Web-Mining Agents

Prof. Dr. Ralf Möller Dr. Özgür Özçep

Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Lab Class)

IM FOCUS DAS LEBEN

Structural Causal Models

slides prepared by Özgür Özçep

Part IV: Counterfactuals

IM FOCUS DAS LEBEN

Literature

• J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics – A primer, Wiley, 2016.

(Main Reference)

• J. Pearl: Causality, CUP, 2000.

Counterfactuals (Example)

Example (Freeway)

- Came to fork and decided for Sepulveda road (X=0) instead of freeway (X=1)
- Effect: long driving time of 1 hour (Y = 1h)

``If I had taken the free way,

then I would have driven less than 1 hour"

Counterfactuals (Informal Definition)

Definition

A counterfactual is an if-then statement where

the if-condition, aka antecedens, hypothesizes about an alternative non-actual situation/condition

(in example: taking freeway) and

the then-condition, aka succedens, describes some consequence of the hypothetical situation

(in example: 1h drive)

Counterfactuals ≠ truth-conditional if

- Counterfactuals may be false even if antecedent is false
 - ``If Hamburg is capital of Germany,
 then Schulz is cancellor" true
 ``If Hamburg were capital of Germany,
 - then Schulz would be cancellor" false
- Usually, the antecedent in counterfactuals in natural language use is false in actual world
- In natural language distinguished by different modes
 - indicative mode for truth-conditional if-statements vs.
 - conjunctive/subjunctive for counterfactuals
- "Hätte, hätte Fahrradkette...." https://www.youtube.com/watch?v=qt_ppEL7OLI
- L. Matthäus: "Wäre, wäre, Fahrradkette, so ungefähr oder wie auch immer"

Counterfactuals Require Minimal Change

- Hypothetical world minimally different from actual world
 - If X=1 were the case (instead of X=0),

but everything else the same (as far as possible),

then Y < 1h would be the case

Account for consequences of change (from X = 0 to X = 1).

- Idea of minimal change ubiquitous
 - in particular see discussion in belief revision
 - Lecture "Foundations of Ontologies and Databases"
 - D. Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.
 - D. Makinson. Five faces of minimality. Studia Logica, 52:339–379, 1993.
 - F. Wolter. The algebraic face of minimality. Logic and Logical Philosophy,6:225 240, 1998.

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEM

Counterfactuals and Rigidity

 Rigidity as a consequence of minimal change of worlds/ states:

Objects stay the same in compared worlds

 In example: Driver (characteristics) stays the same: if the driver is a moderate driver, then he will be a moderate driver in the hypothesized world, too

• Rigidity of objects across worlds also debated in early work on foundation of modal logic (work of S. Kripke)

Counterfactuals (Example cont'd)

- **Try:** Formalization with intervention
 - E(driving time |do(freeway), driving time = 1 hour) doesn't work! Why?
 - There is a clash for RV "driving time" (Y)
 - Y = 1 h in actual world vs.
 - Y < 1h (expected) under hypothesized condition X =1
- Solution: Distinguish Y (driving time) under different worlds/conditions X = 0 vs. X = 1 $Y_{X=x}$ formalizes

 $E(Y_{X=1} | X = 0, Y_0 = Y = 1)$ counterfactual

Expected driving time $Y_{X=1}$ if one had chosen freeway (X=1) knowing that other decision (X=0) lead to driving time Y_0 of 1 hour.

Counterfactuals (Definition)

Definition

A counterfactual RV is of the form $Y_{X=x}$ and its semantics is given by

$$Y_{X=x}(u) := Y_{Mx}(u)$$

Note the rigidity assumption: Definition talks about the same ``objects" u in different worlds

where

- Y, X are (sets of) RVs from an SEM M
- x is an instantiation of X
- M_x is the SEM resulting from M by substituting the equation(s) for (all RVs in) X with value(s) x
- u is an instantiation of all exogenous variables in M

Counterfactuals (consistency rule)

Consequence of the formal definition of counterfactuals

Consistency rule If X = x, then $Y_{X=x} = Y$

- This case (hypothesized = actual) non-typical in natural language use (Merkel: "If I only would be cancellor..)
- In belief revision the corresponding rule is termed "vacuity": because there is no reason to change, the change is vacuous.

