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Inductive learning:  
given the  training set, a learning algorithm generates a hypothesis. 
 
Run hypothesis on the test set. The results say something about how good our 

hypothesis is.  
 
But how much do the results really tell you? Can we be certain about how the 

learning algorithm generalizes?  
 
We would have to see all the examples. 
 

Computational Learning Theory 

Insight: introduce probabilities to measure degree of 
certainty and correctness (Valiant 1984). 
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Example:  
 
We want to use height to distinguish men and women drawing people from 

the same distribution for training and testing. 
 
We can never be absolutely certain that we have learned correctly our target 

(hidden) concept function. (E.g., there is a non-zero chance that, so far, we 
have only seen  a sequence of bad examples) 

 
E.g., relatively tall women and relatively short men… 
 
We’ll see that it’s generally highly unlikely to see a long series of bad 

examples!    (under a stationarity assumption) 

Computational Learning Theory 
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Aside: flipping a coin 
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Experimental data 

C program – simulation of flips of a fair coin: 
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Experimental Data Contd. 

Coin example is the key to computational learning theory! 

 With a sufficient number of flips  
(set of flips=example of coin bias), 
 large outliers become quite rare.  
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Computational Learning Theory 

Intersection of AI, statistics, and theory of computation. 
 
Introduce Probably Approximately Correct Learning concerning 

efficient learning 
 
For our learning procedures we would like to prove that: 
 

With high probability an (efficient) learning algorithm will find a 
hypothesis that is approximately identical to the hidden target concept. 

 
 Note the double “hedging” – probably and approximately. 

 
Why do we need both levels of uncertainty (in general)? 

 L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, Nov. 1984. 
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Probably Approximately  
Correct Learning 

 

  
Underlying principle: 
 

 Seriously wrong hypotheses can be found out almost certainly 
(with high probability) using a “small” number of examples 

 
–  Any hypothesis that is consistent with a significantly large 

set of training examples is unlikely to be seriously wrong: it 
must be  probably approximately correct. 

–  Any (efficient) algorithm that returns hypotheses that are 
PAC is called a PAC-learning algorithm   
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Probably Approximately  
Correct Learning 

 

How many examples are needed to guarantee correctness?  
 
 

–  Sample complexity (# of examples to “guarantee” 
correctness) grows with the size of the Hypothesis space 

–  Stationarity assumption: Training set and test sets are drawn 
from the same distribution 
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Notations: 
–  X: set of all possible examples 
–  D: distribution from which examples are drawn 
–  H: set of all possible hypotheses 
–  N: the number of examples in the training set 
–  f: the true function to be learned  

Assume: the true function f is in H. 
 
Error of a hypothesis h wrt f :  
 

 Probability that h differs from f on a randomly picked example: 
 

                      error(h) = P(h(x) ≠ f(x)| x drawn from D)   
 
 
 

Exactly what we are trying to measure with our test set. 

Notations ÖÖ:  
•  Error is ``true error‘‘ . Different from training error 
•  True error depends on distribution D 
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A hypothesis h is approximately correct if: 
 

                      error(h) ≤ ε,  
 
 where ε is a given threshold, a small constant 
 

Goal: 
 

 Show that after seeing a small (poly) number of examples N, with 
high probability, all consistent hypotheses will be approximately correct. 
 
I.e., chance of “bad” hypothesis, (high error but consistent with examples) 

is small  (i.e, less than δ) 

Approximately Correct  
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Approximately Correct 

Approximately correct hypotheses lie inside 
 the ε -ball around f;  
Those hypotheses that are seriously wrong  

(hb ∈ Hbad) are outside the ε -ball,  
 
Error(hb)= P(hb(x) ≠ f(x)| x drawn from D)   > ε,  
 
Thus the probability that the hb (a seriously wrong 
hypothesis) disagrees with one example is at least ε  
(definition of error).  
 
 
 
 

Thus the probability that the hb (a seriously wrong hypothesis) agrees  
with one example is no more than (1- ε).  

So for N examples,  P(hb agrees with N examples) ≤ (1- ε )N.  

ÖÖ: Note that error depends on distribution D 
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Approximately Correct Hypothesis 

The probability that Hbad contains at least one consistent hypothesis is  
bounded by the sum of the individual probabilities. 
 
 P(Hbad  contains a consistent hypothesis, agreeing with all the examples) 
≤ |Hbad|(1- ε )N ≤ |H|(1- ε )N  

 

hb agrees with one example is no more than (1- ε).  



