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Junction Trees



Agenda

Following lectures a glimpse on Logic & ML 

1. Logic in ML: Constraining statistical models by
background knowledge/ontology (lecture 9)

• J. Deng et al.: Large-Scale Object Classification using
Label Relation Graphs, LNCS, vol 8689, pp. 48-64, 2014. 

2. ML in Logic: Computational Learning Theory in a logical
framework (lecture 11) 
• M. Grohe and M. Ritzert. Learning first-order definable

concepts over structures of small degree. ArXiv e-prints, 
Jan. 2017.
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Agenda

• Lecture 8 (today): Junction trees
– Preparation for Lecture 9
– Recap of belief propagation

• Lecture 10:  PAC Learning 
– Preparation for Lecture 11
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• Slides based on slides of
- Chris Williams: The Junction Tree Algorithm, October

2009
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The Junction Tree Algorithm

Chris Williams1

School of Informatics, University of Edinburgh

October 2009

1Based on slides by David Barber
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Why the Junction Tree Algorithm?

The JTA is a general-purpose algorithm for computing
(conditional) marginals on graphs.

It does this by creating a tree of cliques, and carrying out a
message-passing procedure on this tree

The best thing about a general-purpose algorithm is that there is
no longer any need to publish a separate paper explaining how
to deal with each new model – the JTA generalises nearly all the
popular previous special case algorithms.

Reading: Jordan chapter 17
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(Chapter of a of non-published 
book on probabilistic models)


belief propagation for arbitrary graphs  (see lecture 2)

Oezguer Oezcep
Different special vesions: 
Shafer/Shenoy vs.  Hugin vs Lauritzen-Spiegelhalter 

Oezguer Oezcep
We consider Hugin 



Overview

Clique Potential Representation

Constructing a Junction Tree

Moralization
Triangulation
Assembling cliques into a junction tree

Message Passing

Introducing Evidence

Propagation on a Junction Tree
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Clique Potential Representation

Observe that for both directed and undirected graphs, the joint
probability is in a product form.

We can interpret the CPTs in directed graphs as potential
functions.

Basic idea is to represent probability distribution corresponding
to any graph as a product of clique potentials:

p(x) =
1
Z

Y

C

 C(xC)

where xC is the set of variables corresponding to clique C.

A clique is a fully-connected subset of nodes in a graph
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Want a uniform treatment of directed and undirected models 



The curse of normalization 

A B C 

Marginal P(C) = ? 

A B C 

MRF 

BN 

In MRF need to calculate Z (incorporate B) 
In BN not.  



ÖÖ: The need for undirected models 

Example 
•  4 students a,b,c,d meet for homework in 

constellations:  {a,d}, {a,b}, {d,c}, {b,c} 
•  Professor misspoke during lecture and gives rise to 

possible misconception among students 
•  A = student a has missconception 
•  Similarly boolean RVs B,C,D 

•   Aim: graphical model w/ independencies  
              (A ⫫ C | {B,D} ) and (B ⫫ D |{A,C}) 
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MRF: 
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A 

B D 

C 

A 

B D 

C 

D 

A C 

B 

MRF: 

BN1: BN2: 
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A 

B D 

C 

A 

B D 

C 

D 

A C 

B 

(A ⫫ C | {B,D} ) captured by BN1  but also  
(B ⫫ D | {A}) and not (B ⫫ D| {A,C}) 

MRF: 

BN1: BN2: 



ÖÖ: The need for undirected models 
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(A ⫫ C | {B,D} ) and (B ⫫ D |{A,C}) 

16 

A 

B D 

C 

A 

B D 

C 

D 

A C 

B 

(A ⫫ C | {B,D} ) captured by BN1  but also  
(B ⫫ D | {A}) and not (B ⫫ D| {A,C}) 

(A ⫫ C | {B,D}) captured by  BN2   
but even   (B ⫫ D) 

MRF: 

BN1: BN2: 



An example

a

b

d

c e

f

p(a, b, c, d , e, f ) = p(a)p(b|a)p(c|a)p(d |b)p(e|c)p(f |b, e)
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a

b

d

c e

f a

b

d

c e

f

Moralization Triangulation
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a b c

b d

b c e 

b e f 

The clique potential representation is

p(a, b, c, d , e, f ) =  (a, b, c) (b, d) (b, c, e) (b, e, f )

A valid assignment of cluster potentials is
 (a, b, c) = p(a)p(b|a)p(c|a),  (b, d) = p(d |b),
 (b, c, e) = p(e|c),  (b, e, f ) = p(f |b, e) and Z = 1
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Clique Trees and Separators

A clique tree is an (undirected) tree of cliques

d,eca,b,c c,d,e d,e,f

Variables shared by neighbouring cliques are drawn in the
separator sets in blue.
The potential representation of a clique tree is the product of
the clique potentials, divided by the product of the separator
potentials.

p(x) =

Q
C  C(xC)Q
S �S(xS)
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This is a very convenient definition. ((Normalization is handled by PhiS for empty S)  

This is an example of a factor graph: factors (functions from sets of variables to 
real numbers, say) are presented as special nodes.



