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                                                           (Main Reference) 
•  J. Pearl: Causality, CUP, 2000.  
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Counterfactuals (Example) 

Example (Freeway) 
•  Came to fork and decided for Sepulveda road (X=0) 

instead of freeway (X=1) 
•  Effect: long driving time of 1 hour (Y = 1h) 
 
``If   I had taken the free way,  
  then  I would have driven less than 1 hour‘‘ 
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Counterfactuals (Informal Definition) 

Definition 
A counterfactual  is an  if-then statement where  

–  the if-condition, aka  antecedens, hypothesizes about an 
alternative non-actual situation/condition  

   (in example: taking freeway) and 
–  the then-condition, aka succedens, describes some 

consequence of the hypothetical situation 
   (in example: 1h drive) 
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Counterfactuals ≠ truth-conditional if  

•  Counterfactuals may be false even if antecedent is false 
–  ``If      Hamburg is capital of Germany,  
     then  Schulz is cancellor‘‘                                            true 
–  ``If      Hamburg were capital of Germany,  
     then  Schulz would be cancellor‘‘                                false   

•  Usually, the antecedent in counterfactuals in natural 
language use is false in actual world 

•  In natural language distinguished by different modes 
–   indicative mode for truth-conditional  if-statements vs.   
–  conjunctive/subjunctive for counterfactuals 
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•  „Hätte, hätte Fahrradkette....“  https://www.youtube.com/watch?v=qt_ppEL7OLI 
•  L. Matthäus: „Wäre, wäre, Fahrradkette, so ungefähr – oder wie auch immer“ 



Counterfactuals Require Minimal Change 

•  Hypothetical world minimally different from actual world 
–  If        X=1 were the case (instead of X=0), 
             but everything else the same (as far as possible),  
   then   Y < 1h would be the case 

•  Idea of minimal change ubiquitous 
–  in particular see discussion in belief revision  
–  Lecture „Foundations of Ontologies and Databases“  
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D. Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973. 
D. Makinson. Five faces of minimality. Studia Logica, 52:339–379, 1993. 
F. Wolter. The algebraic face of minimality. Logic and Logical Philosophy,6:225 – 240, 1998. 

Account for consequences 
 of change (from X= 0 to X = 1).  



Counterfactuals and Rigidity 

•  Rigidity as a consequence of minimal change of worlds/
states: 

    Objects stay the same in compared worlds 

•  In example:  Driver (characteristics) stays the same: 
if the driver is a moderate driver, then he will be a 
moderate driver in the hypothesized world, too  

 
•  Rigidity of objects across worlds also debated in early 

work on foundation of modal logic (work of S. Kripke) 
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Counterfactuals (Example cont’d) 

•  Try: Formalization with intervention  
–   E(driving time |do(freeway), driving time = 1 hour) 

         doesn‘t work! Why? 
–  There is a clash for RV „driving  time“ (Y)  

•  Y = 1 h in actual world   vs. 
•   Y < 1h (expected)  under hypothesized condition X =1 

•  Solution: Distinguish Y (driving time) under different 
worlds/conditions X = 0 vs. X = 1 

                       E(YX=1 | X = 0, Y0 = Y = 1) 
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Expected driving time YX=1 if one had chosen freeway (X=1)  
knowing that other decision (X=0) lead to driving time  
Y0 of 1 hour.  

YX=x formalizes   
counterfactual 



Counterfactuals (Definition) 
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Definition 
A counterfactual RV is of the form YX=x and its 
semantics is given by 
 
                       YX=x(u) : = YMx(u) 
 
where  
•  Y, X are (sets of) RVs from an SEM M  
•  x is an instantiation of X  
•  Mx is the SEM resulting from M by substituting the 

equation(s) for (all RVs in) X with value(s) x 
•  u is an instantiation of all exogenous variables in M 

Note the rigidity assumption: 
Definition talks about the  
same ``objects‘‘ u in different 
worlds   



Counterfactuals (consistency rule) 

•  Consequence of the formal definition of counterfactuals 
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Consistency rule  
If X = x, then YX=x = Y 

•  This case (hypothesized = actual) non-typical in natural 
language use        (Merkel: „If I only would be cancellor..) 