Counterfactuals (for linear SEMs)

- How to formalize semantics of counterfactuals?
 - Use ideas similar to those of intervention
- Consider linear models
 - Values of all variables determined by values of exogenous variables U = U₁, ..., U_n
 - So can write X = X(U) for any variable in SEM
 - Example
 - X: Salary, u = u₁, ..., u_n characterizes individual Joe
 - X(u) = Joe's salary
 - When considering different worlds, the individuals (such as $Joe = (u_1, ..., u_n)$) stay the same.

Counterfactuals in linear SEMS (Example)

• Linear model M:

 $X = aU \qquad ; \qquad Y = bX + U$

• Find $Y_{X=x}(u) = ?$

(value of Y if it were the case that X = x for individual u)

- Algorithm
 - 1. Identify u under evidence (here: just given)
 - 2. Consider modified model M_x

• X = x

- Y = bX + U
- 3. Calculate $Y_{X=x}(u)$

$$Y_{X=x}(u) = bx + u$$

Counterfactuals in linear SEMs (Example)

• Linear model M:

```
X = aU \quad ; \quad Y = bX + U
with a = b = 1.
X_{y}(U) = ?
Algorithm
1. U = u; 2. Y = y; 3. X = aU = au = u.
(X unaltered by hypothetical condition Y = y)
```

U	X(u)	Y(u)	Y _{X=1} (u)	Y _{X=2} (u)	Y _{X=3} (u)	X _{Y=1} (u)	X _{Y=2} (u)	X _{y=3} (u)
1	1	2	2	3	4	1	1	1
2	2	4	3	4	5	2	2	2
3	3	6	4	5	6	3	3	3

Counterfactuals vs. Intervention with do()

Counterfactual Y _x (u)	Intervention do(X=x)
Defined locally for each u	Defined globally for whole population/distribution
Can output individual value	Outputs only expectation/ distribution
Allows cross-world speak	Allows single-world speak
Can simulate intervention	Cannot simulate counterfactual

Counterfactuals in linear SEMs (example)

- Linear model M:
 - $X = U_X$
 - $H = aX + U_{H}$
 - $Y = bX + cH + U_Y$

$$-\sigma_{UiUj} = 0$$
 for all $i,j \in \{X,H,Y\}$

(i.e., U_i, U_j are not linearly correlated/dependent)

Counterfactuals in Linear SEMs (Example)

• Consider an individual Joe given by evidence:

X = 0.5, H = 1, Y = 1.5

• Want to answer counterfactual query:

"What would Joe's exam score be, if he had doubled study time at home?"

Counterfactuals in Linear SEMs (Example)

• Consider an individual Joe given by evidence:

X = 0.5, H = 1, Y = 1.5

• **Step 1**: Determine U-characteristics from evidence

$$- U_{X} = 0.5$$

$$- U_{H} = 1-0.5 * 0.5$$

$$- U_{Y} = 1.5 - 0.7 * 0.5 - 04.4 * 1 = 0.75$$
IM FOCUS DAS LEBEN 18

Counterfactuals in Linear SEMs (Example)

- Step 2: Simulate hypothetical change (doubling)
 Set H = 2
- Step 3: Calculate counterfactual $Y_{H=2}(u)$

 $- Y_{H=2}(U_X = 0.5, U_h = 0.75, U_Y = 0.75)$

= 0.7 * 0.5 + 0.4 * 2 + 0.75 = 1.90

Joe would benefit from doubling homework

(Y= 1.5 in actual world, Y = 1.90 in hypothetical world when doubling H

Deterministic Counterfactuals Algorithm

Algorithm

- Step 1 (Abduction): Use evidence E = e to determine u
- Step 2 (Action): Modify model M to obtain model M_x
- Step 3 (Prediction): Compute counterfactual $Y_{X=x}(u)$ with

M_{x}

- This algorithm considers single individual
- And answers query determined by counterfactual value
- What about classes of individuals and probabilistic counterfactuals?

Nondeterministic Counterfactuals Algorithm

Algorithm

- Step 1 (Abduction): Calculate P(U|E = e)
- Step 2 (Action): Modify model M to obtain model M_x
- Step 3 (Prediction): Compute expectation $E(Y_{X=x}|E=e)$

using M_x and P(U|E=e)

- Calculate the probabilities of obtaining some individual (step 1)
- Step 2 the same
- Calculate conditional expectation: What is the expected value of Y if one were to change X to x knowing E = e

Nondeterministic Counterfactuals (Example)

• Model M: X = aU; Y = bX + U (with a = b = 1)

U = {1,2,3} represents three types of individuals with prob. P(U = 1) = 1/2; P(U = 2) = 1/3; P(U=3) = 1/6

