Web-Mining Agents

Prof. Dr. Ralf Möller Dr. Özgür Özçep

Universität zu Lübeck
 Institut für Informationssysteme

Tanya Braun (Lab Class)

Structural Causal Models

slides prepared by Özgür Özçep

Part II: Intervention

Literature

- J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics - A primer, Wiley, 2016.
(Main Reference)
- J. Pearl: Causality, CUP, 2000.

Intervention

- Important aim of SCMs for given data: Where to intervene in order to achieve desired effects.

Examples

- Data on wildfires: How to intervene in order to decrease wildfires?
- Data on TV and aggression: How to intervene in order to lower aggression of children?
- How to model intervention and their effects within SCMs and their graphs?

Randomized Controlled Experiment

- Randomized contolled experiment gold standard
- Aim: Answer question whether change in RV X has an effect on some target RV Y with an experiment
- If outcome of experiment is yes, X is a RV to intervene upon
- Test condition: all variables different from X are static (fixed) or vary fully randomly.
- Problem: Cannot always set up such an experiment
- Example: cannot control wether in order to test variables influencing wildfire
- Instead: use observational data \& causal model

Example (SCM 5; Intervention)

($\mathrm{X}=$ Temperature, $\mathrm{Y}=$ Ice cream Sale, $\mathrm{Z}=$ Crime)

- Would intervention on ice cream sales (Y) lead to decrease of crime (Z)?
- What does it mean to intervene on Y ?
- Fix value of Y in the sense of inhibiting the natural influences on Y according to SCM (here of U_{Y} and X)
- Leads to change of the SCM

Intervention vs. Conditioning

- Intervention denoted by do($\mathrm{Y}=\mathrm{y}$)

$$
P(Z=z \mid d o(Y=y))=
$$

$$
\text { probability of event } Z=z \text { on intervening upon } Y \text { by }
$$

$$
\text { setting } Y=y
$$

Intervention changes the data generation mechanism

- In contrast
$P(Z=z \mid Y=y)=$
probability of event $Z=z$ when knowing that $Y=y$
Conditioning only does filtering on the data

Average Causal Effect (ACE)

- Would intervention on ice cream sales (Y) by increasing Y lead to decrease of crime (Z)?
- Causal Effect Difference/average causal effect (ACE)

$$
P(Z=\text { low } \mid \text { do }(Y=\text { high }))-P(Z=\text { low } \mid \text { do }(Y=\text { low }))
$$

- Here $\operatorname{ACE}(Y=l o w->h i g h)=0$

General Causal Effect

- How effective is drug usage for recovery?

$$
A C E=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))
$$

- Need to compute general causal effect

Definition

The general causal effect of X on Y is given by
$P(Y=y \mid d o(X=x))=P_{m}(Y=y \mid X=x)$
$=$ probability in manipulated graph

Example (drug-recovery effect)

- How effective is drug usage for recovery?

$$
A C E=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))
$$

- $P(Y=y \mid d o(X=x))=P_{m}(Y=y \mid X=x)$

Intervention (alternatively)

- The definition of intervention with the manipulated graph is not the only possibility
- Model intervention do($X=x$) with force variable F
- F is parent of X,
$-\operatorname{Dom}(F)=\left\{d o\left(X=x^{\prime}\right) \mid x\right.$ in $\left.\operatorname{dom}(X)\right\} \cup\{i d l e\}$
- pa‘(X) $=\mathrm{pa}(\mathrm{X}) \cup\{F\}$
- New "`СP'" for X

$$
P\left(X=x \mid \mathrm{pa}^{\prime}(X)\right)=\{
$$

$$
P(X=x \mid p a(X)) \text { if } F=i d l e
$$

$$
0 \quad \text { if } F=d o\left(X=x^{4}\right) \text { and } x \neq x^{〔}
$$

$$
1 \text { if } F=\operatorname{do}\left(X=x^{\prime}\right) \text { and } x=x^{\prime}
$$

Z value not effected by intervention on $x: f_{z}: Z=f\left(U_{z}\right)$

Example (drug-recovery effect)