P(Hbad  contains a consistent hypothesis) ≤ |Hbad|(1- ε )N ≤ |H|(1- ε )N 

Goal –  
Bound the probability of learning a  bad hypothesis  below some 

small number δ. 
 
 
 
 
 Sample Complexity: Number of examples to  

guarantee a PAC learnable function class 
If the  learning algorithm returns a  

hypothesis that is consistent with this many  
examples, then with probability at least (1-δ) the  

learning algorithm has an error of at most ε.  
and the hypothesis  is  

Probably Approximately Correct.  

Note: 
The more accuracy  (smaller ε), and  
the more certainty (with smaller δ)  
one wants, the more examples one needs. 

P(Hbad  contains a consistent hypothesis) ≤ 
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Probably Approximately correct hypothesis h: 
–  If the probability of a small error (error(h) ≤ ε) is greater than or equal to a 

given threshold 1 - δ 
–  A bound on the number of examples (sample complexity) needed to 

guarantee PAC:  

 (The more accuracy (with smaller ε), and the more certainty desired  (with smaller δ), the more examples 
one needs.) 

–  One seeks for (computationally) efficient learning algorithms: 
sample complexity N depends only polynomially from some parameter 
characterizing H and one gets ε-correct hypothesis after polynomially many 
steps 

Theoretical results apply to fairly simple learning models (e.g., decision list learning) 
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PAC Learning 

Two steps: 
 

 Sample complexity – a polynomial number of examples suffices to specify a 
good consistent hypothesis (error(h) ≤ ε ) with high probability (≥ 1 – δ). 

 
 
 

 Computational complexity – there is an efficient algorithm for learning a 
consistent hypothesis from the small sample. 

 
 
  
 

  

Let’s be more specific with  examples. 

ÖÖ:  
•  Here one assumes that H contains target function f 
•  In case f is not contained in H one talks about 

agnostic PAC learning.  

•  Similar bound derivable:  
 
N ≥ 1/(2ε2)(ln(1/δ) + ln(|H|) 
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Example: 
Boolean Functions 

Consider H the set of all Boolean function on n attributesà 

)2(|)H|ln1(ln1 nON =+≥
δε

n

H 22|| =

So the sample complexity grows as 2n  L! 
(same as the number of all possible examples) 

Not PAC-Learnable! 
 
 

Intuitively what does it say about H? 
Finite H required! 

(ÖÖ: or H with finite characteristics)  

So, any learning algorithm will do not better than a lookup table 
if it merely returns a hypothesis that is  consistent with all known 

examples! 
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Coping With Learning Complexity 

1.  Force learning algorithm to look for small/simple consistent 
hypothesis. 
 
We considered that  for Decision Tree Learning, often worst case 

intractable though. 
 

2.  Restrict size of hypothesis space. 
e.g., Decision Lists (DL) à restricted form of Boolean 

Functions: 
Hypotheses correspond to a series of tests, each of which is a 

conjunction of literals 

 Good news: only a poly size number of examples 
 is required for guaranteeing PAC learning K-DL functions 

(maximal k conjuncts) and there are efficient algorithms for learning K-DL  
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Decision Lists 

DLs resemble Decision Trees, but with simpler structure: 
 Series of tests, each test a conjunction of literals; 
 If a test succeeds, decision list specifies value to return; 
 If test fails, processing continues with the next test in the list. 

 
 

No 

Note: if we allow arbitrarily many literals per test, decision list can express all Boolean functions. 

a=Patrons(x,Some) b=patrons(x,Full) c=Fri/Sat(x) 

   (a)  (b∧c)   
    Y      Y    N 

Forall x: Willwait(x) <-> Patrons(x,some) or (Patrons(full) & Fri/Sat(x)) 
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a=Patrons(x,None) b=Patrons(x,Some) 

d=Hungry(x) 

e=Type(x,French) f=Type(x,Italian) g=Type(x,Thai) h=Type(x,Burger) 

i=Fri/Sat(x) 

(a) 
No 

(b) 
Yes 

(¬d) 
No 

(e) 
Yes 

(h) 
Yes 

(f) 
No 

(i) 
Yes No 
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K Decision Lists 

Decision Lists with limited expressiveness (K-DL) – at most k literals per test 
 
 
 
 
 
 
 

K-DL is PAC learnable!!! 
 

 For fixed k literals, the number of examples needed for PAC learning a  
K-DL function is polynomial  in the number of attributes n. 