- Examples:
 - $P(Y_{X=2}(u) = 3) = ? = P(U = 1) = 1/2$

$$-P(Y_2 > 3, Y_1 < 4) = P(U=2) = 1/3$$

$$- P(Y_1 < Y_2) = 1$$

U	X(u)	Y(u)	Y _{X=1} (u)	Y _{X=2} (u)	Y _{X=3} (u)	X _{Y=1} (u)	X _{Y=2} (u)	X _{y=3} (u)
1	1	2	2	3	4	1	1	1
2	2	4	3	4	5	2	2	2
3	3	6	4	5	6	3	3	3

Counterfactuals More Expressive (Example)

- Counterfactuals more expressive than intervention
- Linear model

 $X = U_1;$

$$= U_{1}; Z = aX + U_{2}; Y = bZ$$

$$- E[Y_{X=1} | Z = 1] = ?$$

$$U_{1} = bZ$$

$$U_{1} = U_{2}$$

$$U_{2} = U_{2}$$

$$X = College$$

$$Z = Skill$$

$$Y = Salary$$

- Not captured by E[Y|do(X=1), Z=1]. Why?
 - Gives only the salary Y of all individuals that went to college and since then acquired skill level Z= 1.
 - E[Y|do(X=1), Z=1] = E[Y|do(X=0), Z=1] Talks about postinvention for two different groups

• In contrast: $E[Y_{x=1} | Z = 1]$ captures salary of individuals who in the actual world have skill level Z = 1 but might get Z > 1

• $E[Y_{X=0} | Z = 1] \neq E[Y_{X=1} | Z = 1]$ Talks about one group acting EN 23 under different antecedents

Counterfactuals More Expressive (Example)

• E	$E[Y_{X=0} Z = 1] \neq E[Y_{X=1} Z = 1]?$ $U_1 = 0$								
_	– How is this reflected in numbers?								
	– Later: How reflected in graph? X = College Z = Skill Y = Salary								
		X = U	$V_1; Z = aX$	$X + U_2; Y = bZ$	(for	a ≠ 1 and a	ı ≠ 0, b≠0)		
u ₁	u ₂	X(u)	Z(u)	Y(u)	Y _{X=0} (u)	Y _{X=1} (u)	Z _{X=0} (u)	Z _{X=1} (u)	
0	0	0	0	0	0	ab	0	а	
0	1	0	1	b	b	(a+1)b	1	a+1	
1	0	1	а	ab	0	ab	0	а	
1	1	1	a+1	(a+1)b	b	(a+1)b	1	a+1	

- $E[Y_1|Z=1] = (a+1)b$; E[Y|do(X=1),Z=1] = b
- $E[Y_0|Z=1] = b$; E[Y|do(X=0),Z=1] = b

In particular:
$$E[Y_1 - Y_0 | Z=1] = ab \neq 0$$

Counterfactuals vs. Intervention with do()

Counterfactual Y _x (u)	Intervention do(X=x)
Defined locally for each u	Defined globally for whole population/distribution
Can output individual value	Outputs only expectation/ distribution
Allows cross-world speak	Allows single-world speak
Can simulate intervention	Cannot simulate counterfactual

$E[Y|do(X=1), Z=1] = ? = E[Y_{X=1}| Z_{X=1} = 1]$

Counterfactuals vs. Intervention with do()

Counterfactual Y _x (u)	Intervention do(X=x)
Defined locally for each u	Defined globally for whole population/distribution
Can output individual value	Outputs only expectation/ distribution
Allows cross-world speak	Allows single-world speak
Can simulate intervention	Cannot simulate counterfactual

- See road example
- But in non-conditional case we have E[Y_x=y] = E[Y=y|do(X=x)]

Graphical representation of counterfactuals

Rember definition of counterfactual

 $\mathsf{Y}_{\mathsf{X}=\mathsf{x}}(\mathsf{u}):=\mathsf{Y}_{\mathsf{M}\mathsf{x}}(\mathsf{u})$

Modification as in intervention but with variable change

- Can answer (independence) queries regarding counterfactuals as for any other variable
- Note: Graphs do not show error variables

Independence criterion for counterfactuals

• Which variables can influence Y_x ?