$-P_{m}(Y=y \mid X=x)=?$

- Need to reduce to probabilities w.r.t. original graph

1. $P_{m}(Z=z)=P(Z=z)$
[2. $P_{m}(Y=y \mid Z=z, X=x)=P(Y=y \mid Z=z, X=x)$
2. Summing out

$$
\begin{array}{|l}
P\left(Y=y \mid d o(X=x)=P_{m}(Y=y \mid X=x)\right. \\
=\sum_{z} P_{m}(Y=y \mid X=x, Z=z) P_{m}(Z=z \mid X=x) \\
=\sum_{z} P_{m}(Y=y \mid X=x, Z=z) P_{m}(Z=z) \quad Z=\text { Gender } \\
=\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z)
\end{array}
$$

Adjustment

Definition

The adjustment formula (for single parent Z of X) for the calculation of the GCE is given by
$P(Y=y \mid d o(X=x))=\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z)$
Wording: „Adjusting for Z" or „controlling Z"

Simpson's Paradox

- How effective is drug usage for recovery?
$A C E=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))$
- $P(Y=y \mid d o(X=x))=P_{m}(Y=y \mid X=x)$

Reminder: Simpson's Paradox

- Record recovery rates of 700 patients given access to a drug

	Recovery rate with drug	Recovery rate without drug
Men	$81 / 87(93 \%)$	$234 / 270(87 \%)$
Women	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Combined	$273 / 350(78 \%)$	$289 / 350(83 \%)$

- Paradox:
- For men, taking drugs has benefit
- For women, taking drugs has benefit, too.
- But: for all persons taking drugs has no benefit

Resolving the Paradox (Formally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- Formally: What is the general causal effect of drug usage X on recovery Y ?
$-P(Y=y \mid d o(X=x))=?$
- $\mathrm{ACE}=\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{do}(\mathrm{X}=1))-\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{do}(\mathrm{X}=0))=$?

Resolving the Paradox (Formally)

- $P(Y=1 \mid d o(X=1))=\quad$ (using adjustment formula)
- $=P(Y=1 \mid X=1, Z=1) P(Z=1)+P(Y=1 \mid X=1, Z=0) P(Z=0)$
$=0.93(87+270) / 700+0.73(263+80) / 700=0.832$
- $P(Y=1 \mid d o(X=0))=0.7818$
- $\mathrm{ACE}=0.832-0.7818=0.0502>0$
- One has to seggregate the data w.r.t. Z (adjust for Z)

	Recovery rate with drug	Recovery rate without drug
Men	$81 / 87(93 \%)$	$234 / 270(87 \%)$
Women	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Combined	$273 / 350(78 \%)$	$289 / 350(83 \%)$

Simpson Paradox (Again)

- Record recovery rates of 700 patients given access to a drug w.r.t. blood pressure (BP) segregation

	Recovery rate Without drug	Recovery rate with drug
Low BP	$81 / 87(93 \%)$	$234 / 270(87 \%)$
High BP	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Combined	$273 / 350(78 \%)$	$289 / 350(83 \%)$

- BP recorded at end of experiment
- This time segregated data recommend not using drug whereas aggregated does

Resolving the Paradox (Formally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- Formally: What is the general causal effect of drug usage X on recovery Y ?

$$
\begin{aligned}
& -P(Y=y \mid d o(X=x))=? \\
& \quad=P_{m}(Y=y \mid X=x)=P(Y=y \mid X=x)
\end{aligned}
$$

So: Do not adjust for/seggregate w.r.t. any variable

Causal Effect for Multiple Adjusted Variables

Rule (Calculation of causal effect)
$P(Y=y \mid d o(X=x))=$

$$
\sum_{z} P(Y=y \mid X=x, P a(X)=z) P(P a(X)=z)
$$

- $\mathrm{Pa}(\mathrm{X})=$ parents of X
- $z=$ instantiation of all parent variables of X

