Web-Mining Agents

Computational Learning Theory

Prof. Dr. Ralf Moller
Dr. Ozgiir Ozcep
Universitat zu Liibeck
Institut fiir Informationssysteme

Tanya Braun (Exercise Lab)

Carla P. Gomes

CS4700

Computational Learning Theory

(Adapted) Slides by Carla P. Gomes and Nathalie Japkowicz

(Reading: R&N AIMA 3™ ed., Chapter 18.5)

Carla P. Gomes
CS4700

Computational Learning Theory

Inductive learning:

given the training set, a learning algorithm generates a hypothesis.

Run hypothesis on the test set. The results say something about how good our
hypothesis is.

But how much do the results really tell you? Can we be certain about how the
learning algorithm generalizes?

We would have to see all the examples.

Insight: introduce probabilities to measure degree of
certainty and correctness (Valiant 1984).

Carla P. Gomes
CS4700

Computational Learning Theory

Example:

We want to use height to distinguish men and women drawing people from
the same distribution for training and testing.

We can never be absolutely certain that we have learned correctly our target
(hidden) concept function. (E.g., there is a non-zero chance that, so far, we
have only seen a sequence of bad examples)

E.g., relatively tall women and relatively short men...

We' 1l see that it’ s generally highly unlikely to see a long series of bad
examples! (under a stationarity assumption)

Carla P. Gomes
CS4700

Aside: flipping a coin

Carla P. Gomes
CS4700

Experimental data

C program — simulation of flips of a fair coin:

Runs of 100 flips (expect 50 “tails™):
On 1,000 tries reached 66
On 10,000 tries reached 69
On 100.000 tries reached 70
On 1,000,000 tries reached 74 (48% over 50)

Runs of 1000 flips (expect 500 “tails™):
On 1,000 tries reached 564
On 10,000 tries reached 564
On 100,000 tries reached 569
On 1,000,000 tries reached 579 (16% over 500)

Carla P. Gomes
CS4700

Experimental Data Contd.

Runs of 10,000 flips (expect 5000 “tails™):
On 1,000 tries reached 5150
On 10,000 tries reached 5183
On 100,000 tries reached 5231
On 1,000,000 tries reached 5239 (5% over 5000)

With a sufficient number of flips
(set of flips=example of coin bias),
large outliers become quite rare.

Coin example 1s the key to computational learning theory!

Carla P. Gomes
CS4700

Computational Learning Theory

Intersection of Al, statistics, and theory of computation.

Introduce Probably Approximately Correct Learning concerning
efficient learning

For our learning procedures we would like to prove that:

With high probability an (efficient) learning algorithm will find a
hypothesis that is approximately identical to the hidden target concept.

Note the double “hedging” — probably and approximately.

Why do we need both levels of uncertainty (in general)?

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, Nov. 1984. Carg‘si%(’)mes

Probably Approximately
Correct Learning

Underlying principle:

Seriously wrong hypotheses can be found out almost certainly
(with high probability) using a “small” number of examples

— Any hypothesis that 1s consistent with a significantly large
set of training examples 1s unlikely to be seriously wrong: it
must be probably approximately correct.

— Any (efficient) algorithm that returns hypotheses that are
PAC 1s called a PAC-learning algorithm

Carla P. Gomes
CS4700

Probably Approximately
Correct Learning

How many examples are needed to guarantee correctness?

— Sample complexity (# of examples to “ guarantee”
correctness) grows with the size of the Hypothesis space

— Stationarity assumption: Training set and test sets are drawn
from the same distribution

Carla P. Gomes
CS4700

OO:
* Error is "true error** . Different from training error
* True error depends on distribution D

Notations

Notations:
— X: set of all possible examples
— D: distribution from which examples are drawn
— H: set of all possible hypotheses
— N: the number of examples in the training set
— f: the true function to be learned

Assume: the true function fis in H.

Error of a hypothesis # wrt £

Probability that £ differs from f on a randomly picked example:

error(h) = P(h(x) # f(x)| x drawn from D)

Exactly what we are trying to measure with our test set.

