
Web-Mining Agents

Prof. Dr. Ralf Möller
Dr. Özgür Özçep

Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Lab Class)

Learning FOL Definable Concepts

slides prepared by Özgür Özçep

Literature

M. Grohe & Martin Ritzert: Learning first-order definable
concepts over structures of small degree, arxiv:
1701.05487v1, 19 Jan 2017
(https://arxiv.org/abs/1701.05487)

3

Declarative Approach

• Grohe, Ritzert 17) is a Logic-based framework for
learning
– Based on background knowledge given by a structure in

a logical sense

• Context: Logical and relational Learning
– Inductive Logic Programming
– (Statistical) relational Learning
– Mining and Learning in Graphs
– ...

• Overview: see IJCAI 09 tutorial of Luc de Raedt
– (www.cs.kuleuven.be/~lucdr/ijcai09.pdf)
– Book: Logical and relational Learning, Springer, 2008

4

Scenario & Terminology

• U = instance space

• C* = target concept C: U → {1,0}

• H = hypothesis regarding concept

• Aim: Reduce prediction (true) error of H

• Supervised scenario:
– Training sequence T consists of labelled examples:

(ui, C*(ui))
5

Approach of (Grohe/Ritzert 17)

• Background structure B with domain D = Dom(B)
• Parameterized model class = hypotheses space =

set of φ(x;y) over logic L where
– x = instance variable vector (length k)
– y = parameter variable vector (length l)
– U = instance space = Dk

– For each parameter instance v of y one has a hypothesis
or an L-definable model

– [[φ(x,v)]]B(u) : =

6

1 if B ⊨ φ(u;v)
0 otherwise

Note that „model“ here denotes a formula,
not – in the logical sense - a structure making
a formula true

Example

• B = {E,R}-structure
(directed graph with red-coloring)

• Input sequence: (a,0), (b,1), (g,0), (k,1)

• Model formula
φ(x;y1,y2) :=

(R(x) v x = y1 v E(x,y1)) &
¬ ∃z (E(y2,z) & E(z,x))

• Consistent hypothesis: [[φ(x;j,e)]]B

7

a
0

b c

d e
f

g h i

j
k

1

0

1

Two approaches

• Parameter learning (see example above)
– Model (parameterized formula φ) given
– Have to identify paramters

• Model learning
– Have to guess both: formula and parameters
– Compare this with the approach of Gaussian processes
– Results of (Grohe, Ritzert 17) mainly for this mode

Lit: Rasmussen, Williams: Gaussian Processes for Machine Learning, MIT Press, 2005

8

Research program

• Identify logics L suitable for expressing ML models (φ)
and study their algorithmic learnability (efficient
algorithms, lower bounds ...)

• “Descriptive Complexity for ML“

9

How to access background structure?

1. B not part of the input
– B may be infinite
– Algorithm can store elements of B in memory cell and

use operations of B (compare register model)
– Access to B may be local (see below)

2. B part of the input with local access
– B is finite (but possible very large)
– Only „local access“ of the following types granted

• Relation query: Is (u1, ..., un) in R? → constant time
• Neighboorhood query: Give all neighbours for a u in

Dom(B) → time proportional to size of answer set
10

Neighborhood defined w.r.t.
Gaifman graph of B

„Low-degree“ background stucture

• Results of Grohe/Ritzert for low-degree structures B

• G(B) = Gaifman graph of B = graph with edge relation E
where E(a,b) iff a,b contained in some relation of B

• Degree(B) = graph theoretical degree of G(B)

• Consider structures of bounded degree

11

Terminology

• k-ary learning problem for background structure B
– Instance space: D = Dom(B)
– Aim: Learn target concept C*: D^k → {0,1}

with small error
Here: Space C of target concepts induced by FOL formulae

C = { [[φ(x;v)]]B | φ(x;y) an FOL formula with qrank ≤ q, x =
k-vector of variables and y = l-vector of parameters }

• Note: instance-space dimension k, parameter
dimension l and quantifier rank q fixed beforehand!