Rule (Calculation of Causal Effect Rule (alternative))
$P(Y=y \mid d o(X=x))=$

$$
\sum_{z} P(Y=y, X=x, P a(X)=z) / P(X=x \mid P a(X)=z)
$$

Truncated Product Formula

- Handling of multiple interventions straightforward
- Joint prob. distribution on all other variables X_{1}, \ldots, X_{n} after intervention on Y_{1}, \ldots, Y_{m}

That is all variablesare partitioned in Xis andYjs
Definition (Truncated product formula (g-formula))

$$
\mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \mid \mathrm{do}\left(\mathrm{Y}_{1}=\mathrm{y}_{1}, \ldots, \mathrm{Y}_{\mathrm{m}}=\mathrm{y}_{\mathrm{m}}\right)\right)=\prod_{1 \leq j \leq \mathrm{n}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

$$
\mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)=\text { sub-vector of }\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots \mathrm{y}_{\mathrm{m}}\right) \text { constrained to parents of } \mathrm{X}_{\mathrm{i}}
$$

Example 1

$$
\begin{aligned}
& P\left(z_{1}, z_{2}, w, y \mid \operatorname{do}\left(X=x, z_{3}=z_{3}\right)\right) \\
& =P\left(z_{1}\right) P\left(z_{2}\right) P(w \mid x) P\left(y \mid w, z_{3}, z_{2}\right)
\end{aligned}
$$

Truncated Product Formula

Definition (Truncated product formula (g-formula))
$P\left(x_{1}, \ldots, x_{n} \mid d o\left(Y_{1}=y_{1}, \ldots, Y_{m}=y_{m}\right)\right)=\prod_{1 \leq j \leq n} P\left(x_{i} \mid p a\left(X_{i}\right)\right)$

Example 2 (summing out)

$\mathrm{P}\left(\mathrm{w}, \mathrm{y} \mid \mathrm{do}\left(\mathrm{X}=\mathrm{x}, \mathrm{Z}_{3}=\mathrm{z}_{3}\right)\right.$)
$=\sum_{z 1, z 2} \mathrm{P}\left(z_{1}\right) \mathrm{P}\left(\mathrm{z}_{2}\right) \mathrm{P}(w \mid x) \mathrm{P}\left(\mathrm{y} \mid \mathrm{w}, \mathrm{z}_{3}, z_{2}\right)$

Can check that this is compatible with the adjustment formula

Backdoor Criterion (Motivation)

- Intervention on X requires adjusting parents of X
- But sometimes those variables not measurable (though perhaps represented in graph)
- Need general criterion to identify adjustment variables

1. Block all spurious paths between X and Y
2. Leave all directed paths from X to Y unperturbed
3. Do not create new spurious paths

Backdoor Criterion (Formulation)

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- Can adjust for Z satisfying backdoor criterion

$$
P(Y=y \mid \operatorname{do}(X=x))=\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z)
$$

Backdoor Criterion (Intuition)

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- Ad 1.: Descendants are effects of X, should not be conditioned on
(compare drug usage X and blood pressure Z)
- Ad 2.: One is interested in effects of X on Y, not vice versa. Effects of Y on X should be blocked.

Backdoor Criterion Generalizes Adjustment

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- $Z=P a(X)$
- For any W in Z both conditions fulfilled
- W is not a descendant (as DAG)
- Z blocks every path as every path into X must go trough a parent of X

Backdoor Criterion (Example 1)

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- Causal effect of X on Y ?
- S is not recorded in the data
- Use $\{W\}$ as Z fulfills backdoor
- W not descendant of X

- Blocks backdoor path

Backdoor Criterion (Example 1 (cont'd))

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- Causal effect of X on Y ? $S=$ socioeconomic
$P(y \mid d o(x))=\sum_{w} P(Y=y \mid X=x, W=w) P(W=w)$
$=\sum_{s} P(Y=y \mid X=x, S=s) P(S=s)$
Conditioning on different variables S vs. W status $\quad W=$ weight with same effect calculation

Backdoor Criterion (Example 2a)