•  In belief revision the corresponding rule is termed 
„vacuity“: because there is no reason to change, the 
change is vacuous.   

 

 



Counterfactuals (for linear SEMs) 

•  How to formalize semantics of counterfactuals?  
–  Use ideas similar to those of intervention 

•  Consider linear models 
–  Values of all variables determined by values of exogenous 

variables U = U1, ... ,Un 

–  So can write X = X(U) for any variable in SEM 
–  Example  

•  X: Salary, u = u1, ..., un characterizes individual Joe 
•  X(u) = Joe‘s salary 

–  When considering different worlds, the individuals (such as 
Joe = (u1, ...,un)) stay the same.  
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Counterfactuals in linear SEMS (Example) 

•  Linear model M:      
              X = aU       ;     Y = bX + U 

•  Find  YX=x(u) = ?  
   (value of Y if it were the case that X = x for individual u)  
•  Algorithm 

1.  Identify u under evidence (here: just given) 
2.  Consider modified model Mx 

•  X = x  
•  Y = bX + U 

3.  Calculate YX=x(u) 
                   YX=x(u) = bx + u  
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Counterfactuals in linear SEMs (Example) 

•  Linear model M:      
              X = aU       ;     Y = bX + U 
with a = b = 1.    
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U X(u) Y(u) YX=1(u) YX=2(u) YX=3(u) XY=1(u) XY=2(u) Xy=3(u) 

1 1 2 2 3 4 1 1 1 
2 2 4 3 4 5 2 2 2 
3 3 6 4 5 6 3 3 3 

Xy(U) = ? 
Algorithm 
1.  U = u;  2. Y = y;  3. X = aU = au = u. 
  (X unaltered by hypothetical condition Y = y) 



Counterfactuals vs. Intervention with do() 
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Counterfactual Yx(u) Intervention do(X=x) 
Defined locally for each u Defined globally for whole 

population/distribution 
Can output individual value  Outputs only expectation/

distribution 
Allows cross-world speak Allows single-world speak 
Can simulate intervention Cannot simulate counterfactual 



Counterfactuals in linear SEMs (example) 

•  Linear model M:   
–  X = UX 

–  H = aX + UH 

–  Y = bX + cH + UY 

–  σUiUj = 0 for all i,j ∈ {X,H,Y}        (i.e., Ui, Uj are not linearly  
                                                              correlated/dependent) 
a = 0.5;     b = 0.7;     c = 0.4   
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X = Encouragement H= Homework Y= Exam score 

a=0.5 c=0.4 

b=0.7 X = time spent in after-school 
remedial program  



Counterfactuals in Linear SEMs (Example) 

•  Linear model M:   
–  X = UX 

–  H = aX + UH 

–  Y = bX + cH + UY 
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X = 
 Encouragement 

H= 
Homework 

Y=  
Exam score 

a=0.5 c=0.4 

b=0.7 

•  Consider an individual Joe given by evidence:  
            X = 0.5,   H = 1,   Y = 1.5 

•  Want to answer counterfactual query:  
„What would Joe‘s  exam score be, if he had doubled 
study time at home?“ 



Counterfactuals in Linear SEMs (Example) 

•  Linear model M:   
–  X = UX 

–  H = aX + UH 

–  Y = bX + cH + UY 
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X = 
 Encouragement 

H= 
Homework 

Y=  
Exam score 

a=0.5 c=0.4 

b=0.7 

•  Consider an individual Joe given by evidence: 
            X = 0.5,   H = 1,   Y = 1.5 

•  Step 1: Determine  U-characteristics from evidence  
–  UX = 0.5 
–  UH = 1-0.5 * 0.5 
–  UY = 1.5 -0.7 * 0.5 – 04.4 * 1 = 0.75 

The U-characteristics are rigid 



Counterfactuals in Linear SEMs (Example) 

•  Linear model M:   
–  X = UX 

–  H = aX + UH 

–  Y = bX + cH + UY 
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X = 
 Encouragment 