Initially, all separator potentials are set to 1.
After running the JTA, we will have

 (xC) = p(xC̃ , x̄E)

�(xS) = p(xS̃, x̄E)

where C̃ denotes those variables in C that are not in E , and
similarly for S̃.
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Constructing a Junction Tree from a DAG

1 Moralize the graph
2 Triangulate the graph
3 Construct a junction tree
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Moral Graphs

Let’s represent the following DAG as a product of clique potentials:

B

C p(c|a,b)

p(a)

p(b)

A

B

C (a,c)Ψ (b,c)Ψ=

A

A

B

C (a,b,c)Ψ=

To ensure that a node and its parents are in the same clique, we have
to marry the parents – moralisation.
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A Moral Example to us all

A

B

C

E

F

D

After moralisation, we get the following undirected graph

A

B

C

E

F

D

The product of clique potentials is

p(a, b, c, d , e, f ) =  (a, b, c) (c, d , e) (d , e, f )

where  (a, b, c) = p(a)p(b)p(c|a, b),  (c, d , e) = p(d |c)p(e|c),
 (d , e, f ) = p(f |d , e)
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The need for triangulation

Consider the following graph and a corresponding clique tree

C

A B

A,C C,D

B,DA,B

D
C appears in two non-neighbouring cliques.
There is no guarantee that marginal on C in these two cliques should
be equal, i.e

P
A (A, C) =

P
D  (C, D)

That is, local consistency does not necessarily imply global
consistency.
Triangulation provides a solution.
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Oezguer Oezcep
* Note in particular that in general potentials 
 not marginal probabilities 
* Remember soldier counting: 
every soldier should (in the end) know 
total number





Triangulation

In a triangulated graph, all loops containing 4 or more nodes
contain a chord:

D

B

C

A

B,C,D

A,B,CA

C

B

D

One way to create a triangulated graph is via the elimination
algorithm (see Jordan §3.2)
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1X

2X

3X

X 4

X 5

X6

(a)

1X

2X

3X

X 4

X 5

X6

(b)

1X

2X

3X

X 4

X 5

(c)

1X

2X

3X

X 4

(d)

1X

2X

3X

(e)

1X

2X

(f)

1X

(g)



1X

2X

3X

X 4

X 5

X6

Oezguer Oezcep
This is a triangulated graph



Constructing a Junction Tree

A clique tree is a junction tree if it has the following junction
tree property: if a node appears in two cliques, it appears
everywhere on the path between the cliques.
For every triangulated graph there exists a clique tree
which obeys the junction tree property
Thus local consistency implies global consistency
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a

b

c

d

e

a b d

b c d c d e

a b d 

c d eb c d 

Not all clique trees are junction trees
Theorem A clique tree is a junction tree iff it is a maximal
spanning tree, where the weight is given by the sum of the
cardinalities of the separator sets
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Oezguer Oezcep
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Oezguer Oezcep
1

Oezguer Oezcep
2

Oezguer Oezcep
2

Oezguer Oezcep
1

Oezguer Oezcep
2

Oezguer Oezcep
weight = 4 = maximal

Oezguer Oezcep
weight = 3
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Oezguer Oezcep
An alternative similar data structure are D-trees
(for decomposition tree) 
(Perhaps in one of the next lectures)

Main observation: Graph decomposable iff triangulated





Decomposable Graphs 

Decomposition (A,B,C) 

A C B 

•  V = A ∪ B ∪ C 

•  All paths between A and B go through C 

•  C is a complete subset of V 

Undirected graph G = (V,E) 



Decomposable Graphs 

Decomposition (A,B,C) 

A C B 

•  V = A ∪ B ∪ C 

•  All paths between A and B go through C 

•  C is a complete subset of V 

Undirected graph G = (V,E) 



Decomposable Graphs 

•  A, B and/or C can be empty 

•  A, B are non-empty in a proper decomposition 



Decomposable Graphs 

•  G is decomposable if and only if 

–  G is complete OR 

–  It possesses a proper decomposition (A,B,C) such that 
•   GA∪C is decomposable 
•   GB∪C is decomposable 



Decomposable Graphs 

A B 

D C 

A B 

C D 

Not Decomposable Decomposable 



Decomposable Graphs 

Not Decomposable Decomposable 

A 

B C 

E D 

A 

B C 

E D 



Message Passing

In order that the cliques contain all information required for
marginals of the variables in the clique, we need to enforce
consistency. That is, if clique V (containing a set of variables)
and clique W share variables S, the marginals on their
separators must be equal.

