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Declarative Approach

• Grohe, Ritzert 17) is a Logic-based framework for
learning
– Based on background knowledge given by a structure in 

a logical sense

• Context: Logical and relational Learning 
– Inductive Logic Programming
– (Statistical) relational Learning
– Mining and Learning in Graphs
– ...

• Overview: see IJCAI 09 tutorial of Luc de Raedt
– (www.cs.kuleuven.be/~lucdr/ijcai09.pdf)
– Book: Logical and relational Learning, Springer, 2008
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Scenario & Terminology

• U = instance space

• C* = target concept C: U → {1,0}

• H = hypothesis regarding concept

• Aim: Reduce prediction (true) error of H

• Supervised scenario: 
– Training sequence T consists of labelled examples:

(ui, C*(ui))
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Approach of (Grohe/Ritzert 17)

• Background structure B with domain D = Dom(B)
• Parameterized model class = hypotheses space =    

set of φ(x;y) over logic L where
– x = instance variable vector (length k)
– y = parameter variable vector (length l)
– U = instance space = Dk

– For each parameter instance v of y one has a hypothesis
or an L-definable model

– [[φ(x,v)]]B(u) : = 
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1 if B ⊨ φ(u;v)
0 otherwise

Note that „model“ here denotes a formula,
not – in the logical sense - a structure making
a formula true



Example

• B = {E,R}-structure
(directed graph with red-coloring)

• Input sequence: (a,0), (b,1), (g,0), (k,1)

• Model formula
φ(x;y1,y2) := 

( R(x) v x = y1 v E(x,y1) )  &
¬ ∃z (E(y2,z) & E(z,x) ) 

• Consistent hypothesis:         [[φ(x;j,e)]]B
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Two approaches

• Parameter learning (see example above) 
– Model (parameterized formula φ) given
– Have to identify paramters

• Model learning
– Have to guess both: formula and parameters
– Compare this with the approach of Gaussian processes
– Results of (Grohe, Ritzert 17) mainly for this mode

Lit: Rasmussen, Williams: Gaussian Processes for Machine Learning, MIT Press, 2005
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Research program

• Identify logics L suitable for expressing ML models (φ) 
and study their algorithmic learnability (efficient
algorithms, lower bounds ...)

• “Descriptive Complexity for ML“
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How to access background structure?

1. B not part of the input
– B may be infinite
– Algorithm can store elements of B in memory cell and

use operations of B (compare register model)
– Access to B may be local (see below)

2. B part of the input with local access
– B is finite (but possible very large)
– Only „local access“ of the following types granted

• Relation query: Is (u1, ..., un) in R?      → constant time
• Neighboorhood query: Give all neighbours for a u in 

Dom(B) → time proportional to size of answer set
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Neighborhood defined w.r.t. 
Gaifman graph of B



„Low-degree“ background stucture

• Results of Grohe/Ritzert for low-degree structures B

• G(B) = Gaifman graph of B = graph with edge relation E
where E(a,b) iff a,b contained in some relation of B

• Degree(B) = graph theoretical degree of G(B)

• Consider structures of bounded degree
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Terminology

• k-ary learning problem for background structure B
– Instance space: D = Dom(B)
– Aim: Learn target concept C*: D^k → {0,1}

with small error
Here: Space C of target concepts induced by FOL formulae

C = {  [[φ(x;v)]]B | φ(x;y) an FOL formula with qrank ≤ q, x =
k-vector of variables and y = l-vector of parameters }

• Note: instance-space dimension k, parameter
dimension l and quantifier rank q fixed beforehand!
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Terminology

Learning algorithm LA for k-ary learning problem over B
– Input

• Sequence T of form (u,C*(u)) for u in Dk

• Local access to B

– Output 
• Formula φ(x;y) and parameter v in Dk representing hypothesis

H = [[φ(x;v)]]B : Dk→ {0,1}
• Reject, if no hypothesis found consistent with input

Hypotheses of LA evaluable in time t iff there is an algorithm s.t. 
given φ(x;y) and v it outputs for every u [[φ(x;v)]]B(u) in time t
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Main Theorem (Grohe, Ritzert 2017)

Theorem 1.1  Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns a hypothesis H, then H is of form [[φ*(x;v*)]]B for
FOL formula φ*(x;v) with qrank(φ*) ≤ q* and v∈Dom(B)l and H is
consistent with input sequence T

2. If consistent concept induced by some parameters v and
formula of qrank ≤ q exists, then LA does not reject. 

3. Runtime with local access to B  is (log(n) + d + t)O(1)

n = |D(B)|, d = Degree(B), t = length of T

4. Output H can be evaluated in time (log(n)+ d)O(1)
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• Model learning problem
• Proof uses locality of FOL