H= 
 Homework 

Y=  
Exam score 

a=0.5 c=0.4 

b=0.7 

•  Step 2: Simulate hypothetical change (doubling) 
–  Set H = 2 

•  Step 3: Calculate counterfactual YH= 2(u) 
–  YH= 2(UX = 0.5, Uh = 0.75, UY = 0.75 ) 
    =  0.7 * 0.5  + 0.4 * 2 + 0.75 = 1.90 

2 

Joe would benefit from doubling homework  
(Y= 1.5 in actual world, Y = 1.90 in hypothetical world when doubling H 



Deterministic Counterfactuals Algorithm 

Algorithm 
–  Step 1 (Abduction): Use evidence E = e to determine u 
–  Step 2 (Action): Modify model M to obtain model Mx 

–  Step 3 (Prediction): Compute counterfactual YX=x(u) with   
                                     Mx        
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•  This algorithm considers single individual  
•  And answers query determined by counterfactual value 

•  What about classes of individuals and probabilistic 
counterfactuals? 



Nondeterministic Counterfactuals Algorithm 

Algorithm 
–  Step 1 (Abduction): Calculate P(U|E = e) 
–  Step 2 (Action): Modify model M to obtain model Mx 

–  Step 3 (Prediction): Compute expectation E(YX=x|E=e) 
                                   using Mx and P(U|E=e) 
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•  Calculate the probabilities of obtaining some individual 
(step 1) 

•  Step 2 the same 
•  Calculate conditional expectation: What is the expected 

value of Y if one were to change X  to x knowing E = e 



Nondeterministic Counterfactuals (Example) 

•  Model M:  X = aU   ;  Y = bX + U    (with a = b = 1) 
U = {1,2,3}   represents three types of individuals with prob. 
P(U = 1) = 1/2;    P(U = 2) = 1/3;     P(U=3) = 1/6 

•  Examples: 
–   P(YX=2(u) = 3) = ? 
–  P(Y2 > 3, Y1 < 4) =  
–  P(Y1 < Y2) =   1 
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U X(u) Y(u) YX=1(u) YX=2(u) YX=3(u) XY=1(u) XY=2(u) Xy=3(u) 

1 1 2 2 3 4 1 1 1 
2 2 4 3 4 5 2 2 2 
3 3 6 4 5 6 3 3 3 

= P(U = 1) = 1/2 
P(U=2)= 1/3 

 
 
 



Counterfactuals More Expressive (Example) 

•  Counterfactuals more expressive than intervention 
•  Linear model 
  X = U1;  Z = aX + U2; Y = bZ  

–  E[YX=1 | Z = 1] = ? 
–  Not captured by E[Y|do(X=1), Z=1]. Why? 

•  Gives only the salary Y of all individuals that went to college 
and since then acquired skill level Z= 1. 

•  E[Y|do(X=1), Z=1] = E[Y|do(X=0), Z=1]  
•  In contrast: E[YX=1 | Z = 1] captures salary of individuals who 

in the actual world have skill level Z =1 but might get Z > 1 
•  E[YX=0 | Z = 1] ≠ E[YX=1 | Z = 1]  
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X = College Y = Salary 

a b 

U1 U2 

Z = Skill 

Talks about postinvention 
for two different groups 

Talks about one group acting  
under different antecedents 



Counterfactuals More Expressive (Example) 

•  E[YX=0 | Z = 1] ≠ E[YX=1 | Z = 1]?  
–  How is this reflected in numbers? 
–  Later: How reflected in graph? 
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X = College Y = Salary 

a b 

U1 U2 

Z = Skill 

 
  

 
 

  

X = U1;  Z = aX + U2; Y = bZ          (for a ≠ 1 and a ≠ 0, b≠0) 
u1 u2 X(u) Z(u) Y(u) YX=0(u) YX=1(u) ZX=0(u) ZX=1(u) 

0 0 0 0 0 0 ab 0 a 
0 1 0 1 b b (a+1)b 1 a+1 
1 0 1 a ab 0 ab 0 a 
1 1 1 a+1 (a+1)b b (a+1)b 1 a+1 