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

- Parents of Y and parents of nodes on pathway between X and Y (here: {Z₃, W₂, U₃, U_y})
- So blocking these with a set of RVs Z renders Y_x independent of X given Z

Theorem (Counterfactual interpretation of backdoor)Ifset of RVs Z satisfies backdoor for (X,Y),then $P(Y_x | X,Z) = P(Y_x | Z)$ (for all x)

Independence criterion for counterfactuals

Theorem (Counterfactual interpretation of backdoor)Ifset of RVs Z satisfies backdoor for (X,Y),then $P(Y_x \mid X,Z) = P(Y_x \mid Z)$ (for all x)

- Theorem useful for estimating prob. for counterfactuals
- In particular can use adjustment formula

 $P(Y_x = y) = \sum_z P(Y_x = y | Z = z)P(z)$ (summing out)

= $\sum_{z} P(Y_x = y | Z = z, X = x)P(z)$

= $\sum_{z} P(Y=y | Z = z, X = x) P(z)$ (consistency)

Clear in light of $P(Y_x = y) = P(Y=y| do(X=x))$

M FOCUS DAS LEBEN 29

(Thm)

Independence counterfactuals (example)

- Reconsider linear model U_1 $X = U_1; Z = aX + U_2; Y = bZ$ X = College X = College X = College Z = Skill Y = SalaryX = X
- Does college education have effect on salary, considering a group of fixed skill level?
- Formally: Is Y_x independent of X, given Z?
 - Is Y_x d-separated from X given Z?
 - No: Z a collider between X and U_2 (as well as X and Y_x)
 - Hence: $E[Y_x | X, Z] \neq E[Y_x | Z]$

Counterfactuals in Linear Models

- In linear models any counterfactual identifiable if linear parameters identified.
 - In this case all functions in SEM fully determined
 - Can use $Y_x(u) = Y_{Mx}(u)$ for calculation
- What if some parameters not identified?
 - At least can identify statistical features of form $E[Y_{X=x}|Z=z]$

Theorem (Counterfactual expectation) Let τ denote slope of total effect of X on Y $\tau = E[Y|do(x+1)]-E[Y|do(x)]$ Then, for any evidence Z = e $E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])$

UNIVERSITÄT ZU LÜBECK

Counterfactuals in Linear Models

Effect of Treatment on the Treated (ETT)

Theorem (Counterfactual expectation)
Let
$$\tau$$
 denote slope of total effect of X on Y
 $\tau = E[Y|do(x+1)]-E[Y|do(x)]$
Then, for any evidence Z = e
 $E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])$

 $ETT = E[Y_1 - Y_0|X=1]$

- = $E[Y_1 | X=1] E[Y_0 | X=1]$
- = E[Y|X=1]- E[Y|X=1] + т (1-E[X|X=1]) т (0-E[X|X=1])

(using Thm with (Z = e) = (X = 1))

= т

Hence, in linear models, effect of treatment on the treated (individual) is the same as total treatment effect on population

Extended Example for ETT

- Job training program (X) for jobless funded by government to increase hiring Y
- Pilot randomized experiment shows: Hiring-%(w/ training) > Hiring-%(w/o training) (*)
- Critics
 - (*) not relevant as it might falsely measure effect on those who chose to enroll for program by themselves (these may got job because they are more ambitious)
 - Instead, need to consider ETT

 $E[Y_1 - Y_0 | X=1] = causal effect of training X on hiring$ Y for those who took the training

Extended Example for ETT (cont'd)

- Difficult part: $E[Y_{X=0} | X=1]$
 - not given by observational or experimental data
 - but can be reduced to these if appropriate covariates
 Z (fulfilling backdoor criterion) exist

$$\mathsf{P}(\mathsf{Y}_{\mathsf{x}} = \mathsf{y} \mid \mathsf{X} = \mathsf{x}^{\mathsf{`}})$$

UNIVERSITÄT ZU LÜBECK

- $= \sum_{z} P(Y_{x} = y \mid Z = z, x')P(z|x')$ (by condition on z)
- $= \sum_{z} P(Y_{x} = y \mid Z = z, \mathbf{x})P(z|x')$ (by Thm on

counterfactual backdoor $P(Y_x | X,Z) = P(Y_x | Z)$)

= $\sum_{z} P(Y = y | Z = z, x)P(z|x')$ (consistency rule)

Contains only observational/testable RVs

• $E[Y_0|X=1] = \sum_{z} E(Y | Z = z, X=0)P(z|X=1)$

(after substitution and commuting sums) ³⁵

Extended Example Additive Intervention

• Scenario

UNIVERSITÄT ZU LÜBECK

INFORMATIONSSYSTEM

- Add amount q of insulin to group of patients (with different insulin levels)
 - $do(X = X+q) = add_X(q)$
 - Different from simple intervention
- Calculate effect of additive intervention from data where such additions have not been oberved
- Formalization with counterfactual
 - -Y =outcome RV = a RV relevant for measuring effect
 - $X = x^{\circ}$ (previous level of insulin)
 - $-Y_{x'+q}$ = outcome after additive intervention with q insul.