Carla P. Gomes
CS4700

Approximately Correct

A hypothesis h 1s approximately correct if:
error(h) <e,

where € 1s a given threshold, a small constant

Goal:

Show that after seeing a small (poly) number of examples N, with
high probability, all consistent hypotheses will be approximately correct.

I.e., chance of “bad” hypothesis, (high error but consistent with examples)
is small (i.e, less than 0)

Carla P. Gomes
CS4700

OO: Note that error depends on distribution D

Approximately Correct

Approximately correct hypotheses lie inside

the ¢ -ball around f;
Those hypotheses that are seriously wrong

(h, € H,,) are outside the € -ball,

Error(h,)= P(hy(x) # {(x)| X drawn from D) >,

Thus the probability that the h, (a seriously wrong

hypothesis) disagrees with one example is at least €
(definition of error).

Thus the probability that the h, (a seriously wrong hypothesis) agrees
with one example is no more than (1- €).

So for N examples, P(h, agrees with N examples) < (1- €)N.

Carla P. Gomes
CS4700

Approximately Correct Hypothesis

The probability that H , contains at least one consistent hypothesis 1s
bounded by the sum of the individual probabilities.

P(H,,4 contains a consistent hypothesis, agreeing with all the examples)
< [Hyygl(1- €N < [H|(1- &)Y

\

h, agrees with one example 1s no more than (1- ¢€).

Carla P. Gomes
CS4700

P(H,,, contains a consistent hypothesis) =< [H, ,4/(1- €)N < |H|(1- & N
Goal —

Bound the probability of learning a bad hypothesis below some
small number 0.

- he more certainty (with smaller 0)
. . < £ t Y
Note: (1 g) =€ one wants, the more examples one needs.

The more accuracy (smaller €), and

P(H,, contains a consistent hypothesis) < |H |(e* Y <6

Sample Complexity: Number of examples to
guarantee a PAC learnable function class
If the learning algorithm returns a
hypothesis that is consistent with this many
examples, then with probability at least (1-0) the

learning algorithm has an error of at most €.
and the hypothesis is
Probably Approximately Correct.

Probably Approximately correct hypothesis h:

— If the probability of a small error (error(h) <€) i1s greater than or equal to a
given threshold 1 - 0

— A bound on the number of examples (sample complexity) needed to
guarantee PAC:

Nzl(lnl+ln\H)
E 0

(The more accuracy (with smaller €), and the more certainty desired (with smaller d), the more examples
one needs.)

— One seeks for (computationally) efficient learning algorithms:
sample complexity N depends only polynomially from some parameter
characterizing H and one gets e-correct hypothesis after polynomially many
steps

Theoretical results apply to fairly simple learning models (e.g., decision list leamgggognes

OO:
* Here one assumes that H contains target function f

* In case fis not contained in H one talks about ‘
agnostic PAC learning,. PAC Learnlng

e Similar bound derivable:

N > 1/(262)(In(1/5) + In([H])

Sample complexity — a polynomial number of examples suffices to specify a
good consistent hypothesis (error(h) < €) with high probability (= 1 — o).

N21(1n1+ln|H\)
E 0

Computational complexity — there is an efficient algorithm for learning a
consistent hypothesis from the small sample.

Let’ s be more specific with examples.

Carla P. Gomes
CS4700

Example:
Boolean Functions

Consider H the set of all Boolean function on n attributes—=> | H ‘= 22n

Nzl(lnl+ln|H|)=O(2”)
E O

So the sample complexity grows as 2" ®!
(same as the number of all possible examples)
Not PAC-Learnable!

So, any learning algorithm will do not better than a lookup table
if it merely returns a hypothesis that is consistent with all known
examples!

Intuitively what does 1t say about H?
Finite H required!
(OO: or H with finite characteristics) Cata . Gomes

CS4700

Coping With Learning Complexity

1. Force learning algorithm to look for small/simple consistent
hypothesis.

We considered that for Decision Tree Learning, often worst case
intractable though.