•  E[Y1|Z=1] = (a+1)b        ;         E[Y|do(X=1),Z=1] =b 
•  E[Y0|Z=1] = b                ;         E[Y|do(X=0),Z=1] =b 

  

 
 

  

In particular: E[Y1-Y0|Z=1] = ab ≠ 0 
  

 
 

  



Counterfactuals vs. Intervention with do() 
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Counterfactual Yx(u) Intervention do(X=x) 
Defined locally for each u Defined globally for whole 

population/distribution 
Can output individual value  Outputs only expectation/

distribution 
Allows cross-world speak Allows single-world speak 
Can simulate intervention Cannot simulate counterfactual 

E[Y|do(X=1), Z=1] = ?  = E[YX=1| ZX=1 = 1] 



Counterfactuals vs. Intervention with do() 
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Counterfactual Yx(u) Intervention do(X=x) 
Defined locally for each u Defined globally for whole 

population/distribution 
Can output individual value  Outputs only expectation/

distribution 
Allows cross-world speak Allows single-world speak 
Can simulate intervention Cannot simulate counterfactual 

•  See road example 
•  But in non-conditional case we have 
     E[Yx=y] = E[Y=y|do(X=x)]   



Graphical representation of counterfactuals 

•  Rember definition of counterfactual  
                             YX=x(u) : = YMx(u) 
•  Modification as in intervention but with variable change 
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X 

Z2 
Z1 Z3 

W3 

Y 

W1 W2 

X=x 

Z2 
Z1 Z3 

(W3)x 

Yx 

W1 W2 Yx 

•  Can answer (independence) queries regarding 
counterfactuals as for any other variable 

•  Note: Graphs do not show error variables 
 

  



Independence criterion for counterfactuals 

•  Which variables can influence Yx? 
–  Parents of Y and parents of nodes on pathway between X 

and Y                                              (here: {Z3, W2, U3, Uy} ) 

•  So blocking these with a set of RVs Z renders Yx 
independent of X given Z 
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X=x 

Z2 
Z1 Z3 

(W3)x 

Yx 

W1 W2 

Theorem (Counterfactual interpretation of backdoor) 
If          set of RVs Z satisfies backdoor for (X,Y),  
then     P(Yx | X,Z) = P(Yx |Z)                              (for all x) 

UY 
U3 



Independence criterion for counterfactuals 

•  Theorem useful for estimating prob. for counterfactuals 
•  In particular can use adjustment formula 

 P(Yx = y) =  ∑z P(Yx = y | Z = z)P(z)                 (summing out) 
                 =  ∑z P(Yx = y | Z = z, X=x)P(z)        (Thm) 
                 =  ∑z P(Y=y | Z = z, X = x) P(z)        (consistency) 

•  Clear in light of  P(Yx = y) = P(Y=y| do(X=x)) 
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Theorem (Counterfactual interpretation of backdoor) 
If          set of RVs Z satisfies backdoor for (X,Y),  
then     P(Yx | X,Z) = P(Yx |Z)                              (for all x) 



Independence counterfactuals (example) 

•  Reconsider linear model 
  X = U1;  Z = aX + U2; Y = bZ 
 

•  Does college education have effect on salary, 
considering a group of fixed skill level? 

•  Formally: Is Yx independent of X, given Z? 
–  Is Yx d-separated from X given Z?   
–  No: Z a collider between X and U2 (as well as X and Yx) 
–  Hence: E[Yx | X, Z] ≠ E[Yx | Z]  
   (hence education has effect for students of given skill) 
  

 
 
  

–  E[YX=1 | Z = 1] = ? 
–  Not captured by E[Y|do(X=1), Z=1]. Why? 

•  Gives only the salary Y of all individuals that went to college 
and since then acquired skill level 1. 