Ψ( Φ( Ψ(S)V) W)

We need
P

V\S  (V ) = �(S) =
P

W\S  (W ).
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Absorption

Absorption passes a “message” from one node to another:

Ψ( Φ( Ψ(S)V) W)
* *

W absorbs from V

 ⇤(W ) =  (W )�⇤(S)
�(S) , where �⇤(S) =

P
V\S  (V )

Similarly, after passing a message one way, we pass it the
other:

Ψ( Φ( Ψ(S)V) W)
***** V absorbs from W

 ⇤⇤(V ) =  ⇤(V )�⇤⇤(S)
�⇤(S) , where  ⇤(V ) =  (V ) and

�⇤⇤(S) =
P

W\S  
⇤(W )

18 / 28



This ensures consistency:P
V\S  

⇤⇤(V ) = �⇤⇤(S) =
P

W\S  
⇤(W ).

Also

 (V ) (W )

�(S)
=
 ⇤(V ) ⇤(W )

�⇤(S)
=
 ⇤⇤(V ) ⇤⇤(W )

�⇤⇤(S)

where  ⇤⇤(W ) =  ⇤(W ), thus maintaining the clique tree
representation of the graph.

Show that  ⇤⇤(V ) and  ⇤⇤(W ) have the same marginals on S

19 / 28



Introducing Evidence

p(x) =
Y

C

 C(xC)

Split nodes into H (hidden) and E (evidence)

p(xH , x̄E) =
Y

C

 C(xC̃ , x̄C\E) ,
Y

C

 ̃C̃(xC̃)

This is a product of “slices” of potential functions.
Thus to introduce evidence, we modify the potentials in the original
graph, setting any nodes to their evidential values.
One can also use the “evidence potential” approach by setting

 ̃C(xC) =  C(xC)�(xC\E , x̄C\E)

but this fills the clique potentials with lots of zeros thus and wastes
storage and computation
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Oezguer Oezcep
* Remember: Tilde(C)
= all RVs in C not in E

* dash(x) = a concrete 
assignment to x

Oezguer Oezcep
delta works like
kronecker symbol



Propagation on a Junction Tree

Node V can send exactly one message to a neighbour W ,
and it may only be sent when V has received a message
from all of its other neighbours
Choose one clique (arbitrarily) as a root of the tree; collect
messages to this node and then distribute messages away
from it
After collection and distribution phases, we have in each
clique that

 (xC) = p(xC̃ , x̄E)
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CollectEvidence DistributeEvidence
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Summary of JTA

Convert belief network into JT
Initialize potentials and separators
Incorporate evidence (JT is inconsistent)
CollectEvidence and DistributeEvidence (to give a
consistent JT)
Obtain clique marginals by marginalization/normalization
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Proof of Correctness of JTA

Theorem

Let the probability p(xH , x̄E) be represented by the clique
potentials of a junction tree. When the junction tree algorithm
terminates, the clique potentials and separator potentials are
proportional to the local marginal probabilities. In particular:

 C = p(xC̃ , x̄E), �S = p(xS̃, x̄E)

Proof

Observe that the separators are subsets of the cliques which
are consistent with the cliques. Thus we only need to prove the
result for the cliques.
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Throughout the propagation process we have maintained the
representation

p(xH , x̄E) =

Q
C  C(x

C

)Q
S �S(xS)

After the collect- and distribute-evidence stages the junction
tree is consistent (i.e. the marginalization of the potentials of
the cliques at either end of a separator give the same separator
potential).
We now show that marginalization of the joint p(xH , x̄E) gives
the desired result.
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C S
R

V

Choose a clique C that is a leaf of the JT with separator S. Let
C̃ = C\E and S̃ = S\E . Let R̃ = C̃\S̃, and the remaining
non-evidence nodes be denoted T̃ .
We now remove clique C by summing out R̃ from
p(xH , x̄E) = p(xR̃, xS̃, xT̃ , x̄E)
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p(xT̃ , xS̃, x̄E) =
X

R̃

p(xH , x̄E)

=
X

R̃

Q
C̃  C̃(xC̃)Q
S̃ �S̃(xS̃)

=
X

R̃

 C̃(xC̃)

�S̃(xS̃)

Q
C̃0 6=C  C̃0(xC̃0)Q
S̃0 6=S �S̃0(xS̃0)

=

P
R̃  C̃(xC̃)

�S̃(xS̃)

Q
C̃0 6=C  C̃0(xC̃0)Q
S̃0 6=S �S̃0(xS̃0)

=

Q
C̃0 6=C  C̃0(xC̃0)Q
S̃0 6=S �S̃0(xS̃0)

Applying this process repeatedly we obtain p(xC̃ , x̄E) =  C̃(xC̃ , x̄E)
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JTA example

a b c a b b c

Compute

p(b)

p(b|a = 0, c = 1)

p(c|b = 1)

28 / 28