 
 
 
 

  
There are efficient algorithms for learning K-DL functions.  

2-DL 
   (a)  (b∧c)   
    Y      Y    N 

So how do we show K-DL is PAC-learnable? 
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K-Decision Lists   à set of tests: each test is a conjunct of at most k literals   

(x) 
No 

(y) 
Yes 

(w∧¬v) 
No 

(u∧¬b) 
Yes No 

2-DL 
K Decision Lists: 

Sample Complexity 

|)H|ln1(ln1
+≥

δε
N   What’s the size of the hypothesis space H, 

 i.e, |K-DL(n)|? 

How many possible tests (conjuncts) of length at most k, given n attributes, conj(n,k)? 

)()()()(2|),(| 22
3

2
2

kn
k

nn nOnknConj =+++≤ !

A conjunct (or test) can appear in the list as: Yes, No, absent from list 

So we have at  most  3 |Conj(n,k)|  different K-DL lists (ignoring order) 

But the order of the tests (or conjuncts) in a list matters.  

|k-DL(n)| ≤ 3 |Conj(n,k)| |Conj(n,k)|! 
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After some work (ÖÖ: using Stirling formula say), we get (exercise) 
 
 
 

))(log( 22|)(|
kk nnOnDLK =−

1 - Sample Complexity of K-DL is: 

)))(log(1(ln1
2

kk nnON +≥
δε

For fixed k literals, the number of examples needed for PAC learning a  
K-DL function is polynomial  in the number of attributes n, J! 

 

So  K-DL is PAC learnable!!! 

|)H|ln1(ln1
+

δε
≥N

Recall sample complexity formula 

2 – Efficient learning algorithm – a  decision list of length k can be learned in 
polynomial time. 
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Decision-List-Learning Algorithm 
 

àrepeatedly finds a test that agrees with some subset of the training set;  
 
à adds test to the decision list under construction and removes the corresponding 
examples.  
 
àuses the remaining examples, until there are no examples left, for constructing 
the rest of the decision list. 
(Selection strategy not specified) 
 
 

Greedy algorithm for learning decisions lists: 
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Decision-List-Learning Algorithm 
 

Greedy algorithm for learning decisions lists: 
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Decision-List-Learning Algorithm 
 

Restaurant data. 
 

ÖÖ: Here algorithm with selection strategy  
Find smallest test set for uniformly classified subset   
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Examples 

1.   H space of Boolean functions: Not PAC Learnable, hypothesis space 
too big: need too many examples (sample complexity not 
polynomial)! 

2.   K-DL:  PAC learnable 
3.  Conjunction of literals: PAC learnable 

 
 
 
 
 
 
 

ÖÖ:  
•  PAC-Learnability depends on the hypothesis space 

•  Sometimes using a hypothesis space  different 
form space of target functions helps! 

•  E.g. k-term DNF (k disjuncts of conjuncts with 
n attributes) learnable with hypothesis space 
consisting of k-cnfs (conjunctions of arbitrary 
length with disjunctions up to length k) 
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Probably Approximately Correct Learning 
(PAC) Learning (summary) 

A class of functions is said to be PAC-learnable if there exists an efficient  
(i.e., polynomial in size of target function, size of  example instances (n), 
1/ε, and 1/δ) 

Learning algorithm such that for all functions in the class, and for all  
probability distributions on the function's domain, and for any values of  
epsilon and delta (0 < ε, δ <1), using a polynomial number of  
examples, the algorithm will produce a  hypothesis whose error is smaller  
than ε with probability at least δ.  
The error of a hypothesis is the probability that it will differ from the target function on a  

random element from its domain, drawn according to the given probability distribution.  
Basically, this means that: 
•  there is some way to learn efficiently  a "pretty good“ approximation of the target 

function.  
•  the probability is as big as you like that the error is as small as you like.  
    (Of course, the tighter you make the bounds, the harder the learning algorithm is likely to have to work).  
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Discussion 

 
 
 
  
 
 
 

Computational Learning Theory studies the tradeoffs between the  
expressiveness of the hypothesis language and the complexity of learning 

Probably Approximately Correct learning  concerns efficient learning  
 

  Sample complexity  --- polynomial  number of examples 
  Efficient Learning Algorithm   

 

Word of caution: 
  PAC learning results à worst case complexity results.  
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Sample Complexity for Infinite Hypothesis 
Spaces I: VC-Dimension 

•  The PAC Learning framework has 2 disadvantages: 
–  It can lead to weak bounds 
–  Sample Complexity bound cannot be established for infinite hypothesis 

spaces (with functions having continuous domain/range, say) 

•  We introduce new ideas for dealing with these problems: 
–  A set of instances S is shattered by hypothesis space H iff for every 

dichotomy of S there exists some hypothesis in H consistent with this 
dichotomy. 

