# **Web-Mining Agents**

Prof. Dr. Ralf Möller Dr. Özgür Özçep Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Lab Class)



IM FOCUS DAS LEBEN

# **Structural Causal Models**

#### slides prepared by Özgür Özçep

# Part I: Basic Notions

(SCMs, d-separation)



IM FOCUS DAS LEBEN

#### Literature

• J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics – A primer, Wiley, 2016.

(Main Reference)

• J. Pearl: Causality, CUP, 2000.



#### Color Conventions for part on SCMs

- Formulae will be encoded in this greenish color
- Newly introduced terminology and definitions will be given in blue
- Important results (observations, theorems) as well as emphasizing some aspects will be given in red
- Examples will be given with standard orange
- Comments and notes are given with
   post-it-yellow background

#### Motivation

• Usual warning:

"Correlation is not causation"

• But sometimes (if not very often) one needs causation to understand statistical data



#### A remarkable correlation? A simple causality!





# Simpson's Paradox (Example)

 Record recovery rates of 700 patients given access to a drug

|          | Recovery rate with drug | Recovery rate<br>without drug |
|----------|-------------------------|-------------------------------|
| Men      | 81/87 (93%)             | 234/270 (87%)                 |
| Women    | 192/263 (73%)           | 55/80 (69%)                   |
| Combined | 273/350 (78%)           | 289/350 (83%)                 |

- Paradox:
  - For men, taking drugs has benefit
  - For women, taking drugs has benefit, too.
  - But: for all persons taking drugs has no benefit

A DE REAL PARTIES LE REAL

UNIVERSITÄT ZU LÜBECK

ITUT FÜR INFORMATIONSSYSTEME

# Resolving the Paradox (Informally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- In drug example
  - Why has taking drug less benefit for women?
     Answer: Estrogen has negative effect on recovery
  - Data: Women more likely to take drug than men
  - So: Choosing randomly any person will rather give a woman – and for these recovery is less beneficial
- In this case: Have to consider segregated data
   (not aggregated data)



# Resolving the Paradox Formally (Lookahead)

• We have to understand the causal mechanisms that lead to the data in order to resolve the paradox



- Drug usage and recovery have common cause
- Gender is a confounder



# Simpson Paradox (Again)

• Record recovery rates of 700 patients given access to a drug w.r.t. blood pressure (BP) segregation

|          | Recovery rate<br>Without drug | Recovery rate<br>with drug |
|----------|-------------------------------|----------------------------|
| Low BP   | 81/87 (93%)                   | 234/270 (87%)              |
| High BP  | 192/263 (73%)                 | 55/80 (69%)                |
| Combined | 273/350 (78%)                 | 289/350 (83%)              |

- BP recorded at end of experiment
- This time segregated data recommend not using drug whereas aggregated does



# Resolving the Paradox (Informally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- In this example
  - Drug effect is: lowering blood pressure (but may have toxic effects)
  - Hence: In aggregated population drug usage recommended
  - In segregated data one sees only toxic effects



# Resolving the Paradox Formally (Lookahead)

• We have to understand the causal mechanisms that lead to the data in order to resolve the paradox





#### Ingredients of a Statistical Theory of Causality

- Working definition of causation
- Method for creating causal models
- Method for linking causal models with features of data
- Method for reasoning over model and data



#### **Working Definition**

A (random) variable X is a cause of a (random) variable Y if Y - in any way - relies on X for its value



# Structural Causal Model: Definition

#### **Definition**

A structural causal model (SCM) consists of

- A set U of exogenous variables
- A set V of endogenous variables
- A set of functions f assigning each variable in V a value based on values of other variables from V U U
- Only endogenous variables are those that are descendants of other variables
- Exogenous variables are roots of model.
- Value instantiations of exogenous variables completely determine values of all variables in SCM



UNIVERSITÄT ZU LÜBECK

### Causality in SCMs

#### **Definition**

- 1. X is a direct cause of Y iff Y = f(...,X,...) for some f.
- 2. X is a cause of Y iff it is a direct cause of Y or there is Z s.t. X is a direct cause of Z and Z is a cause of Y.