12

Terminology

Learning algorithm LA for k-ary learning problem over B
– Input

• Sequence T of form (u,C*(u)) for u in Dk

• Local access to B

– Output
• Formula φ(x;y) and parameter v in Dk representing hypothesis

H = [[φ(x;v)]]B : Dk→ {0,1}
• Reject, if no hypothesis found consistent with input

Hypotheses of LA evaluable in time t iff there is an algorithm s.t.
given φ(x;y) and v it outputs for every u [[φ(x;v)]]B(u) in time t

13

Main Theorem (Grohe, Ritzert 2017)

Theorem 1.1 Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns a hypothesis H, then H is of form [[φ*(x;v*)]]B for
FOL formula φ*(x;v) with qrank(φ*) ≤ q* and v∈Dom(B)l and H is
consistent with input sequence T

2. If consistent concept induced by some parameters v and
formula of qrank ≤ q exists, then LA does not reject.

3. Runtime with local access to B is (log(n) + d + t)O(1)

n = |D(B)|, d = Degree(B), t = length of T

4. Output H can be evaluated in time (log(n)+ d)O(1)

14

• Model learning problem
• Proof uses locality of FOL

Similar complexity results for infinite B and
uniform cost measure

If degree d and t polylogarithmic in n (sublinear!!),
then so are runtime and evaluation time

PAC Learnability (Grohe, Ritzert 2017)

Corollary
Let d,k,l,q in Nat. For B with degree(B) ≤ d, the class

C = {φ(x;v)^B | φ(x;v) is a FOL formula,
qrank(φ) ≤ q, |x|=k, |y| = l, v in Dl }

is PAC-learnable by a LA with local access to B and running
in polynomial time in 1/ ε and 1/δ.

15

Parameter Learning vs. Model learning

Example
• φ(x;y) = P(y)
• For any B a {P}- background structure and any v in

dom(B)
– [[φ(x;v)]]B = 1x if v in PB and
– [[φ(x;v)]]B = 0x otherwise

• Consider B with PB = {v*}
• So target concept [[φ(x;v*)]]B = 1x and

LA receives only positive examples
• Unless v* in T, whole B has to be read in worst case.

– With local access, v* cannot even be found: G(B) has no
edges

16

Parameter Learning vs. Model learning

Example (continued)
• Intermediate form of incremental change of φ can help:

φi in determines formula in next step φi+1

• φ(x;y) = P(y)
• Consider B with PB = {v*}
• So target concept [[φ(x;v*)]]B = 1x and

LA receives only positive examples
– φ0 = P(y)
– φ0 entails that target concept C is constant
– After 1 example we know C = 1X or 0X (though we do not

know the exact parameter)
– So return φ1(x;) (x=x) or φ1(x;) =not (x=x)

17

Algorithm idea for Theorem 1.1

• General Idea
– Instances u of input T induce a substructure of B
– It is sufficient to consider a „small“ neighbourhood N2lr* of

those elements depending on parameter number and
degree of B

– As FOL is local in the model theoretical sense, this local
consideration is sufficient

– Because of this, the hypothesis formulae can be chosen
as (syntactically) local formulae

• Implementation
– Brute force over all possible Gaifman local formula and

parameters (in small neighbourhood) and thereby
checking consistency

18

Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do

6. if ((Nr*(uv*) ⊨ φ*(u;v*) and c = 0) or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1))
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject

19

Choose small neighbourhoodof elements in input

Consider all parameter vectors in neighbourhood

Consider all r*-local FOL formula

Find (parameter,local formula) pair
consistent with input

Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do

6. if ((Nr*(uv*) ⊨ φ*(u;v*) and c = 0) or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1))
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject

20

Choose small neighbourhoodof elements in input

Reminder: Neighbourhood

• B = relational structure with domain D = Dom(B)
• u = (u1, .., uk) in Dk

• Nr(u) = NB
r(u) = all elements in D with distance atmost r to one of

the elements ui within G(B)

With abuse of notation
• Nr(u) = r neighbourhood of u in structure B

= sub-structure of B induced by all elements in
maximal distance r to one of the ui

• Nr(T) = ⋃1≤i≤tNr(ui) for input sequence
T = (u1,C(u1), (u2,C(u2), ..., (ut,C(ut))

21

Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do

6. if ((Nr*(uv*) ⊨ φ*(u;v*) and c = 0) or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1))
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject

22

Neighbourhood can be constructed with local access
only

Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do

6. if ((Nr*(uv*) ⊨ φ*(u;v*) and c = 0) or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1))
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject

23

Consider all r*-local FOL formula

Reminder: Locality

• ψ(x) is r-local iff for all structures B and tuples u
B ⊨ ψ(u) iff Nr(u) ⊨ ψ(u)

• δ>r(x,y) = distance of x and y is larger than r (FOL formula)
• δ<=r(x,y) = distance of x and y smaller than r
• Basic local sentence of radius r

∃x1,..., ∃xk (∧1≤i<j≤kδ>2r(xi,xj) & ∧1≤i≤kψ(xi))
where ψ(xi) is r-local

24

B

x1

x2

x3

x4

xn

ψ

ψ

ψ
ψ

ψ

Reminder: Locality

25

Theorem (Gaifman): Every FOL formula is equivalent to a boolean
combination of basic local sentences and local formulae.

