PROBABILISTIC AND DIFFERENTIABLE PROGRAMMING
V9: Probabilistic Programming II

Özgür L. Özçep
Universität zu Lübeck
Institut für Informationssysteme
Probabilistic Logic Programs (PLP)

• devised by Poole and Sato in the 90s.
• built on top of the programming language Prolog
• upgrade directed graphical models
• Generalises probabilistic databases (Suciu et al.)
• combines the advantages / expressive power of programming languages (Turing equivalent) and graphical models
• Implementations: see next page
PLP Systems

- PRISM https://www.prismmodelchecker.org/
- Yap Prolog https://github.com/vscosta/yap-6.3 includes
 - ProbLog1
 - cplint
 - CLP(BN)
 - LP2
- AILog2 http://artint.info/code/ailog/ailog2.html
- SLPs http://stoics.org.uk/~nicos/sware/pepl
- DC https://code.google.com/p/distributional-clauses
Today’s Agenda (in classical linear form)

Probabilistic Logic Programming

1. Modeling
2. Reasoning
3. Learning
MODELING
Motivation (suffering from Vennitis)

Dealing with Uncertainty

Reasoning with Relational data

Various formalisms
Here: PLP

Learning
Motivation (suffering from Vennitia)

Distribution Semantics (Sato, 95):
probabilistic choices + logic program
→ distribution over possible worlds

Several possible worlds

0.8::stress(ann).
0.6::influences(ann,bob).
0.2::influences(bob,carl).

Atoms as RVs

Prolog/ logic programming

One world

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(X) :- stress(X).
smokes(X) :- influences(Y,X), smokes(Y).

Parameter learning,
Adapted relational
Learning techniques

Various formalisms
Here: PLP

Atoms as RVs

Several possible worlds

Distribution Semantics (Sato, 95):
probabilistic choices + logic program
→ distribution over possible worlds
The motto: Logic everywhere

See also IFIS course Information systems
The Logic programming (LP) paradigm

- The other big three paradigms of programming
 - Imperative (e.g. C)
 - Functional (e.g., Lisp)
 - Object-oriented (e.g. Java)
- Distinguishing feature of LP: Problem solving by specifying the “What” not the “How to”
- Abstracting from
 - Control structures
 - Memory layout
 - Process direction
- Prominent examples: Prolog, Datalog, ASP (Answer set programming)
Science of logic investigates mathematical structures (static and dynamic) and formal languages to describe them by specifying a logic given by

- **syntax** (well-formed formula)
- **semantics** (truth conditions for sentences, entailment notion)
- **calculus** (provability, inference)

Introductory logic textbooks with CS in mind

- (Huth, Ryan 00)
- (Ben-Ari 01)
Where is the logic in logic programming?

- Specification of a domain with a set of formula (sometimes called a knowledge base)
 - Formula specified by truth-condition semantics as in logic
 - In Prolog: formula are facts or rules

- Specification of the problem as a query (also a formula)
 - Query is Boolean or has variables to be bound

- Solving a problem according a logical calculus
 - try to infer (bindings for) query w.r.t. the knowledge base using rules
 - In Prolog use resolution
Prolog

• Prolog: Programmation en Logique

• Invented around 1970 when there was high interest in
 – Theorem proving
 – Language processing with formal grammars

• Protagonists
 – R. Kowalski: Theoretical contribution with SL-Resolution
 – A. Colmerauer and P. Roussel: developer
A bit of gambling with ProbLog

- Toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)

• 0.4 :: heads.
• 0.3 :: col(1,red); 0.7 :: col(1, blue).
• 0.2 :: col(2,red); 0.3 :: col(2,green);
 0.5 :: col(2,blue).
 Probabilistic choices

• win :- heads, col(_,red).
• win :- col(1,C), col(2,C).
 Consequences

• Probabilistic fact: Heads with probability 0.4
• annotated disjunction: first ball is red with probability 0.3 and blue with 0.7
• annotated disjunction: second ball is red with probability 0.2, green with 0.3, and blue with 0.5

• Logical rule encoding background knowledge
Queries

0.4 :: heads.
0.3 :: col(1, red); 0.7 :: col(1, blue).
0.2 :: col(2, red); 0.3 :: col(2, green); 0.5 :: col(2, blue).