#### **Graphical Causal Model**

- Graphical causal model associated with SCM
  - Nodes = variables
  - Edges = from X to Y if Y = f(...,Y,...)
  - Example SCM  $- U = \{X, Y\}$   $- V = \{Z\}$   $- F = \{f_Z\}$  $- f_Z : Z = 2X + 3Y$
  - ( Z = salary, X = years experience, Y = years profession )

JNIVERSITÄT ZU LÜBECK

Associated graph



#### **Graphical Models**

- Graphical models capture only partially SCMs
- But very intuitive and still allow for conserving much of causal information of SCM
- Convention for the next lectures: Consider only Directed Acyclic Graphs (DAGs)



### SCMs and Probabilities

- Consider SCMs where all variables are random variables (RVs)
- Full specification of functions **f** not always possible
- Instead: Use conditional probabilities as in BNs
  - $-f_X(...Y...)$  becomes P(X | ... Y...)
  - Technically: Non-measurable RV U models (probabilistic) indeterminism:

$$P(X \mid \dots \mid Y \dots) = f_X(\dots \mid Y \dots, \mid U)$$
  
U not mentioned here



#### SCMs and Probabilities

 Product rule as in BNs used for full specification of joint distribution of all RVs X<sub>1</sub>, ..., X<sub>n</sub>

 $P(X_1 = x_1, \dots, X_n = x_n) = \prod_{1 \le i \le n} P(x_i \mid parentsof(x_i))$ 

- Can make same considerations on (probabilistic) (in)dependence of RVs.
- Will be done in the following systematically



### Bayesian Networks vs. SCMs

- BNs model statistical dependencies
  - Directed, but not necessarily cause-relation
  - Inherently statistical
  - Default application: discrete variables
- SCMs model causal relations
  - SCMS with random variables (RVs) induce BNs
  - Assumption: There is hidden causal (deterministic) structure behind statistical data
  - More expressive than BNs: Every BN can be modeled by SCMs but not vice versa
  - Default application: continuous variables



#### **Reminder: Conditional Independence**

- Event A independent of event B iff P(A | B) = P(A)
- RV X is independent of RV Y iff
  P(X | Y) = P(X) iff
  for every x-value of X and for every y-value Y
  event X = x is independent of event Y = y
  Notation: (X ⊥ Y)<sub>P</sub> or even shorter: (X ⊥ Y)
- X is conditionally independent of Y given Z iff
   P(X | Y, Z) = P(X | Z)
   Notation: (X ⊥ Y | Z)<sub>P</sub> or even shorter: (X ⊥ Y|Z)



# Independence in SCM graphs

- Almost all interesting independences of RVs in an SCM can be identified in its associated graph
- Relevant graph theoretical notion: d-separation

```
Property
X is independent of Y (conditioned on Z) iff
X is d-separated from Y by Z
```

- D-separation in turn rests on 3 basic graph patterns
  - Chains
  - Forks
  - Colliders



#### Independence in SCM graphs

#### Property

X is independent of Y (conditioned on Z) iff X is d-separated from Y by Z

There are two conditions here:

- Markov condition:
  - If X is d-separated from Y by Z

then X is independent of Y (conditioned on Z)

- Faithfulness:
- If X is independent of Y (conditioned on Z) then X is d-separated from Y by Z

## Chains





### Chains



#### Chains





# (In)Dependences in Chains

- Z and Y are likely dependent
   (For some z,y: P(Z=z | Y = y) ≠ P(Z = z))
- Y and X are likely dependent
   (...)
- Z and X are likely dependent
- Z and X are independent, conditional on Y

(For all x,z,y: P(Z=z | X=x,Y=y) = P(Z=z | Y=y))





#### **Intransitive Dependence**



MERSITAT ZU LUBBER VARIABLE LEVEL" graph hides independence CUS DAS LEBEN 29

## Independence Rule in Chains

Rule 1 (Conditional Independence in Chains) Variables X and Z are independent given set of variables Y iff there is only one path between X and Z and this path

is unidirectional and Y intercepts that path





#### Forks



#### Forks



# (In)Dependences in Forks

- X and Z are likely dependent
   (∃z,y: P(X=x | Z = z) ≠ P(X = x))
- Y and Z are likely dependent
- Z and Y are likely dependent
- Y and Z are independent, conditional on X
   ( ∀x,z,y: P(Y=y | Z=z,X = x) = P(Y = y | X = x) )





. . .

#### Independence Rule in Forks

**Rule 2** (Conditional Independence in Forks)

If variable X is a common cause of variables
Y and Z, and there is only one path between Y,Z
then Y and Z are independent conditional on X.