2. Restrict size of hypothesis space.

e.g., Decision Lists (DL) =2 restricted form of Boolean
Functions:

Hypotheses correspond to a series of tests, each of which 1s a
conjunction of literals
Good news: only a poly size number of examples
1s required for guaranteeing PAC learning K-DL functions
(maximal k conjuncts) and there are efficient algorithms for learnipg K-DL

CS4700

Decision Lists

DLs resemble Decision Trees, but with simpler structure:
Series of tests, each test a conjunction of literals;
If a test succeeds, decision list specifies value to return;
If test fails, processing continues with the next test in the list.

Forall x: Willwait(x) <-> Patrons(x,some) or (Patrons(full) & Fri/Sat(x))

N — — N

Patrons(x,Some) ——— = | Patrons(x,Full) n Fri/Sat(x) ——= No
' "
Yes Yes

(a) (bac)

. Y Y N
a=Patrons(x,Some) b=patrons(x,Full) c=Fri/Sat(x)

Note: if we allow arbitrarily many literals per test, decision list can express all Boolean functions.

Carla P. Gomes
CS4700

(- © O {H O

No Yes No Yes Yes NO

a=Patrons(x,None) b=Patrons(x,Some)
d=Hungry(x)
e=Type(x,French) f=Type(x,Italian) g=Type(x,Thai) h=Type(x,Burger)

Carla P. Gomes

1=Fr1/S at(x) CS4700

K Decision Lists

Decision Lists with limited expressiveness (K-DL) — at most k literals per test

(a) (bac)
2-DL Y Y N

K-DL is PAC learnable!!!

For fixed k literals, the number of examples needed for PAC learning a
K-DL function is polynomial in the number of attributes n.

There are efficient algorithms for learning K-DL functions.

So how do we show K-DL 1s PAC-learnable?

Carla P. Gomes
CS4700

2-DL
(x) (y) (wA=v) (ua-b) K Decision Lists:
No Yes No Yes No | Sample Complexity

N>— (]n I +In|H)) What' s the size of the hypothesis space H,
1.e, |[K-DL(n)|?

K-Decision Lists =2 set of tests: each test is a conjunct of at most k literals

How many possible tests (conjuncts) of length at most k, given n attributes, conj(n,k)?

| Conj(n,k)|<2n +(T)+(5)-++(") = O(n")

A conjunct (or test) can appear in the list as: Yes, No, absent from list

So we have at most 3 €@l different K-DL lists (ignoring order)

But the order of the tests (or conjuncts) in a list matters.

k-DL(n)| < 3 [ConRN Conj(n,k)|!

Carla P. Gomes
CS4700

After some work (OO: using Stirling formula say), we get (exercise)

| K — DL(n) |= 20(nk log, (n*))

1 - Sample Comp]exity of K-DL is: Recall sample complexity formula
1 1 .) Nz%(ln%+ln|H|)
N = —(1115 +O(n" log,(n")))
E

For fixed k literals, the number of examples needed for PAC learning a
K-DL function is polynomial in the number of attributes n, ©!

2 — Efficient learning algorithm — a decision list of length k can be learned in
polynomial time.

So K-DL is PAC learnable!!!

Carla P. Gomes
CS4700

Decision-List-Learning Algorithm

Greedy algorithm for learning decisions lists:

—repeatedly finds a test that agrees with some subset of the training set;

—>adds test to the decision list under construction and removes the corresponding
examples.

—>uses the remaining examples, until there are no examples left, for constructing
the rest of the decision list.
(Selection strategy not specified)

Carla P. Gomes
CS4700

Decision-List-Learning Algorithm

Greedy algorithm for learning decisions lists:

function DECISION-LIST-LEARNING(examp/es) returns a decision list, No or failure

if examples 1s empty then return the value No
t « a test that matches a nonempty subset examples, of examples

such that the members of examples, are all positive or all negative
if there 1s no such 7 then return failure
if the examples in examples, are positive then o + Yes
else 0 + No
return a decision list with initial test 7 and outcome o

and remaining elements grven by DECISION-LIST-LEARNING(examples — examples.,)

Carla P. Gomes
CS4700

Decision-List-Learning Algorithm

OO: Here algorithm with selection strategy
Find smallest test set for uniformly classified subset

0.9 -

0.8 1

] Decision tree
0741 |/ Decision list --------

Proportion correct on test set

0 20 40 60 80 100
Training set size
Restaurant data.