Nathalie Japkowicz 
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5 

a labeling of each 
member of S as 
positive or negative 
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VC Dimension: Example 
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Sample Complexity for Infinite Hypothesis 
Spaces I: VC-Dimension 

The Vapnik-Chervonenkis dimension,  VC(H),  
of hypothesis space H defined over instance space X  
is the size of the largest finite subset of X shattered by H.  
 
If arbitrarily large finite sets of X can        
be shattered by H, then VC(H)=∞ 

Nathalie Japkowicz 
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Aside: 
Intuitive derivation of VC dimension  

– How to define a natural notion of dimension on 
Hypothesis space H(X) = {h | h: X -> {0,1}} 

– Dimension should be monotone  
– So define Dimension on simple/small spaces first 
– Aim: Define dimension for all subsets H of H(X) 

•  Simple Case (H= H(X)):  dim(H) = |X| 
  (If X infinite, then dim(H) = ∞)  
•  Complex case (H proper subset of H(X)):  
  dim(H) = size of biggest simple subset of H 
              =  size of biggest subset Y of X s.t. H(Y) subset of H 
 
Observation: Dim(H) = VC(H) 

„Making Learning less Shattering“ 
https://rjlipton.wordpress.com/2014/01/19/making-learning-less-shattering/ 
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VC dimension  and PAC Learning 

–  PAC Learning possible by restricting hypothesis space H 
–  Leads to bias  

–  Remember: Sample complexity for PAC learning 

–  With VC dimension (also applicable for infinite spaces; Hn subclass of 
hypothesis parameterized by n): 

     N >= 

the complexity theoretic assumption that RF # NP “not”), the general class of multilayer perceptrons with 
[35]. a multiple (but fixed) number of hidden layers, and the 

1. Conjunctive concepts are properly PAC learnable 
class of deterministic finite automata [27]. These results 

[42], but the class of concepts in the form of the dis- 
assume certain widely used cryptographic postulates in 

junction of two conjunctions is not properly PAC 
place of the (weaker) postulate that RP # NP. 

learnable [35], and neither is the class of existential 
conjunctive concepts on structural instance spaces 5 Methods for Proving PAC 
with two objects [18]. Learnability; Formalization of Bias 

2. Linear threshold concepts (perceptrons) are prop- 
erly PAC learnable on both Boolean and real- 
valued instance spaces [ll], but the class of con- 
cepts in the form of the conjunction of two linear 
threshold concepts is not properly PAC learnable 
[lo]. The same holds for disjunctions and linear 
thresholds of linear thresholds (i.e. multilayer per- 
ceptrons with two hidden units). In addition, if the 
weights are restricted to 1 and 0 (but the thresh- 
old is arbitrary), then linear threshold concepts 
on Boolean instances spaces are not properly PAC 
learnable [35]. 

3. The classes of I2-DNF, k-CNF, and k-decision lists 
are properly PAC learnable for each fixed k: [41,37], 
but it is unknown whether the classes of all DNF 
functions, all CNF functions, or all decision trees 
are properly PAC learnable. 

Most of the difficulties in proper PAC learning are 
due to the computational difficulty of finding a hy- 
pothesis in the particular form specified by the tar- 
get class. For example, while Boolean threshold func- 
tions with O-l weights are not properly PAC learnable 
on Hoolean instance spaces (unless RP = NIP), they 
are PAC learnable by general Boolean threshold func- 
tions. Here we have a concrete case where enlarging 
the hypothesis space makes the computational problem 
of finding a good hypothesis easier. The class of all 
Boolean threshold functions is simply an easier space 
to search than the class of Boolean threshold functions 
with O-l weights. Similar extended hypothesis spaces 
can be found for the two classes mentioned in (1.) above 
that are not properly PAC learnable. Hence, it turns 
out that these classes are PAC learnable [35,18]. How- 
ever, it is not known if any of the classes of DNF func- 
tions, CNF functions, decision trees, or multilayer per- 
ceptrons with two hidden units are PAC learnable. 