Similar complexity results for infinite B and
uniform cost measure

If degree d and t polylogarithmic in n (sublinear!!),
then so are runtime and evaluation time



PAC Learnability (Grohe, Ritzert 2017)

Corollary
Let d,k,l,q in Nat.  For B with degree(B) ≤ d, the class

C = {φ(x;v)^B | φ(x;v) is a FOL formula,  
qrank(φ) ≤ q, |x|=k, |y| = l, v in Dl }

is PAC-learnable by a LA with local access to B and running
in polynomial time in 1/ ε and 1/δ. 
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Parameter Learning vs. Model learning

Example
• φ(x;y) = P(y)
• For any B a {P}- background structure and any v in 

dom(B)
– [[φ(x;v)]]B = 1x if v in PB and
– [[φ(x;v)]]B = 0x otherwise

• Consider B with PB = {v*} 
• So target concept [[φ(x;v*)]]B = 1x and

LA receives only positive examples
• Unless v* in T, whole B has to be read in worst case. 

– With local access, v* cannot even be found: G(B) has no
edges
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Parameter Learning vs. Model learning

Example (continued)
• Intermediate form of incremental change of φ can help: 

φi in determines formula in next step φi+1

• φ(x;y) = P(y)
• Consider B with PB = {v*}
• So target concept [[φ(x;v*)]]B = 1x and

LA receives only positive examples
– φ0 = P(y)
– φ0 entails that target concept C is constant
– After 1 example we know C = 1X or 0X (though we do not 

know the exact parameter)
– So return φ1(x;) (x=x) or φ1(x;) =not (x=x)
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Algorithm idea for Theorem 1.1

• General Idea
– Instances u of input T induce a substructure of B
– It is sufficient to consider a „small“ neighbourhood N2lr* of

those elements depending on parameter number and
degree of B

– As FOL is local in the model theoretical sense, this local
consideration is sufficient

– Because of this, the hypothesis formulae can be chosen
as (syntactically) local formulae

• Implementation
– Brute force over all possible Gaifman local formula and

parameters (in small neighbourhood) and thereby
checking consistency
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Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do 

6. if ( (Nr*(uv*) ⊨ φ*(u;v*) and c = 0)   or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1)    )
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject
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Choose small neighbourhoodof elements in input

Consider all parameter vectors in neighbourhood

Consider all r*-local FOL formula

Find (parameter,local formula) pair 
consistent with input



Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do 

6. if ( (Nr*(uv*) ⊨ φ*(u;v*) and c = 0)   or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1)    )
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject
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Choose small neighbourhoodof elements in input



Reminder: Neighbourhood

• B = relational structure with domain D = Dom(B)
• u = (u1, .., uk) in Dk

• Nr(u) = NB
r(u) = all elements in D with distance atmost r to one of

the elements ui within G(B)

With abuse of notation
• Nr(u) = r neighbourhood of u in structure B

= sub-structure of B induced by all elements in    
maximal distance r to one of the ui

• Nr(T) = ⋃1≤i≤tNr(ui)   for input sequence
T = (u1,C(u1), (u2,C(u2), ..., (ut,C(ut))  
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Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do 

6. if ( (Nr*(uv*) ⊨ φ*(u;v*) and c = 0)   or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1)    )
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject

22

Neighbourhood can be constructed with local access
only



Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do 

6. if ( (Nr*(uv*) ⊨ φ*(u;v*) and c = 0)   or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1)    )
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject
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Consider all r*-local FOL formula



Reminder: Locality

• ψ(x) is r-local iff for all structures B and tuples u
B  ⊨ ψ(u) iff Nr(u) ⊨ ψ(u)

• δ>r(x,y) = distance of x and y is larger than r (FOL formula)                                             
• δ<=r(x,y) = distance of x and y smaller than r
• Basic local sentence of radius r

∃x1,..., ∃xk (   ∧1≤i<j≤kδ>2r(xi,xj) & ∧1≤i≤kψ(xi)  )
where ψ(xi) is r-local
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Reminder: Locality
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Theorem (Gaifman): Every FOL formula is equivalent to a boolean
combination of basic local sentences and local formulae. 



Syntactic notion of locality

• R-relativisation φ[<=r](x1, ..,xk): quantifiers of φ relativised to
elements in maximally r distance to one of the xi

e.g., ∃y ψ(x1, ..,xk) becomes
∃y ( ⋁1≤i≤k δ≤r(y,xi) & ψ(x1, ..,xk) )

• φ(x) is syntacically r-local iff it is a r-relativisation

• φ(x) is a syntactically basic local sentence if it a basic local
sentence∃x1,..., ∃xk (   ∧1≤i<j≤kδ>2r(xi,xj) & ∧1≤i≤kψ(xi)  ) with ψ
syntactically r-local

26



Gaifman normal form

• φ is in Gaifman normal form (GNF) if it is a boolean combination of
syntactically basic local sentences and syntactically local
sentences.