### Colliders



# (In)dependence in Colliders

• X and Z are likely dependent

( $\exists z, y: P(X=x | Z = z) \neq P(X = x)$ )

- Y and Z are likely dependent
- X and Y are independent
- X and Y are likely dependent, conditional on Z

$$(\exists x, z, y: P(X = x | Y = y, Z = z) \neq P(X = x | Z = z))$$

If scholarship received (Z) but not musically talented (X), then must have high grade (Y)

> UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

X-Y dependence (conditionally) on Z is statistical but not causal



### (In)dependence in Colliders (Extended)



### Independence Rule in Colliders

**Rule 3** (Conditional Independence in Colliders)

If a variable Z is the collision node between variables X and Y and there is only one path between X, Y,

then X and Y are unconditionally independent, but are dependent conditional on Z and any descendant of Z





### **D**-separation

Property X independent of Y (conditioned on Z) w.r.t a probability distribution iff X d-separated from Y by Z in graph

### Definition (informal) X is d-separated from Y by Z Z blocks every possible path X and Y

- Z prohibits the ``flow" of statistical effects/ dependence between X and Y
  - Must block every path

Pipeline metaphor

iff

- Need only one blocking variable for each path

## **Blocking Conditions**

### **Definition (formal)**

A path p in G (between X and Y) is blocked by Z iff

- 1. p contains chain  $A \rightarrow B \rightarrow C$  or fork  $A \leftarrow B \rightarrow C$ s.t.  $B \in Z$  or
- 2. p contains collider  $A \rightarrow B \leftarrow C$  s.t.  $B \notin Z$  and all descendants of B are  $\notin Z$

If Z blocks every path between X and Y, then X and Y are d-separated conditional on Z, for short:  $(X \perp Y \mid Z)_G$ 

In particular: X and Y are unconditionally independent iff X-Y paths contain collider.

40



- Unconditional relation between Z and Y ?
  - D-separated because of collider on only path.
     Hence unconditionally independent





- Relation between Z and Y conditional on {W}?
  - Not d-separated
    - because fork  $X \notin \{W\}$
    - and collider  $\in$  {W}

- Hence conditionally dependent on {W} (and {T})

42



- Relation between Z and Y conditional on {W,X}?
  - d-separated
    - Because fork X blocks
  - Hence conditionally independent on {W,X}





- Relation between Z and Y?
  - Not d-separated because second path not blocked (no collider)
  - Hence not unconditionally independent





- Relation between Z and Y conditionally on {R}?
  - d-separated by {R} because

NSTITUT FÜR INFORMATIONSSYSTEM

- First path blocked by fork R
- second path blocked by collider W  $\in \{ \mathsf{R} \}$  )
- Hence independent conditional on {R}



- Relation between Z and Y conditionally on {R,W}?
  - Not d-separated by {R,W} because W unblocks second path
  - Hence not independent conditional on {R,W}





- Relation between Z and Y conditionally on {R,W,X}?
  - d-separated by {R,W,X} because
    - Now second path blocked by fork X
  - Hence independent conditional on {R,W,X}

### Using D-separation

- Verifying/falsifying causal models on observational data
  - 1. G = SCM to test for
  - 2. Calculate independencies I<sub>G</sub> entailed by G using dseparation
  - 3. Calculate independencies  $I_{\rm D}$  from data (by counting) and compare with  $I_{\rm G}$
  - 4. If  $I_G = I_{D_i}$  SCM is a good solution. Otherwise identify problematic  $I \in I_G$  and change G locally to fit corresponding  $I' \in I_D$



### **Using D-separation**

- This approach is local
  - If  $I_G$  not equal  $I_D$ , then can manipulate G w.r.t. RVs only involved in incompatibility
  - Usually seen as benefit w.r.t. global approaches via likelihood with scores, say
  - Note: In score-based approach one always considers score of whole graph

(But: one also aims at decomposability/locality of scoring functions)

- This approach is qualitative and constraint based
- Known algorithms: PC (Spirtes), IC (Verma&Pearl)

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

### **Equivalent Graphs**

- One learns graphs that are (observationally) equivalent w.r.t. entailed independence assumptions
- Formalization
  - -v(G) = v-structure of G = set of colliders in G of form A $\rightarrow$ B $\leftarrow$ C where A and C not adjacent
  - sk(G) = skeleton of G = undirected graph resulting from G

#### **Definition**

 $G_1$  is equivalent to  $G_2$  iff  $v(G_1) = v(G_2)$  and  $sk(G_1) = sk(G_2)$ 



### Equivalent graphs

#### Theorem

Equivalent graphs entail same set of d-separations

#### Intuitively clear:

- Forks and chains have similar role w.r.t. independence
- Collider has different role



### **Equivalent Graphs**

- v(G) = v-structure of G = set of colliders in G of form
   A→B←C where A and C not adjacent
- sk(G) = skeleton of G = undirected graph resulting from G

### **Definition** G<sub>1</sub> is equivalent to G<sub>2</sub> iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$



### **Equivalent Graphs**

- v(G) = v-structure of G = set of colliders in G of form
   A→B←C where A and C not adjacent
- sk(G) = skeleton of G = undirected graph resulting from G

### **Definition** G<sub>1</sub> is equivalent to G<sub>2</sub> iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$



# IC-Algorithm (Verma & Pearl, 1990)



#### **Definition**

**Pattern** = partially directed DAG

= DAG with directed and non-directed edges

Directed edge A-> B in pattern: in any of the DAGs the edge is A->B Undirected edge A-B: There exists (equivalent) DAGs with A->B in one and B ->A in the other



Verma, T. & Pearl, J: Equivalence and synthesis of causal models. UNIVERSITAT ZU LUBECK INSTITUT FUR INFORMATIONSSYSTEME Proceedings of the 6. conference on Uncertainty in AI, 220-227, 1990.