•  E[Y|do(X=1), Z=1] = E[Y|do(X=0), Z=1]  
•  In contrast: E[YX=1 | Z = 1] captures salary of individuals who 

in the actual world have skill level Z =1 but might get Z > 1 
•  E[YX=0 | Z = 1] ≠ E[YX=1 | Z = 1]  
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X = College Y = Salary 

a b 

U1 U2 

Z = Skill 
X=x Zx Yx 



Counterfactuals in Linear Models 

•  In linear models any counterfactual identifiable if linear 
parameters identified.  
–  In this case all functions in SEM fully determined 
–  Can use Yx(u) = YMx(u) for calculation 

•  What if some parameters not identified? 
–   At least can identify statistical features of form E[YX=x|Z=z] 
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Theorem (Counterfactual expectation)  
Let  τ denote slope of total effect of X on Y  
            τ =  E[Y|do(x+1)]-E[Y|do(x)]           
Then,  for any evidence Z = e 
            E[YX=x|Z=e] = E[Y|Z=e] + τ (x-E[X|Z=e]) 



Theorem (Counterfactual expectation)  
Let  τ denote slope of total effect of X on Y  
            τ =  E[Y|do(x+1)]-E[Y|do(x)]           
Then,  for any evidence Z = e 
            E[YX=x|Z=e] = E[Y|Z=e] + τ (x-E[X|Z=e]) 

Counterfactuals in Linear Models 
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Current estimate of Y 

Expected effect change  
when x shifted from current  
best estimate E[X|Z=e] 



Effect of Treatment on the Treated (ETT) 
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ETT =  E[Y1 – Y0|X=1]   
        =  E[Y1 |X=1]- E[Y0|X=1]    
        =  E[Y|X=1]- E[Y|X=1] + τ (1-E[X|X=1]) - τ (0-E[X|X=1])  
         (using Thm with (Z = e) ≙ (X = 1))  

        = τ   
 
 

Hence, in linear models,  effect of treatment on the treated (individual) 
 is the same as total treatment effect on population 

Theorem (Counterfactual expectation)  
Let  τ denote slope of total effect of X on Y  
            τ =  E[Y|do(x+1)]-E[Y|do(x)]           
Then,  for any evidence Z = e 
            E[YX=x|Z=e] = E[Y|Z=e] + τ (x-E[X|Z=e]) 



Extended Example for ETT 

•  Job training program (X) for jobless funded by 
government to increase hiring Y 

•  Pilot randomized experiment shows:  
Hiring-%(w/ training) > Hiring-%(w/o training)  (*) 

•  Critics 
–   (*) not relevant as it might falsely measure effect on 

those who chose to enroll for program by themselves 
(these may got job because they are more ambitious) 

–  Instead, need to consider ETT  
   E[Y1 –Y0 |X=1] =   causal effect of training X on hiring   

        Y for those who took the training
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Extended Example for ETT (cont’d) 

•   Difficult part: E[YX=0 |X=1] 
–   not given by observational or experimental data 
–  but can be reduced to these if appropriate covariates 

Z (fulfilling backdoor criterion) exist 
P(Yx = y | X = x‘) 
  = ∑z P(Yx = y | Z = z,x‘)P(z|x‘)        (by condition on z) 
  = ∑z P(Yx = y | Z = z,x)P(z|x‘)                   (by Thm on     
             counterfactual backdoor  P(Yx | X,Z) = P(Yx |Z) ) 
  =  ∑z P(Y = y | Z = z, x)P(z|x‘)            (consistency rule) 
 

•  E[Y0|X=1] =  ∑z E(Y | Z = z, X=0)P(z|X=1)   
                       (after substitution and commuting sums) 35 

Contains only observational/testable RVs 



Extended Example Additive Intervention 

•   Scenario 
–  Add amount q of insulin to group of patients (with 

different insulin levels) 
•  do(X = X+q) = addX(q)   
•  Different from simple intervention 

–  Calculate effect of additive intervention from data 
where such additions have not been oberved 

•  Formalization with counterfactual 
–  Y = outcome RV = a RV relevant for measuring effect  
–  X = x‘ (previous level of insulin) 
–  Yx‘+q = outcome after additive intervention with q insul. 

 36 



Extended Example Additive Intervention 

•  E(Yx‘ +q|x‘) = expected output of additive intervention 
–  Part of ETT expression 
–  Can be identfied with adjustment formula  
   (for backdoor Z such as weight, age, etc.) 