\[
\begin{align*}
\text{win} & :- \text{heads, col(_, red)}.
\text{win} & :- \text{col(1,C), col(2,C)}.
\end{align*}
\]

- Probability of \textbf{win}? (marginal probability)

- Probability of \textbf{win} given \textbf{col(2,green)}? (conditional probability)

- Most probable world where \textbf{win} is true? (Most probable explanation (MPE))
Possible Worlds

0.4 :: heads.
0.3 :: col(1, red); 0.7 :: col(1, blue).
0.2 :: col(2, red); 0.3 :: col(2, green); 0.5 :: col(2, blue).

win :- heads, col(_, red).
win :- col(1, C), col(2, C).

0.4 x 0.3 x 0.3
Possible Worlds

0.4 :: heads.
0.3 :: col(1,red); 0.7 :: col(1, blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).
All Possible Worlds

(remember the discussion in V8 on traces)
Most likely world with W (\texttt{win} = true)?

<table>
<thead>
<tr>
<th>Probability</th>
<th>World 1</th>
<th>World 2</th>
<th>World 3</th>
<th>World 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.024</td>
<td>H R R W</td>
<td>H R R W</td>
<td>H B R W</td>
<td>B R W</td>
</tr>
<tr>
<td>0.036</td>
<td>H R G W</td>
<td>R G W</td>
<td>H B G W</td>
<td>B G</td>
</tr>
<tr>
<td>0.036</td>
<td>H R B W</td>
<td>R B W</td>
<td>H B B W</td>
<td>B B W</td>
</tr>
<tr>
<td>0.060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.054</td>
<td>H B G W</td>
<td>B G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.084</td>
<td>H B G W</td>
<td>B G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.090</td>
<td>H B B W</td>
<td>B B W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.084</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MPE inference
\[P(\text{win} = \text{true}) = P(\text{win}) = \sum_{\text{world with } w=\text{true}} = 0.562 \]
\[P(\text{win}|\text{col}(2, \text{green})) = \frac{0.036}{0.3} = 0.12 \]

\[\frac{P(\text{win}, \text{col}(2, \text{green}))}{P(\text{col}(2, \text{green}))} = \frac{\Sigma}{\Sigma} \]
Distribution semantics (Sato, 95)

Distribution semantics with probabilistic facts (Sato 95)

\[
P(Q) = \sum_{F \cup R \models Q} \prod_{f \in F} p(f) \prod_{f \notin F} (1 - p(f))
\]

where

- \(Q \) = query
- \(F \) = subset of facts (assumed to hold in a possible world)
- \(R \) = Prolog rules
- \(F \cup R \models Q \): Summing condition: possible worlds where \(Q \) is true

Probability of possible world
INFERENCE
The challenge: disjoint sum problem

0.4 :: heads(1).
0.7 :: heads(2).
0.5 :: heads(3).

win :- heads(1).
win :- heads(1), heads(3). \% win \leftrightarrow h(1) \lor (h(2) \land h(3))

- \newcommand{\P}{P}
\newcommand{\win}{\text{win}}
\P(\win) = \P\left(h(1) \lor (h(s) \land h(3))\right) \neq \P(h(1)) + \P(h(2) \land h(3))

- Rather should be

- = \P(h(1)) + \P(h(2) \land h(3)) - \P(h(1) \land h(2) \land h(3))
Idea: Weighted Model Counting (WMC)

- Ground out
- Put formula in CNF (conjunctive normal form)
- Weights
- Call WMC

\[
\begin{align*}
0.4 & \Rightarrow \text{heads}(1). \\
0.7 & \Rightarrow \text{heads}(2). \\
0.5 & \Rightarrow \text{heads}(3). \\
\text{win} & \Leftarrow \text{heads}(1). \\
\text{win} & \Leftarrow \text{heads}(1), \text{heads}(3). \quad \% \text{win} \Leftarrow \text{heads}(1) \lor (\text{heads}(2) \land \text{heads}(3))
\end{align*}
\]

\[
\begin{align*}
\text{weights:} & \quad \neg \text{win} \lor \text{heads}(1) \\
& \land (\neg \text{win} \lor \text{heads}(1) \lor \text{heads}(3)) \\
& \land (\text{win} \lor \neg \text{heads}(1)) \\
& \land (\text{win} \lor \neg \text{heads}(2) \land \neg \text{heads}(3))
\end{align*}
\]

\[
\begin{align*}
\text{weights:} & \quad \text{heads}(1) \Rightarrow 0.4 \quad \neg \text{heads}(1) \Rightarrow 0.6 \\
& \text{heads}(2) \Rightarrow 0.7 \quad \neg \text{heads}(2) \Rightarrow 0.3 \\
& \text{heads}(3) \Rightarrow 0.5 \quad \neg \text{heads}(3) \Rightarrow 0.5
\end{align*}
\]
Recap on some terminology from logic