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- Causal effect of X on Y ?
- No backdoor paths
- Can use Z = \{\}
$-P(y \mid d o(x))=P(y \mid x)$

Backdoor Criterion (Example 2b)

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- Causal effect of X on Y ?
- No backdoor paths
- Can one adjust for W?
- No, collider W not blocking spurious path

Backdoor Criterion (Example 2c)

Definition

Set of variables Z satisfies backdoor criterion relative to pair (X, Y) of variables iff

1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an arrow into X

- From $2 b$ we know: effect of X on Y not via conditioning on W.
- But how to calculate w-specific causal effect:

$$
P(Y=y \mid d o(X=x), W=w)=?
$$

Backdoor Criterion (Example 2c (cont'd))

- W-specific causal effect $P(Y=y \mid d o(X=x), W=w)$ = ?
- Use fork R to condition on

$$
\begin{aligned}
& P(Y=y \mid d o(X=x), W=w)= \\
& \quad \sum_{r} P(Y=y \mid X=x, W=w, R=r) P(R=r \mid X=x, W=w)
\end{aligned}
$$

- Degree to which causal effect of X on Y is mpgified by values of W is called effect modification or moderation

Backdoor Criterion (Example 3)

- What is effect modification for X on Y by W in drug example?
- Compare $P(Y=y \mid d o(X=x), W=w)$ and

$$
P\left(Y=y \mid d o(X=x), W=w^{\prime}\right)
$$

- Here: As W blocks backdoor
$-P(Y=y \mid d o(X=x), W=w)=P(Y=y \mid X=x, W=w)$
$-P\left(Y=y \mid d o(X=x), W=w^{\prime}\right)=P\left(Y=y \mid X=x, W=w^{\prime}\right)$
S= socioeconomic

Backdoor Criterion (Example 4)

- Sometimes also need to condition on colliders
- There are four backdoor paths from X to Y

1. $X \leftarrow E \rightarrow R \rightarrow Y$
2. $X \leftarrow E \rightarrow R \leftarrow A \rightarrow Y$
3. $X \leftarrow R \rightarrow Y$
4. $X \leftarrow R \leftarrow A \rightarrow Y$

- R needed to block 3. path
- But R collider on 2. path, hence need further blocking variable
- Can use as blocking set Z $\{E, R\},\{R, A\}$ or $\{E, R, A\}$

Front-door Criterion (Motivating Example)

Example

- Sometimes backdoor criterion not applicable
$-\mathrm{P}(\mathrm{y} \mid \mathrm{do}(\mathrm{x}))=$?
- Genotype U not observed in data
- Hence conditioning on U does not help

Front-door Criterion (Motivating Example)

Example

- Sometimes backdoor criterion not applicable
$-\mathrm{P}(\mathrm{y} \mid \mathrm{do}(\mathrm{x}))=$?
- Genotype U not observed in data
- Hence conditioning on U does not help
- But sometimes a mediating variable helps

Front-door Criterion (Motivating Example)

	Tar (400)		No tar (400)		All subjects (800)	
	Smokers	Nonsmokers	Smokers	Nonsmokers	Smokers	Nonsmokers
	(380)	(20)	(20)	(380)	(400)	(400)
No	323	1	18	38	341	39
cancer	(85%)	(5%)	(90%)	(10%)	(85%)	(9.75%)
Cancer	57	19	2	342	59	361
	(15%)	(95%)	(10%)	(90%)	(15%)	(92.25%)

Tobacco industry:

- 15% of smokers w. cancer < 92.25\% nonsmokers w. cancer
- Tar: 15% smokers cancer < 95% nonsmoker cancer
- Non tar: 10% smokers cancer < 90% nonsmoker cancer

Front-door Criterion (Motivating Example)

	Smokers (400)		Nonsmokers (400)		All subjects (800)	
	Tar	No tar	Tar	No tar	Tar	No tar
	(380)	(20)	(20)	(380)	(400)	(400)
No	323	18	1	38	324	56
cancer	(85%)	(90%)	(5%)	(10%)	(81%)	(19%)
Cancer	57	2	19	342	76	344
	(15%)	(10%)	(95%)	(90%)	(9%)	(81%)

Antismoking lobby
Who is right?