•  E[Y|addX(q)] –E[Y] 
        = ∑x‘E[Yx‘+q|X=x‘]P(X=x‘) – E[Y] 
        = ∑x‘∑z E[Y|X=x‘+q,Z=z]P(Z=z|X=x‘)P(X=x‘)-E[Y] 
                (using already derived formula 
                  E(Yx | X = x‘) =∑z E(Y = y | Z = z, x)P(z|x‘)  

    and substituting x = x‘ +q ) 
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Extended Ex. Additive Intervention (cont’d) 

A: =  E[Y|addX(q)] –E[Y]  =?=  
B: =   ∑x( E[Y|do(X = x+q)] - E[Y|do(X = x)]P(X=x)) 
     =   ∑x( E[YX = x+q] - E[YX = x] )P(X=x) 
     =    Average total effect of adding q for each level x 
•  NO! 

–  In A ``nature‘‘ choose individuals level of X 
–  In A, P(X=x) represents those individuals chosing 

level X=x by free choice it  
–  It could be the case that those highly sensitive to 

getting dose q addition try to lower X value 
–  In B one cuts this natural influence 
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Extended Example Decision Making (cont’d) 

•  Scenario 1 
–   Cancer patient Ms Jones has to decide between 

1.  Lumpectomy alone (X = 0) 
2.  Lumpectomy with irradiation (X = 1) 

        hoping for remission of cancer (Y = 1) 
–  She decides for adding irradiation (X=1) and 10 years 

later the cancer remisses. 
–  Is the remission due to her decision? 

•  Formally: Determine probability of necessity 
                   PN = P(YX=0= 0 | X = 1, Y=1)  
•  If you want remission, you have to go for adding 

irradiation (irradiation necessary for remission) 
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Extended Example Decision Making (cont’d) 

•  Scenario 2 
–   Cancer patient Mrs Smith had lumpectomy alone 

(X=0) and her tumor reoccurred (Y=0).  
–  She regrets not having gone for irradiation.  
   Is she justified?  

•  Formally: Determine probability of sufficiency 
                   PS = P(YX=1= 1 | X = 0, Y=0)  
•  If you go for adding irradiation, you will achieve 

cancer remission 
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Note that, formally, PN and PS are the same.  
The distinction comes from interpreting  

 value 1 = acting  
 value 0 = omitting an action 



Extended Example Decision Making (cont’d) 

•  Scenario 3 
–   Cancer patient Mrs Daily faces same decision as Mrs 

Jones and argues 
•  If my tumor is of type that disappears without 

irradiation, why should I take irradiation? 
•  If my tumor is of type that does not disappear even with 

irradiation, why even take irradiation? 
–  So should she go for irradiation? 

•  Formally: Determine probability of necessity and 
sufficiency 

                   PNS = P(YX=1= 1, YX=0 = 0) 
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Extended Example Decision Making (cont’d) 

•  Formally: Determine probability of necessity and 
sufficiency 

                   PNS = P(YX=1= 1, YX=0 = 0) 
 
•  PN (PS and PNS) can be estimated from data 

under assumption of monotonicity (adding 
irradiation cannot cause recurrence of tumor)  
         PNS = P(Y=1|do(X=1)) – P(Y=1|do(X=0)) 
                 = total effect of changing X from no 

       irradiation to irradiation on Y 
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Extended Example Mediation 

•  Scenario (Indirect effect of gender on hiring)  
Policy maker wants to decide whether to 
1.  Make hiring procedure gender-blind (direct effect) or 
2.  Eliminate gender inequality in education or job 

trainig (indirect effect) 
–  (Controlled) direct effect identifiable with do 

expression (lecture on interventions) 
–  Indirect effect for non-linear system ≠ 
      total effect  minus  direct effect 
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X =Gender 

Z = Qualification 

Y  =  Hiring  



Extended Example Mediation (cont’d) 

•  In order to determine indirect effect of gender:  
–  Have to substract outcomes Y in two worlds where 

•  gender X is kept fixed to male (X=1) 
•  but its mediator (Z) is changed accordingly if one had 

changed the gender (from male to female) 
–  Consider:    E[ YX=1,Z=Z      -     YX=1,Z= Z     ]          
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X =Gender 

Z = Qualification 

Y  =  Hiring  

X=0 X=1 

•  Yx=1, Z = Z        (u) (u) =  
Value of Y for u in world where X = 1 and where Z = same 
value as of Z for u in world where X = 0. 