# IC-Algorithm (Informally)

- 1. Find all pairs of variables that are dependent of each other (applying standard statistical method on the database) and eliminate indirect dependencies
- 2. + 3. Determine directions of dependencies



Note: "Possible" in step 3 means: if you can find two patterns such that in the first the edge A-B becomes A->B but in the other A<-B, then do not orient.

### IC-Algorithm (schema)

- 1. Add (undirected) edge A-B iff there is no set of RVs Z such that  $(A \perp B \mid Z)_{P_1}$  Otherwise let  $Z_{AB}$  denote some set Z with  $(A \perp B \mid Z)_{P_1}$
- 2. If A-B-C and not A-C, then A $\rightarrow$ B $\leftarrow$ C iff B  $\notin$  Z<sub>AC</sub>
- 3. Orient as many of the undirected edges as possible, under the following constraints:
  - orientation should not create a new v-structure and
  - orientation should not create a directed cycle.

Steps 1 and step 3 leave out details of search

- Hierarchical refinement of step 1 gives PC algorithm (next slide)
- A refinement of step 3 possible with 4 rules (thereafter)

# PC algorithm (Spirtes & Glymour, 1991)

- Remember Step 1 of IC
  - 1. Add (undirected) edge A-B iff there is no set of RVs Z such that  $(A \perp B \mid Z)_{P_1}$  Otherwise let  $Z_{AB}$  denote some set Z with  $(A \perp B \mid Z)_{P_1}$
- Have to search all possible sets Z of RVs for given nodes A,B
  - Done systematically by sets of cardinality 0,1,2,3...
  - Remove edges from graph as soon as independence found
  - Polynomial time for graphs of finite degree (because can restricted search for Z to nodes adjacent to A,B)

IM FOCUS DAS LEBEN

57

P.Spirtes, C. Glymour: An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review 9: 62-72, 1991.



#### IC-Algorithm (with rule-specified last step)

- 1. as before
- 2. as before
- 3. Orient undirected edges as follows
  - B C into B→C if there is an arrow A→B s.t. A and C are not adjacent;
  - A B into A  $\rightarrow$  B if there is a chain A  $\rightarrow$  C  $\rightarrow$  B;
  - A B into A→B if there are two chains A—C→B and A—D→B such that C and D are nonadjacent;
  - A B into A→B if there are two chains A—C→D and C→D→B s.t. C and B are nonadjacent;



## IC algorithm

#### Theorem

The 4 rules specified in step 3 of the IC algorithm are necessary (Verma & Pearl, 1992) and sufficient (Meek, 95) for getting a maximally oriented DAGs compatible with the input-independencies.

T. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies has a causal explanation.

In D. Dubois and M. P. Wellman, editors, UAI '92: Proceedings of the Eighth Annual Conference on Uncertainty in Artificial Intelligence, 1992, pages 323–330. Morgan Kaufmann, 1992.

Christopher Meek: Causal inference and causal explanation with background knowledge. UAI 1995: 403-410, 1995.



### Stable Distribution

- The IC algorithm accepts stable distributions P (over set of variables) as input, i.e. distribution P s.t. there is DAG G giving exactly the P-independencies
- Extension IC\* works also for sampled distributions generated by so-called latent structures
  - A latent structure (LS) specifies additionally a (subset) of observation variables for a causal structure
  - A LS not determined by independencies
  - IC\* not discussed here, see, e.g.,

J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.



### Criticism and further developments

#### **Definition**

The problem of ignorance denotes the fact there are RVs A,B and sets of RVs Z such that it is not known whether  $(A \perp B \mid Z)_P$  or not  $(A \perp B \mid Z)_P$ 

- Problem of ignorance ubiquitous in science practice
- IC faces the problem of ignorance (Leuridan 2009)
- (Leuridan 2009) approaches this with adaptive logic (see later lectures)

B. Leuridan. Causal discovery and the problem of ignorance: an adaptive logic approach. JOURNAL OF APPLIED LOGIC, 7(2):188–205, 2009.