- Choosing to smoke increases chances of tar deposit (95\%)
- Effect of tar deposit: look separately at smokers vs. Nonsmokers
- Smokers: 10% cancer $\xrightarrow{+ \text { tar }} 15 \%$ cancer
- Nonsmokers: 90% cancer $\xrightarrow{+ \text { tar }} 95 \%$ cancer

Front-door Criterion (Intuition)

- Separate effect of X on Y :

Effect of X on $Y=$ effect of X on $Z+$ effect of Z on Y

Front-door Criterion (Intuition)

- Effect of X on Z :
(No unblocked
X-Z backdoor path)

$$
P(Z=z \mid \operatorname{do}(X=x))=P(Z=z \mid X=x)
$$

- Effect of Z on Y :
(X blocks Z-Y-backdoorpath)

$$
P(Y=y \mid \operatorname{do}(Z=z))=\sum_{x} P(Y=y \mid Z=z, X=x) P(X=x)
$$

- Effect of X on Y :
(Chaining and summing out)

$$
\begin{aligned}
& P(Y=y \mid d o(X=x)) \\
& =\sum_{z} P(Y=y \mid d o(Z=z)) P(Z=z \mid d o(X=x)) \\
& \quad=\sum_{z} \sum_{x} P\left(Y=y \mid Z=z, X=x^{\prime}\right) P\left(X=x^{\prime}\right) P(Z=z \mid X=x)
\end{aligned}
$$

More detailed derivation

$$
\begin{aligned}
& P(y \mid d o(X=x)) \\
& =\sum_{u} P(Y=y \mid x, u) P(u) \quad \text { (conditioning on } U \text {) } \\
& =\sum_{u} \sum_{z} P(Y=y \mid z, x, u) P(z \mid x, u) P(u) \\
& \text { (conditioning on } \mathrm{Z} \text {) } \\
& =\sum_{u} \sum_{z} P(Y=y \mid z, x, u) P(z \mid x) P(u) \\
& =\sum_{z} P(z \mid x) \sum_{u} P(Y=y \mid z, x, u) P(u) \\
& =\sum_{z} P(z \mid x) \sum_{u} P(Y=y \mid z, u) P(u) \\
& =\sum_{z} \mathrm{P}(z \mid x) \mathrm{P}(\mathrm{Y} \mid \mathrm{do}(\mathrm{z})) \\
& =\sum_{z} P(z \mid x) \sum_{x^{\prime}} P\left(Y \mid x^{\prime}, z\right) P\left(x^{\prime}\right) \\
& =\sum_{z} \sum_{x^{\prime}} P(z \mid x) P\left(Y \mid x^{\prime}, z\right) P\left(x^{\prime}\right) \\
& \text { (Z independent of } U \\
& \text { given } X \text { by (d-separation)) } \\
& \text { (by commuting) } \\
& \text { (} \mathrm{Y} \text { independent of } \mathrm{X} \text { given } \mathrm{Z}, \mathrm{U} \text {) } \\
& \text { (definition of do()) } \\
& \text { (adjustment via } \mathrm{X} \text {) }
\end{aligned}
$$

Front-door Criterion (Formulation \& Theorem)

Definition

Set of variables Z satisfies front-door criterion w.r.t. pair of variables (X, Y) iff

1. Z intercepts all directed paths from X to Y
2. Every backdoorpath from X to Z is blocked (by collider))
3. All Z-Y backdoor paths are blocked by X

Theorem (Front-door adjustment)
If Z fulfills front-door criterion w.r.t. (X, Y) and $P(x, z)>0$ then $P(y \mid d o(x))=\sum_{z} P(z \mid x) \sum_{x} P\left(y \mid z, x^{\prime}\right) P\left(x^{\prime}\right)$

Conditional Interventions (Example)

Example (conditioned drug administering)