Carla P. Gomes
CS4700

Examples

1. H space of Boolean functions: Not PAC Learnable, hypothesis space
too big: need too many examples (sample complexity not
polynomial)!

2. K-DL: PAC learnable

3. Conjunction of literals: PAC learnable

OO:
* PAC-Learnability depends on the hypothesis space
* Sometimes using a hypothesis space different
form space of target functions helps!

* E.g. k-term DNF (k disjuncts of conjuncts with
n attributes) learnable with hypothesis space
consisting of k-cnfs (conjunctions of arbitrary
length with disjunctions up to length k)

Carla P. Gomes

CS4700

Probably Approximately Correct Learning
(PAC) Learning (summary)

A class of functions is said to be PAC-learnable 1f there exists an efficient
(i.e., polynomial in size of target function, size of example instances (n),

1/¢, and 1/9)
Learning algorithm such that for all functions in the class, and for all
probability distributions on the function's domain, and for any values of
epsilon and delta (0 < ¢, 0 <I), using a polynomial number of
examples, the algorithm will produce a hypothesis whose error 1s smaller

than € with probability at least 0.

The error of a hypothesis is the probability that it will differ from the target function on a

random element from its domain, drawn according to the given probability distribution.

Basically, this means that:

e there is some way to learn efficiently a "pretty good” approximation of the target
function.

» the probability is as big as you like that the error is as small as you like.

(O conree the tichter van male the haninde the harder the learnino aloarithm 1c liltelys tn have ta winrl)

Discussion

Computational Learning Theory studies the tradeoffs between the
expressiveness of the hypothesis language and the complexity of learning

Probably Approximately Correct learning concerns efficient learning

Sample complexity --- polynomial number of examples

Efficient Learning Algorithm

Word of caution:
PAC learning results = worst case complexity results.

Carla P. Gomes
CS4700

Sample Complexity for Infinite Hypothesis
Spaces I: VC-Dimension

 The PAC Learning framework has 2 disadvantages:

— It can lead to weak bounds

— Sample Complexity bound cannot be established for infinite hypothesis
spaces (with functions having continuous domain/range, say)

* We introduce new ideas for dealing with these problems:

— A set of instances S is shattered by hypothesis space H iff for every
dichotomy of S there exists some hypothesis in H consistent with this
dichotomy.

31 . .
Nathalie Japkowicz

Shattering a Set of Instances

a labeling of each
member of S as

Definition: a dichotomy of a set S'is a positive or negative
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.
Instance space X H

Carla P. Gomes
CS4700

VC Dimension: Example

=

WIKIPEDIA
The Free Encyclopedia

VC dimension of a classification model |[edit]

A classification model f with some parameter vector @ is said to shatter a set of data points (xl s Ly a:,,) if, for all
assignments of labels to those points, there exists a # such that the model f makes no errors when evaluating that set
of data points.

The VC dimension of a model f is the maximum number of points that can be arranged so that f shatters them. More
formally, it is the maximum integer D such that some data point set of cardinality D can be shattered by f.

3. Consider a straight line as a classification model on points in a two-dimensional plane (this is the model used by a
perceptron). The line should separate positive data points from negative data points. There exist sets of 3 points that
can indeed be shattered using this model (any 3 points that are not collinear can be shattered). However, no set of 4
points can be shattered: by Radon's theorem, any four points can be partitioned into two subsets with intersecting
convex hulls, so it is not possible to separate one of these two subsets from the other. Thus, the VC dimension of this
particular classifier is 3. It is important to remember that while one can choose any arrangement of points, the
arrangement of those points cannot change when attempting to shatter for some label assignment. Note, only 3 of the
23 = 8 possible label assignments are shown for the three points.