Syntactic notion of locality

• R-relativisation φ[<=r](x1, ..,xk): quantifiers of φ relativised to
elements in maximally r distance to one of the xi

e.g., ∃y ψ(x1, ..,xk) becomes
∃y (⋁1≤i≤k δ≤r(y,xi) & ψ(x1, ..,xk))

• φ(x) is syntacically r-local iff it is a r-relativisation

• φ(x) is a syntactically basic local sentence if it a basic local
sentence∃x1,..., ∃xk (∧1≤i<j≤kδ>2r(xi,xj) & ∧1≤i≤kψ(xi)) with ψ
syntactically r-local

26

Gaifman normal form

• φ is in Gaifman normal form (GNF) if it is a boolean combination of
syntactically basic local sentences and syntactically local
sentences.

• Locality radius of GNF φ = least r such that all basic local
sentences r-local and all local formulae have radius smaller than r

27

Corollary
Every FOL formula with at most k+l variables is equivalent to a GNF
formula with locality radius r* such that the quantifier rank of each
contained syntactically local formula is smaller than q*.

• Φ* := syntactically r-local formula ϕ(x;y) of quantifier rank at most
q*

Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do

6. if ((Nr*(uv*) ⊨ φ*(u;v*) and c = 0) or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1))
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject

28

Consider all r*-local FOL formula

Main Theorem (Grohe, Ritzert 17)

Theorem 1.1 Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns a hypothesis H, then H is of form [[φ*(x;v*)]]B for
FOL formula φ*(x;v) with qrank(φ*) ≤ q* and v∈Dom(B)l and H is
consistent with input sequence T

2. If consistent concept induced by some parameters v and
formula of qrank ≤ q exists, then LA does not reject.

3. Runtime with local access to B is (log(n) + d + t)O(1)

N = |D(B)|, d = Degree(B), t = length of T

4. Output H can be evaluated in time (log(n)+ d)O(1)

29

Proof hints for Theorem 1.1

First part of Thm 1.1 holds because φ* in LA are r-local:
Nr(uv*) ⊨ φ*(u,v) iff B ⊨ φ*(u,v*)

30

Main Theorem (Grohe, Ritzert 2017)

Theorem 1.1 Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns a hypothesis H, then H is of form [[φ*(x;v*)]]B for
FOL formula φ*(x;v) with qrank(φ*) ≤ q* and v∈Dom(B)l and H is
consistent with input sequence T

2. If consistent concept induced by some parameters v and
formula of qrank ≤ q exists, then LA does not reject.

3. Runtime with local access to B is (log(n) + d + t)O(1)

N = |D(B)|, d = Degree(B), t = length of T

4. Output H can be evaluated in time (log(n)+ d)O(1)

31

Proof hints on Theorem 1.1 (part 2)

Is true target captured by syntacically local φ*?
• Assume target concept C given by formula φ and

parameter vector v
• Can choose subset v‘ of paremeters v of true target

concept in some local environment (and then possibly
pad them to v*)

• Instances together with v describable by formula (their
local type)

32

33

B

(u2,C(u2))

(u1,C(u1))

(u4,C(u4))

(u,C(ut))

(u3,C(u3))

Finding the right parameters

34

B

Ignored because distance
≥ r* to environment
constructed so far

Chosen parameter components can be padded to v*
In order to produce consistent hypothesis

35

B

Each substructure generated by ui together with chosen parameter vector v*
describable by a syntactically local formula θi (its local type)

u2

Θ2

u1

Θ1

φ* = ⋁i index of positive instanceθi

36

Bφ* = ⋁i index of positive instanceθi

With Feferman-Vaught style composition lemma can ensure that identical types
lead to same categorization

Proof hints on Thm 1

• Ad 3. :
– |Nr*(uv*)| <= (k+l)2dr*

– Thus, Nr*(uv*) representable in size O((k+l)dr*log(n))
– Considering k,l and r* as constants gives
– Nr*(uv*) representable in size (d + log(n))O(1)

– With locall access need time polynomial in
representation size of Nr*(uv*) to check wether φ* true in
Nr*(uv*) hence:

– Running time consistency checks: t (d + log(n))O(1)

– As |N| <= 2tkd2lr* = (t+1)O(1) , hence outer loops add factor
(t+d)O(1) and so overall runtime (log(n) + d +t)O(1)

- Ad 4.: As φ* local only check on Nr*(u,v) required.
37

Result with uniform cost (Grohe, Ritzert 17)

Theorem 4.3 Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over (possibly infinite) B
s.t.