- Administer drug ($X=1$) if fever $Z>z$
- Formally:

$$
\begin{aligned}
& P(Y=y \mid d o(X=g(Z))) \\
& \text { where } g(Z)=1 \text { if } Z>z \text { and } g(Z)=0 \text { otherwise }
\end{aligned}
$$

- Can be reduced to calculating z-specific effect
$P(Y=y \mid d o(X=x), Z=z)$

Conditional Interventions (Rule)

Rule (z-specific effect)
If \quad there is set S of variables s.t. $S \cup Z$ satisfies backdoor criterion
then the z-specific effect is given by

$$
P(y \mid d o(x), z)=\sum_{s} P(y \mid x, s, z) P(s \mid z)
$$

Reduction of conditional intervention to z-specific effect:

$$
\begin{aligned}
P(Y & =y \mid d o(X=g(Z)))= \\
& =\sum_{z} P(Y=y \mid d o(X=g(Z), Z=z) P(Z=z \mid d o(X=g(Z)))
\end{aligned}
$$

(conditioning on Z)

$$
\begin{aligned}
& =\sum_{z} P(Y=y \mid d o(X=g(Z), Z=z) P(Z=z) \\
& =\sum_{=2} P(Y=y \mid d o(X=x), z)_{\mid x=g(z)} P(Z=z)
\end{aligned}
$$

$$
\text { (Z before } X \text {) }
$$

Intervention Calculation in Practice?

JMHUEBNERIS (GCE) calculation by intervention useful as Just another WordPress.com weblog long as (domains of) conditioned variable set Z and values small (i.e. few summations)

Theory VS Practice

"In theory, there is no difference between theory and practice.

Inverse Probability Weighing

- Inverse probability weighing gives estimation of GCE on small sample size \ll Z.
- Estimation with propensity score $P(X=x \mid Z=z)$
- Propensity score can be estimated similarly as in linear regression
- Weigh small sample set with propensity
- Estimation of $\mathrm{P}(\mathrm{y} \mid \mathrm{do}(\mathrm{x}))$ by counting all events for y for each stratum $X=x$. (No summation over all instances of Z required)

Inverse Probability Weighing

- Filtering-Case $P(Y=y, Z=z \mid X=x)$: Evidence leads to re-normalization of full joint probability
$-P(Y=y, Z=z \mid X=x)=P(Y=y, Z=z, X=x) / P(X=x)$
- Have to weight (Y, Z, X) samples by $1 / P(X=x)$
- Intervention-Case $\mathrm{P}(\mathrm{y} \mid \mathrm{do}(\mathrm{x}))$: Weighing by propensity

$$
\begin{aligned}
& -P(y \mid d o(x)) \\
& =\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z) \\
& =\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z) P(X=x \mid Z=z) / P(X=x \mid Z=z) \\
& =\sum_{z} P(X=x, Y=y, Z=z) / P(X=x \mid Z=z)
\end{aligned}
$$

Inverse Probability Weighing (Example)

	Recovery rate with drug	Recovery rate without drug
Men	$81 / 87(93 \%)$	$234 / 270(87 \%)$
Women	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Combined	$273 / 350(78 \%)$	$289 / 350(83 \%)$

- Rewrite table to get
\% of population for each
(X,Y,Z) instance
- Example:

$$
\%(\text { yes,yes,male })=81 / 700=
$$

0.116

Sample percentages

	Recovery rate with drug	Recovery rate without drug
Men	$81 / 87(93 \%)$	$234 / 270(87 \%)$
Women	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Combined	$273 / 350(78 \%)$	$289 / 350(83 \%)$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\% of population
yes	yes	male	0.116
yes	yes	female	0.274
yes	no	male	0.01
yes	no	female	0.101
no	yes	male	0.334
no	yes	female	0.079
no	no	male	0.051
no	no	female	0.036

Weighing when Filtering for $X=y e s$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\% of population
yes	yes	male	0.116
yes	yes	female	0.274
yes	no	male	0.01
yes	no	female	0.101
no	yes	male	0.334
no	yes	female	0.079
no	no	male	0.051
no	no	female	0.036