- M T N

3 points shattered 4 points impossible

Sample Complexity for Infinite Hypothesis
Spaces I: VC-Dimension

The Vapnik-Chervonenkis dimension, VC(H),
of hypothesis space H defined over instance space X
1s the size of the largest finite subset of X shattered by H.

If arbitrarily large finite sets of X can
be shattered by H, then VC(H)=o

34

Nathalie Japkowicz

Aside:
Intuitive derivation of VC dimension

— How to define a natural notion of dimension on
Hypothesis space H(X) = {h | h: X -> {0,1}}
— Dimension should be monotone

— So define Dimension on simple/small spaces first

— Aim: Define dimension for all subsets H of H(X)
« Simple Case (H= H(X)): dim(H) = |X]
(If X infinite, then dim(H) =)
« Complex case (H proper subset of H(X)):

dim(H) = size of biggest simple subset of H
= size of biggest subset Y of X s.t. H(Y) subset of H

Observation: Dim(H) = VC(H)

,Making Learning less Shattering* 35
https://rjlipton.wordpress.com/2014/01/19/making-learning-less-shattering/

VC dimension and PAC Learning

PAC Learning possible by restricting hypothesis space H
Leads to bias

Remember: Sample complexity for PAC learning

Nzl(lnl+ln|H D
E 0

With VC dimension (also applicable for infinite spaces; H, subclass of
hypothesis parameterized by n):

1) 6 2
N >= C(l — \/C-) (‘ZVCdzm(Hn)ln-c- +ln-5-)

36

VC Dimension: Example 2

« H = Axis parallel rectangles in R?
 What 1s the VC dimension of H
e Can we PAC learn?

37

whesse@clarkson.edu

Learning Rectangles

- Consider axis parallel rectangles in the real plane
e Can we PAC learn 1t ?
(1) What 1s the VC dimension ?

* Some four instances (points on the rectangle) can be shattered

Shows that VC(H)>=4

38

whesse@clarkson.edu

Learning Rectangles

- Consider axis parallel rectangles in the real plane
e Can we PAC learn 1t ?
(1) What 1s the VC dimension ?

* But, no five instances can be shattered

—+ o °

Pick the topmost, bottommost, leftmost and rightmost points
and give them the label “+”. He fifth one gets -.

Cannot be shattered. Therefore VC(H) = 4
39

whesse@clarkson.edu

Learning Rectangles

- Consider axis parallel rectangles in the real plane
e Can we PAC learn 1t ?

(1) What 1s the VC dimension ?
(2) Can we give an efficient algorithm ?

40

whesse@clarkson.edu

Learning Rectangles

- Consider axis parallel rectangles in the real plane
e Can we PAC learn 1t ?

(1) What 1s the VC dimension ?
(2) Can we give an efficient algorithm ?

. Find the smallest rectangle that
° o contains the positive examples
¢ |° (necessarily, it will not contain any
! . ! negative example, and the hypothesis

1s consistent).

Axis parallel rectangles are efficiently PAC learnable.

Exercise: What 1s the VC dimension of intervals on R?
41

whesse@clarkson.edu

The Mistake Bound Model of Learning

» The Mistake Bound framework is different from the
PAC framework as 1t considers learners that receive a
sequence of training examples and that predict, upon
receiving each example, what its target value is.

(So, 1t has an incremental, online-flavor)

 The question asked in this setting is: “How many
mistakes M ,will the learner A make in its predictions
before it learns the target concept?”

» This question 1s significant in practical settings where
learning must be done while the system is in actual use.

42 . .
Nathalie Japkowicz

Optimal Mistake Bounds

Definition: Let C be an arbitrary nonempty concept class. The optimal
mistake bound for C, denoted Op#(C), 1s the minimum over all possible
learning algorithms A of M (C). OpH(C)=min 4y ,yping Agorithms Ma(O)
Proposition: For any concept class C, the optimal mistake bound i1s
bound as follows:

VC(C) s Opt(C) s log,(|C))

43 . .
Nathalie Japkowicz