1. If LA returns an H, then H is of form [[φ*(x;v*)]]B for FOL formula
φ*(x;v) with qrank(φ*) ≤ q* and v* in Dom(B)k and H is consistent
with input sequence T

2. If consistent hypothesis for some parameters v and formula of
qrank ≤ q and exists, then LA does not reject.

3. Runtime in uniform cost is = (d + t)O(1) with local access to B
d = Degree(B), t = length of T

4. Outputted H can be evaluated in time (d)O(1)

38

Uniform cost model as in register machine model:
Arbitrarily large elements in register (constant space)

Generalisation: Minimize error

• Do not require consistent hypothesis but minimal
training error of hypothesis H

• errT(H) = 1/t |{i in {1, ..., t} | H(ui) ≠ ci }|

39

Minimizing error

Theorem 4.4 Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns an H, then H is of form [[φ*(x;v*)]]B for r*-local FOL
formula φ*(x;v) with qrank(φ*) ≤ q* and v* in Dom(B)k and H is
consistent with input sequence T

2. If concept induced by some parameters v and formula φ(x;y) of
qrank ≤ q exists with errT([[φ(x;v)]]) ≤ ε, then errT(H) ≤ ε for the H
returend by LA on T.

3. Runtime with local access to B = (log(n) + d + t)O(1)

N = |D(B)|, d = Degree(B), t = length of T

4. Outputted H can be evaluated in time (log(n)+ d)O(1)

40

Algorithm for Theorem 4.4

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. minerr ← t+1
3. for all v* in Nl do
4. for all φ*(x;y) in Φ* do

5. err ← 0
6. for all (u,c) in T do

7. if ((Nr*(uv*) ⊨ φ*(u;v*) and c = 0) or
8. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1))
9. then err← err +1
10. if err < minerr, then

11. minerr ← err
12. φmin ← φ*
13. vmin← v*
14. return φmin, vmin

41

Proof of correctness by reduction to Thm1:
As error ≤ ε, there is (1-ε)*t elements for which
target conept
consistent. Now apply Thm 1.1.

PAC learning reminder

• D = instance space C = target space H = hypothesis space
• t = function describing number of training samples required by

learning algorithm
• C* in C , H in H, P probability distribution on D

• True error: ErrP,C*(H) = Prx⋍P(H(x)≠C*(x))

• Learning algorithm LA is a (D,C,H,t)-PAC-learning algorithm iff
– For all probability distributions P on D,
– For all target concepts C* in C
– For all input sequences T
– and for all ε,δ >0
LA generates hypothesis H= H(T,ε, δ) such that

PrT ⋍P (errP,C(H) ≤ ε) ≥ 1 - δ
42

PAC learning (Grohe, Ritzert 2017)

Theorem 4.3 Let k,l,q in Nat and
C = target concepts induced by FOL formula φ(x;y) of qrank <= q
with k-vector of instance variables x and l-vector of paramters y

There are q*,r*,s* in Nat and a learning algorithm LA for the k-ary
learning problem over finite B s.t.
1. Setting

– H = hypothesis space induced by r*-local formula w/ qrank ≤ q*
– t(n,ε,δ) = s* log(n/δ)/ε where n = |dom(B)|
makes LA a (Dom(B)k,C,H,t)-PAC learning algorithm

2. Runtime is = (log(n) + degree(B) + 1/ε + log(1/δ)O(1)

with local access to B

43

VC dimension and Degree

• For infinite B one can use the VC dimension
• One knows that the class of FOL concepts on small

degree sturctures have a finite VC dimension.

• Using known bound on samples for concept classes
with finite VC dimension one gets PAC learnability for
structures with low degrees.

44

Theorem (Grohe, Turan 04)
Let k,l,q in Nat. For
C = target concepts induced by FOL formula φ(x;y) of qrank <=
q with k-vector of instance variables x and l-vector of paramters
y on structure with finite degree VC(C) is finite.

PAC Learning (Grohe, Ritzert 2017)

Theorem 4.3 Let k,l,q in Nat and
C = {concepts induced by FOL formula φ(x;v) of qrank ≤ q.}
There are q*,r*,s* in Nat and a learning algorithm LA for the k-ary
learning problem over background structure B with degree d s.t.
1. setting

– H = { hypotheses induced by r*-local formula with qrank ≤ q* }
– t(ε,δ) = s* log(n/d)/ε where n = |dom(B)|
makes LA a (Dom(B)k,C,H,t)-PAC learning algorithm

2. Runtime is = (1/ε + log(1/δ)O(1) under uniform cost measure
and with local access to B only

45

Discussion

• Interesting framework for ML learning algorithms
• Further generalizations and topics in this framework

– Further logics
– Different learning aims
– Intermediate form of learning and online aspects
– ...

• Criticisms/Further Research
– Number of parameters has to be known in advance

• Though model learning, it depends on this number

– Dependance on B may cause trouble (?)
• How „big“ must B be
• How random mus B be?

46