• Locality radius of GNF φ = least r such that all basic local
sentences r-local and all local formulae have radius smaller than r
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Corollary
Every FOL formula with at most k+l variables is equivalent to a GNF 
formula with locality radius r* such that the quantifier rank of each
contained syntactically local formula is smaller than q*. 

• Φ* := syntactically r-local formula ϕ(x;y) of quantifier rank at most
q*



Algorithm for Theorem 1.1

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. for all v* in Nl do
3. for all φ*(x;y) in Φ* do

4. consistent ← true
5. for all (u,c) in T do 

6. if ( (Nr*(uv*) ⊨ φ*(u;v*) and c = 0)   or
7. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1)    )
8. then consistent ← false
9. if consistent, then return φ*, v*
10. reject
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Consider all r*-local FOL formula



Main Theorem (Grohe, Ritzert 17)

Theorem 1.1  Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns a hypothesis H, then H is of form [[φ*(x;v*)]]B for
FOL formula φ*(x;v) with qrank(φ*) ≤ q* and v∈Dom(B)l and H is
consistent with input sequence T

2. If consistent concept induced by some parameters v and
formula of qrank ≤ q exists, then LA does not reject. 

3. Runtime with local access to B  is (log(n) + d + t)O(1)

N = |D(B)|, d = Degree(B), t = length of T

4. Output H can be evaluated in time (log(n)+ d)O(1)
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Proof hints for Theorem 1.1

First part of Thm 1.1 holds because φ* in LA are r-local:          
Nr(uv*)  ⊨ φ*(u,v)  iff B ⊨ φ*(u,v*)
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Main Theorem (Grohe, Ritzert 2017)

Theorem 1.1  Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns a hypothesis H, then H is of form [[φ*(x;v*)]]B for
FOL formula φ*(x;v) with qrank(φ*) ≤ q* and v∈Dom(B)l and H is
consistent with input sequence T

2. If consistent concept induced by some parameters v and
formula of qrank ≤ q exists, then LA does not reject. 

3. Runtime with local access to B is (log(n) + d + t)O(1)

N = |D(B)|, d = Degree(B), t = length of T

4. Output H can be evaluated in time (log(n)+ d)O(1)
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Proof hints on Theorem 1.1 (part 2)

Is true target captured by syntacically local φ*?
• Assume target concept C given by formula φ and

parameter vector v
• Can choose subset v‘ of paremeters v of true target

concept in some local environment (and then possibly
pad them to v*) 

• Instances together with v describable by formula (their
local type)
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B

(u2,C(u2))

(u1,C(u1))

(u4,C(u4))

(u,C(ut))

(u3,C(u3))



Finding the right parameters
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B

Ignored because distance
≥ r* to environment
constructed so far

Chosen parameter components can be padded to v*
In order to produce consistent hypothesis
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B

Each substructure generated by ui together with chosen parameter vector v*
describable by a syntactically local formula θi (its local type)

u2

Θ2

u1

Θ1

φ* = ⋁i index of positive instanceθi
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Bφ* = ⋁i index of positive instanceθi

With Feferman-Vaught style composition lemma can ensure that identical types
lead to same categorization



Proof hints on Thm 1

• Ad 3. :
– |Nr*(uv*)| <= (k+l)2dr*

– Thus, Nr*(uv*) representable in size O((k+l)dr*log(n))
– Considering k,l and r* as constants gives
– Nr*(uv*) representable in size (d + log(n))O(1)

– With locall access need time polynomial in 
representation size of Nr*(uv*) to check wether φ* true in 
Nr*(uv*) hence: 

– Running time consistency checks: t (d + log(n))O(1) 

– As |N| <= 2tkd2lr* = (t+1)O(1) , hence outer loops add factor
(t+d)O(1) and so overall runtime (log(n) + d +t)O(1)

- Ad 4.: As φ* local only check on Nr*(u,v) required. 
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Result with uniform cost (Grohe, Ritzert 17)

Theorem 4.3  Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over (possibly infinite) B
s.t.

1. If LA returns an H, then H is of form [[φ*(x;v*)]]B for FOL formula
φ*(x;v) with qrank(φ*) ≤ q* and v* in Dom(B)k and H is consistent
with input sequence T

2. If consistent hypothesis for some parameters v and formula of
qrank ≤ q and exists, then LA does not reject. 

3. Runtime in uniform cost is = (d + t)O(1) with local access to B
d = Degree(B), t = length of T

4. Outputted H can be evaluated in time (d)O(1)
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Uniform cost model as in register machine model:
Arbitrarily large elements in register (constant space)



Generalisation: Minimize error

• Do not require consistent hypothesis but minimal 
training error of hypothesis H

• errT(H) = 1/t |{i in {1, ..., t}  | H(ui) ≠ ci }|
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Minimizing error

Theorem 4.4  Let k,l,q in Nat. There is q* in Nat and a learning
algorithm LA for the k-ary learning problem over finite B s.t.