Consider $X=$ yes \& weigh (X, Y, Z) with $1 / P(X=y e s)=0.116+0.274+0.01+0101$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\% of population
yes	yes	male	0.232
yes	yes	female	0.547
yes	no	male	0.02
yes	no	female	0.202

Weighing when Intervening do(X=yes)

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\% of population
yes	yes	male	0.116
yes	yes	female	0.274
yes	no	male	0.01
yes	no	female	0.101
no	yes	male	0.334
no	yes	female	0.079
no	no	male	0.051
no	no	female	0.036

Consider $X=$ yes \& weigh (X, Y, Z) with $1 / P(X=y e s \mid Z=z)$
$P(X=y e s \mid Z=m a l e)=(0.116+0.01) /(0.116+0.01+0.334+0.051)$
$P(X=y e s \mid Z=$ female $)=(0.274+0.101) /(0.274+0.101+0.079+0.036)$

In this example no real savings! These come into play when
dom (Z) >> sample size

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\%$ of population
yes	yes	male	0.476
yes	yes	female	0.357
yes	no	male	0.042
Yes	no	female	0.132

Mediation (Motivation)

- There may be indirect effects of X on Y via a mediating RV Z
- Interested in direct effect of X on Y

Example

- Gender may effect hiring directly or via qualification
- How to determine direct effect?
- Have to "fix" influence of mediators by intervention

The Human Mediator

Car on Ihs is broken and is pushed to car workshop by car on rhs mediated by human in the middle

Controlled Direct Effect

Definition The controlled direct effect (CDE) on Y of changing X from x to x^{\prime} is defined by

$$
P(Y=y \mid d o(X=x), d o(Z=z))-P\left(Y=y \mid d o\left(X=x^{\prime}\right), d o(Z=z)\right)
$$

Example (CDE in Hiring SCM)

$-P(Y=y \mid d o(X=x), d o(Z=z))$
$=P(Y=y \mid X=x, d o(Z=z)$) (there is no $X-Y$-backdoor)
$=P(Y=y \mid X=x, Z=z) \quad(Z-Y$ backdoor blocked by $X)$
$-C D E=P(Y=y \mid X=x, Z=z)-P\left(Y=y \mid X=x^{\prime}, Z=z\right)$

Controlled Direct Effect (Extended Example)

$$
\begin{aligned}
P(Y= & y \mid d o(X=x), d o(Z=z)) \\
= & P(Y=y \mid X=x, d o(Z=z)) \quad \text { (there is no } X-Y \text {-backdoor) } \\
= & \sum_{i} P(Y=y \mid X=x, Z=z, I=i)(P(I=i) \\
& \text { (first } Z-Y \text { backdoor blocked by } X) \\
& \quad \text { (second } Z-Y \text { backdoor blocked by } I) \\
C D E= & \sum_{i}\left[P(Y=y \mid X=x, Z=z, I=i)-P\left(Y=y \mid X=x^{\prime}, Z=z, I=i\right)\right] P(I=i)
\end{aligned}
$$

Controlled Direct Effect (Rule)

Rule (CDE identification)

The CDE on Y for X changing from x to x^{\prime} is given by
$\sum_{s 1, s 2}\left[P\left(Y=y \mid X=x, Z=z, S_{1}=s_{1}, S_{2}=s_{2}\right)-\right.$

$$
\left.P\left(Y=y \mid X=x^{\prime}, Z=z, S_{1}=s_{1}, S_{2}=s_{2}\right)\right] P(s 1, s 2)
$$

Here S_{1} and S_{2} are sets of variables fulfilling

- S_{1} blocks all Z-Y backdoor paths and
- S_{2} blocks all X-Y backdoor paths after deleting all arrows entering Z

Indirect Effects?

- Indirect effects not easily determinable
- Cannot condition away direct effects of X and Y
- In general (e.g. for non-linear correlations):

Indirect effect \neq total effect + direct effect

- But there is good news:
- For linear SCMs simpler (next lecture)
- With framework of counterfactuals one can determine indirect effects (lecture thereafter)