IM FOCUS DAS LEBEN 36

Extended Example Additive Intervention

- $E(Y_{x'+q}|x')$ = expected output of additive intervention
 - Part of ETT expression
 - Can be identified with adjustment formula (for backdoor Z such as weight, age, etc.)
- $E[Y|add_X(q)] E[Y]$
 - $= \sum_{x'} E[Y_{x'+q} | X=x'] P(X=x') E[Y]$
 - $= \sum_{x'} \sum_{z} E[Y|X=x'+q,Z=z]P(Z=z|X=x')P(X=x')-E[Y]$

(using already derived formula

 $\mathsf{E}(\mathsf{Y}_{\mathsf{x}} \mid \mathsf{X} = \mathsf{x}^{\mathsf{`}}) = \sum_{z} \mathsf{E}(\mathsf{Y} = \mathsf{y} \mid \mathsf{Z} = \mathsf{z}, \, \mathsf{x})\mathsf{P}(\mathsf{z} | \mathsf{x}^{\mathsf{`}})$

and substituting x = x' + q)

Extended Ex. Additive Intervention (cont'd)

- A: = $E[Y|add_X(q)] E[Y] = ?=$
- $B: = \sum_{x} (E[Y|do(X = x+q)] E[Y|do(X = x)]P(X=x))$
 - = $\sum_{x} (E[Y_{X=x+q}] E[Y_{X=x}])P(X=x)$
 - = Average total effect of adding q for each level x
- NO!
 - In A ``nature'' choose individuals level of X
 - In A, P(X=x) represents those individuals chosing level X=x by free choice it
 - It could be the case that those highly sensitive to getting dose q addition try to lower X value
 - In B one cuts this natural influence

- Scenario 1
 - Cancer patient Ms Jones has to decide between
 - 1. Lumpectomy alone (X = 0)
 - 2. Lumpectomy with irradiation (X = 1)

hoping for remission of cancer (Y = 1)

- She decides for adding irradiation (X=1) and 10 years later the cancer remisses.
- Is the remission due to her decision?
- Formally: Determine probability of necessity $PN = P(Y_{x=0} = 0 | X = 1, Y=1)$
- If you want remission, you have to go for adding irradiation (irradiation necessary for remission)

39

- Scenario 2
 - Cancer patient Mrs Smith had lumpectomy alone
 (X=0) and her tumor reoccurred (Y=0).
 - She regrets not having gone for irradiation.
 Is she justified?
 - Formally: Determine probability of sufficiency $PS = P(Y_{X=1}=1 | X = 0, Y=0)$
 - If you go for adding irradiation, you will achieve cancer remission

Note that, formally, PN and PS are the same. The distinction comes from interpreting value 1 = acting value 0 = omitting an action

UNIVERSITÄT ZU LÜBECK

TITUT FÜR INFORMATIONSSYSTEME

- Scenario 3
 - Cancer patient Mrs Daily faces same decision as Mrs Jones and argues
 - If my tumor is of type that disappears without irradiation, why should I take irradiation?
 - If my tumor is of type that does not disappear even with irradiation, why even take irradiation?
 - So should she go for irradiation?
- Formally: Determine probability of necessity and sufficiency

PNS =
$$P(Y_{X=1} = 1, Y_{X=0} = 0)$$

Formally: Determine probability of necessity and sufficiency

PNS = $P(Y_{X=1}=1, Y_{X=0}=0)$

• PN (PS and PNS) can be estimated from data under assumption of monotonicity (adding irradiation cannot cause recurrence of tumor)

PNS = P(Y=1|do(X=1)) - P(Y=1|do(X=0))

= total effect of changing X from no irradiation to irradiation on Y

Extended Example Mediation

- Scenario (Indirect effect of gender on hiring)
 Policy maker wants to decide whether to
 - 1. Make hiring procedure gender-blind (direct effect) or
 - 2. Eliminate gender inequality in education or job trainig (indirect effect)
 - (Controlled) direct effect identifiable with do expression (lecture on interventions)
 - Indirect effect for non-linear system ≠ total effect minus direct effect

Extended Example Mediation (cont'd)