It is a much stronger result to show that a concept 
class is not PAC learnable than it is to show that it 
is not properly PAC learnable, since the former re- 
sult implies that the class is not PAC learnable by any 
reasonable hypothesis space. Nevertheless, such non- 
learnability results have been obtained for several im- 
portant concept classes, including the class of Boolean 
formulae (Boolean expressions using “and” “or” and 

All of the positive learnability results above are ob- 
tained by 

1. showing that there is an efficient algorithm that 
finds a hypothesis in a particular hypothesis space 
that is consistent with a given sample of any con- 
cept in the target class and 

2. that the sample 
is polynomial. 

complexity of any such algorithm 

By consislenl we mean that the hypothesis agrees with 
every example in the training sample. An algorithm 
that always finds such a hypothesis (when one exists) 
is called a consistent algorithm. 

As the size of the hypothesis space increases, it may 
become easier to find a consistent hypothesis, but it will 
require more random training examples to insure that 
this hypothesis is accurate with high probability. In the 
limit, when any subset of the instance space is allowed 
as a hypothesis, it becomes trivial to find a consistent 
hypothesis, but a sample size proportional to the size of 
the entire instance space will be required to insure that 
it is accurate. Hence, there is a fundamental tradeoff 
between the computational complexity and the sample 
complexity of learning. 

Restriction to particular hypothesis spaces of lim- 
ited size is one form of tkzs that has been explored 
to facilitate learning [32]. In addition to the cardinal- 
ity of the hypothesis space, a parameter known as the 
Vapnik-Chervonenkis (VC) dimension of the hypothe- 
sis space has been shown to be useful in quantifying 
the bias inherent in a restricted hypothesis space [19]. 
The VC dimension of a hypothesis space H, denoted 
VCdim(H), is defined to be the maximum number d of 
instances that can be labeled as positive and negative 
examples in all 2d possible ways, such that each label- 
ing is consistent with some hypothesis in H 114,431. Let 
I-I = WrJn~1 be a hypothesis space and C = {C,},>l 
be a target class, where C,, C_ H, for n 2 1. Then it can 
be shown [23] that any consistent algorithm for learning 
C by H will have sample complexity at most 

PVCdim(H,))lnf + 1,: . 
> 

HAUSSLER 1103 
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VC Dimension: Example 2 

•  H = Axis parallel rectangles in R2 

•  What is the VC dimension of H 
•  Can we PAC learn? 

whesse@clarkson.edu 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 

•  Some four instances (points on the rectangle) can be shattered  

Learning Rectangles 

whesse@clarkson.edu 

Shows that VC(H)>=4 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 

•  But, no five instances can be shattered 

 Pick the topmost, bottommost, leftmost and rightmost points  
and give them the label “+”. He fifth one gets -. 
Cannot be shattered. 
                                                                

Learning Rectangles 

whesse@clarkson.edu 

Therefore VC(H) = 4 

+ 
+ 

+ 
+ 

- 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 
   (2) Can we give an efficient algorithm ?  

Learning Rectangles 

whesse@clarkson.edu 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 
   (2) Can we give an efficient algorithm ?  
 
                                                   Find the smallest rectangle that  
                                                   contains the positive examples  
                                                   (necessarily, it will not contain any  
                                                   negative example, and the hypothesis 
                                                   is consistent). 
    
Axis parallel rectangles are efficiently PAC learnable. 

Learning Rectangles 

whesse@clarkson.edu 

Exercise: What is the VC dimension of intervals on R?  
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The Mistake Bound Model of Learning 

•  The Mistake Bound framework is different from the 
PAC framework as it considers learners that receive a 
sequence of training examples and that predict, upon 
receiving each example, what its target value is.  

    (So, it has an incremental, online-flavor ) 
•  The question asked in this setting is: “How many 

mistakes MA will the learner A make in its predictions 
before it learns the target concept?” 

•  This question is significant in practical settings where 
learning must be done while the system is in actual use. 

Nathalie Japkowicz 
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Optimal Mistake Bounds 

•  Definition: Let C be an arbitrary nonempty concept class. The optimal 
mistake bound for C, denoted Opt(C), is the minimum over all possible 
learning algorithms A of MA(C).  Opt(C)=minA∈Learning_Algorithms MA(C) 

•  Proposition: For any concept class C, the optimal mistake bound is 
bound as follows: 

VC(C) ≤ Opt(C) ≤  log2(|C|) 

Nathalie Japkowicz 


