z with $(A \Perp B \mid Z)_{P}$.
2. If $A-B-C$ and not $A-C$, then $A \rightarrow B \leftarrow C$ iff
$B \notin Z_{A C}$
3. Orient as many of the undirected edges as possible, under the following constraints:

- orientation should not create a new v-structure and
- orientation should not create a directed cycle.

Steps 1 and step 3 leave out details of search

- Hierarchical refinement of step 1 gives PC algorithm (next slide)
- A refinement of step 3 possible with 4 rules (thereafter)

PC algorithm (Spirtes \& Glymour, 1991)

- Remember Step 1 of IC

1. Add (undirected) edge $A-B$ iff there is no set of RVs Z such that $(A \Perp B \mid Z)_{P}$. Otherwise let $Z_{A B}$ denote some set Z with $(A \Perp B \mid Z)_{P}$.

- Have to search all possible sets Z of $R V$ s for given nodes A,B
- Done systematically by sets of cardinality $0,1,2,3 \ldots$
- Remove edges from graph as soon as independence found
- Polynomial time for graphs of finite degree (because can restricted search for Z to nodes adjacent to A, B)
P.Spirtes, C. Glymour: An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review 9: 62-72, 1991.

IC-Algorithm (with rule-specified last step)

1. as before
2. as before
3. Orient undirected edges as follows

- B - C into $B \rightarrow C$ if there is an arrow $A \rightarrow B$ s.t. A and C are not adjacent;
- $A-B$ into $A \rightarrow B$ if there is a chain $A \rightarrow C \rightarrow B$;
- $A-B$ into $A \rightarrow B$ if there are two chains $A-C \rightarrow B$ and $A-D \rightarrow B$ such that C and D are nonadjacent;
- A - B into $A \rightarrow B$ if there are two chains $A-C \rightarrow D$ and $C \rightarrow D \rightarrow B$ s.t. C and B are nonadjacent;

IC algorithm

Theorem
 The 4 rules specified in step 3 of the IC algorithm are necessary (Verma \& Pearl, 1992) and sufficient (Meek, 95) for getting a maximally oriented DAGs compatible with the input-independencies.

T. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies has a causal explanation.
In D. Dubois and M. P. Wellman, editors, UAI '92: Proceedings of the Eighth Annual Conference on Uncertainty in Artificial Intelligence, 1992, pages 323-330.
Morgan Kaufmann, 1992.
Christopher Meek: Causal inference and causal explanation with background knowledge. UAI 1995: 403-410, 1995.

Stable Distribution

- The IC algorithm accepts stable distributions P (over set of variables) as input, i.e. distribution P s.t. there is DAG G giving exactly the P-independencies
- Extension IC* works also for sampled distributions generated by so-called latent structures
- A latent structure (LS) specifies additionally a (subset) of observation variables for a causal structure
- A LS not determined by independencies
- IC* not discussed here, see, e.g.,
J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.

Criticism and further developments

Definition

The problem of ignorance denotes the fact there are RVs A, B and sets of $R V$ s Z such that it is not known whether $(A \Perp B \mid Z)_{P}$ or not $(A \Perp B \mid Z)_{P}$

- Problem of ignorance ubiquitous in science practice
- IC faces the problem of ignorance (Leuridan 2009)
- (Leuridan 2009) approaches this with adaptive logic (see later lectures)

[^0]
[^0]: B. Leuridan. Causal discovery and the problem of ignorance: an adaptive logic approach. JOURNAL OF APPLIED LOGIC, 7(2):188-205, 2009.