•   Note nesting of quantifiers 

X=0 



Extended Example Mediation (cont’d) 

•  YX=1,Z=z   =  hiring status with qualification Z = z 
when treated as male (X=1) 

•  Averaging over possible qualifications for females 
    ∑zE[YX=1,Z=z]P(Z=z|X=0)             (= E[YX=1,Z      ]) 

•  Averaging over possible qualifications for males 
            ∑zE[YX=1,Z=z]P(Z=z|X=1)             (= E[YX=1,Z      ]) 
•  Natural indirect effect (NIE) 
             ∑zE[YX=1,Z=z] ( P(Z=z|X=0) - P(Z=z|X=1) ) 
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X =Gender 

Z = Qualification 

Y  =  Hiring  

Called ``natural‘‘ because  
nature determines value of 
Z (as opposed to controlled  
fixation in CDE)  

X=0 

X=1 



Extended Example Mediation 

•  Natural indirect effect (NIE) 
             ∑zE[YX=1,Z=z] ( P(Z=z|X=0) - P(Z=z|X=1) ) 
•  NIE  identifiable from data in absence of 

confounding (Pearl 2001) 
     ∑zE[Y| X=1,Z=z] ( P(Z=z|X=0) - P(Z=z|X=1) ) 
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X =Gender 

Z = Qualification 

Y  =  Hiring  

Pearl: Direct and indirect effects. Proceedings of the 7th Conference on Uncertainty in AI. 
411-420, 2001 



Toolkit for Mediation 

Mediation problem  
–  T = f(uT);     
–  m = fM(t,uM);  
–  y = fY(t,m,uY) 
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Effect Formula 
Total TE            =   E[Y1-Y0] = E[Y|do(T=1)]-E[Y|do(T=0)] 
Controlled direct 
(for fixed mediator M=m) 

CDM(m)   =   E[Y1,m-Y0,m] = 
                 =   E[Y|do(T=1, M=m)-E[Y|do(T=0, M=m)] 
 

Natural direct  NDE         =   E[ Y1,M   -    Y0,M  ] 
Natural indirect NIE           =   E[ Y0,M   -    Y0,M  ] 

 

0 0 

1 0 



Toolkit for Mediation 

Mediation problem  
–  T = f(uT);     
–  m = fM(t,uM);  
–  y = fY(t,m,uY) 
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Observations 
•  TE = NDE – NIEr    (for change T from 0 to 1) 

•  where NIEr is NIE under reverse transition of 
treatment, i.e.,  T changes from 1 to 0 

•  TE and CDE(m) are do-expressions, so estimable 
•  from experimental data  
•  or from observations with backdoor and front-

door 



Identification for NDE and NIE 

•  Consider set of covariates W such that 
1.  No member of W descendant of T 
2.  W blocks all M-Y backdoors after removing T-> M and T -> Y 
3.  The W-specific effect is identifiable (using experiments or 

adjustment) 
4.  The W-specific joint effect of {T,M} on Y is identifiable  
      (using experiments or adjustment) 
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Theorem (Identification of NDE) 
When 1.and 2. hold, then NDE identifiable by  
 
NDE = ∑m ∑w [E[Y|do(T=1,M=m),W=w]- E[Y|do(T=0,M=m),W=w]] * 
                       P(M = m|do(T=0),W=w)P(W=w) 
 
If additionally 3. and 4., then do expressions also identifiable by backdoor 
or front-door 



Outlook: Logic meets ML  

•  Junction trees  
•  (Logical) Constraints for constraining ML models  
•  PAC framework (probably approximately correct) 
•  PAC learning in logical framework 
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