- In order to determine indirect effect of gender:
 - Have to substract outcomes Y in two worlds where
 - gender X is kept fixed to male (X=1)
 - but its mediator (Z) is changed accordingly if one had changed the gender (from male to female)
 - Consider: E[$Y_{X=1}, Z=Z_{X=0}$ $Y_{X=1}, Z=Z_{X=1}$]

Extended Example Mediation (cont'd)

- $Y_{X=1,Z=z}$ = hiring status with qualification Z = z when treated as male (X=1)
- Averaging over possible qualifications for females $\sum_{z} E[Y_{X=1,Z=z}]P(Z=z|X=0) \qquad (= E[Y_{X=1},Z_{X=0}])$
- Averaging over possible qualifications for males
 Σ_zE[Y_{X=1,Z=z}]P(Z=z|X=1) (= E[Y_{X=1,Zx=1}])
- Natural indirect effect (NIE)

 $\sum_{z} \mathsf{E}[\mathsf{Y}_{\mathsf{X}=1,\mathsf{Z}=z}] \ (\ \mathsf{P}(\mathsf{Z}{=}z|\mathsf{X}{=}0) - \mathsf{P}(\mathsf{Z}{=}z|\mathsf{X}{=}1) \)$

Extended Example Mediation

• Natural indirect effect (NIE)

 $\sum_z \mathsf{E}[\mathsf{Y}_{\mathsf{X}=1,\mathsf{Z}=z}]$ ($\mathsf{P}(\mathsf{Z}{=}z|\mathsf{X}{=}0)$ - $\mathsf{P}(\mathsf{Z}{=}z|\mathsf{X}{=}1)$)

 NIE identifiable from data in absence of confounding (Pearl 2001)
 ∑_zE[Y| X=1,Z=z] (P(Z=z|X=0) - P(Z=z|X=1))

Pearl: Direct and indirect effects. Proceedings of the 7th Conference on Uncertainty in Al. 411-420, 2001

Toolkit for Mediation

Mediation problem

- $T = f(u_T);$
- $m = f_M(t, u_M);$

$$- y = f_Y(t,m,u_Y)$$

Effect	Formula	
Total	TE =	$E[Y_1-Y_0] = E[Y do(T=1)]-E[Y do(T=0)]$
Controlled direct (for fixed mediator M=m)	CDM(m) = =	<pre>E[Y_{1,m}-Y_{0,m}] = E[Y do(T=1, M=m)-E[Y do(T=0, M=m)]</pre>
Natural direct	NDE =	$= E[Y_{1,M_0} - Y_{0,M_0}]$
Natural indirect	NIE =	$= E[Y_{0,M_1} - Y_{0,M_0}]$

Toolkit for Mediation

Mediation problem

- $T = f(u_T);$
- $m = f_M(t,u_M);$
- $y = f_Y(t,m,u_Y)$

Observations

- $TE = NDE NIE_r$ (for change T from 0 to 1)
 - where NIE_r is NIE under reverse transition of treatment, i.e., T changes from 1 to 0
- TE and CDE(m) are do-expressions, so estimable
 - from experimental data
 - or from observations with backdoor and frontdoor

Identification for NDE and NIE

- Consider set of covariates W such that
 - 1. No member of W descendant of T
 - 2. W blocks all M-Y backdoors after removing T-> M and T -> Y
 - 3. The W-specific effect is identifiable (using experiments or adjustment)
 - 4. The W-specific joint effect of {T,M} on Y is identifiable

(using experiments or adjustment)

Theorem (Identification of NDE) When 1.and 2. hold, then NDE identifiable by

$$\begin{split} \mathsf{NDE} &= \sum_m \sum_w \left[\mathsf{E}[\mathsf{Y}|\mathsf{do}(\mathsf{T=1},\mathsf{M=m}),\mathsf{W=w}] - \mathsf{E}[\mathsf{Y}|\mathsf{do}(\mathsf{T=0},\mathsf{M=m}),\mathsf{W=w}]\right] * \\ &\qquad \mathsf{P}(\mathsf{M} = \mathsf{m}|\mathsf{do}(\mathsf{T=0}),\mathsf{W=w})\mathsf{P}(\mathsf{W=w}) \end{split}$$

If additionally 3. and 4., then do expressions also identifiable by backdoor or front-door

INSTITUT FÜR INFORMATIONSSYSTEM

Outlook: Logic meets ML

- Junction trees
- (Logical) Constraints for constraining ML models
- PAC framework (probably approximately correct)
- PAC learning in logical framework