1. If LA returns an H, then H is of form [[φ*(x;v*)]]B for r*-local FOL 
formula φ*(x;v) with qrank(φ*) ≤ q* and v* in Dom(B)k and H is
consistent with input sequence T

2. If concept induced by some parameters v and formula φ(x;y) of
qrank ≤ q exists with errT([[φ(x;v) ]]) ≤ ε, then errT(H) ≤ ε for the H
returend by LA on T. 

3. Runtime with local access to B = (log(n) + d + t)O(1)

N = |D(B)|, d = Degree(B), t = length of T

4. Outputted H can be evaluated in time (log(n)+ d)O(1)
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Algorithm for Theorem 4.4

Input: Sequence T, local access operator on B
1. N ← N2lr*(T)
2. minerr ← t+1
3. for all v* in Nl do
4. for all φ*(x;y) in Φ* do

5. err ← 0
6. for all (u,c) in T do 

7. if ( (Nr*(uv*) ⊨ φ*(u;v*) and c = 0)   or
8. (not Nr*(uv*) ⊨φ*(u;v*) and c = 1)    )
9. then err← err +1
10. if err < minerr, then

11. minerr ← err
12. φmin ← φ*
13. vmin← v*
14. return φmin, vmin
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Proof of correctness by reduction to Thm1:
As error ≤ ε, there is (1-ε)*t elements for which
target conept
consistent. Now apply Thm 1.1.



PAC learning reminder

• D = instance space C = target space H = hypothesis space
• t = function describing number of training samples required by

learning algorithm
• C* in C ,   H in H, P probability distribution on D

• True error: ErrP,C*(H) = Prx⋍P(H(x)≠C*(x))

• Learning algorithm LA is a (D,C,H,t)-PAC-learning algorithm iff
– For all probability distributions P on D, 
– For all target concepts C* in C 
– For all input sequences T
– and for all ε,δ >0 
LA generates hypothesis H= H(T,ε, δ) such that

PrT ⋍P ( errP,C(H) ≤ ε)  ≥ 1 - δ
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PAC learning (Grohe, Ritzert 2017)

Theorem 4.3  Let k,l,q in Nat and
C = target concepts induced by FOL formula φ(x;y) of qrank <= q
with k-vector of instance variables x and l-vector of paramters y

There are q*,r*,s* in Nat and a learning algorithm LA for the k-ary
learning problem over finite B s.t.
1. Setting 

– H = hypothesis space induced by r*-local formula w/ qrank ≤ q*
– t(n,ε,δ) = s* log(n/δ)/ε where n = |dom(B)|
makes LA a (Dom(B)k,C,H,t)-PAC learning algorithm

2. Runtime is = (log(n) + degree(B) + 1/ε + log(1/δ)O(1)

with local access to B
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VC dimension and Degree

• For infinite B one can use the VC dimension
• One knows that the class of FOL concepts on small

degree sturctures have a finite VC dimension.

• Using known bound on samples for concept classes
with finite VC dimension one gets PAC learnability for
structures with low degrees. 
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Theorem (Grohe, Turan 04)
Let k,l,q in Nat. For
C = target concepts induced by FOL formula φ(x;y) of qrank <= 
q with k-vector of instance variables x and l-vector of paramters
y on structure with finite degree VC(C) is finite. 



PAC Learning (Grohe, Ritzert 2017)

Theorem 4.3  Let k,l,q in Nat and
C = {concepts induced by FOL formula φ(x;v) of qrank ≤ q.}
There are q*,r*,s* in Nat and a learning algorithm LA for the k-ary
learning problem over background structure B with degree d s.t.
1. setting

– H = { hypotheses induced by r*-local formula with qrank ≤ q* }
– t(ε,δ) = s* log(n/d)/ε where n = |dom(B)|
makes LA a (Dom(B)k,C,H,t)-PAC learning algorithm

2. Runtime is = (1/ε + log(1/δ)O(1) under uniform cost measure
and with local access to B only

45



Discussion

• Interesting framework for ML learning algorithms
• Further generalizations and topics in this framework

– Further logics
– Different learning aims
– Intermediate form of learning and online aspects
– ...

• Criticisms/Further Research
– Number of parameters has to be known in advance

• Though model learning, it depends on this number

– Dependance on B may cause trouble (?)
• How „big“ must B be
• How random mus B be?
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