- A propositional formula is in **conjunctive normal form** (CNF) iff it is a conjunction of disjunctions of literals
- **Literals** = proposition symbol or its negation
- Every propositional formula can be transformed into CNF (using distribution, de Morgan rules and double negation elimination)
Recap on some terminology from logic

For the example note that
- \(A \leftrightarrow B \) and \((A \rightarrow B) \land (B \rightarrow A) \) are equivalent
- \(A \rightarrow B \) is equivalent to \(\neg A \lor B \)
- Interpretations \(I_i \) (truth value assignments) can also be recorded in set notation (as done in the following)
- E.g. \(I_2 = \{ \neg A, B \} \) or even shorter: \(I_2 = \{ B \} \) (considering only the propositional variables with value 1)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \leftrightarrow B)</th>
<th>((A \rightarrow B) \land (B \rightarrow A))</th>
<th>((\neg A \lor B) \land (\neg B \lor A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

in CNF
Recap on some terminology from logic

• **Grounding**
 - Idea: “Propositionalize“ rules
 - Technically: Instantiate all variables with all possible constant combinations
 - E.g. `successfulStudent(X):- lovesLogic(X)` over constants `{a,b}`
 - `successfulStudent(a):- lovesLogic(a),`
 - `successfulStudent(b):- lovesLogic(b)`

 - (Grounding not used actually on the slides before, as rules contained no variables)
Weighted Model Counting

\[WMC(\phi) = \sum_{I_V \models \phi} \prod_{l \in I_V} w(l) \]

where

- \(\phi \): propositional formula in CNF
 (resulting from problog program or any other statistical relational model (SRL))
- \(I_V \): interpretation of propositional variables
 (in set notation; corresponds to possible world)
- \(w(l) \): weight of literal
 (for \(p : f \) one assigns \(w(f) = p, w(\neg f) = 1 - p \))

For \(\phi = Q \):

\[WMC(Q) = \sum_{F \cup R \models Q} \prod_{f \in F} p(f) \prod_{f \notin F} 1 - p(f) \]
Weighted Model Counting

- Simple WMC solvers based on a generalisation of DPLL algorithm for SAT (Davis Putnam Logeman Loveland algorithm)
- Current solvers often use knowledge compilation – here an OBDD (ordered binary decision diagram), many variations s-dDNNF, SDDs, (see also following lectures V10-V13)

\[
\text{win} \leftrightarrow h(1) \lor (h(2) \land h(3))
\]
Weighted Model Counting

- Simple WMC solvers based on a generalisation of DPLL algorithm for SAT (Davis Putnam Logeman Loveland algorithm)
- Current solvers often use knowledge compilation – here an OBDD (ordered binary decision diagram), many variations s-dDNNF, SDDs, (see also following lectures V10-V13)

\[
\text{win } \leftrightarrow \ h(1) \lor (h(2) \land h(3))
\]

- \(h(1) \rightarrow 0.4 \quad \neg h(1) \rightarrow 0.6 \)
- \(h(2) \rightarrow 0.7 \quad \neg h(2) \rightarrow 0.3 \)
- \(h(3) \rightarrow 0.5 \quad \neg h(3) \rightarrow 0.5 \)
More inference

• Many variations / extensions

• Approximate inference

• Lifted inference (lifting from propositional to first order)
 – infected(X) :- contact(X,Y), sick(Y).
LEARNING
Parameter Learning: an example

• Webpage classification model
• For each Class1, Class2 and each Word

\[
\text{link_class(Source,Target, Class1, Class2).}
\]
\[
\text{word_class(Word,Class).}
\]
\[
\text{class(Page,C) :- has_word(Page,W), word_class(W,C).}
\]
\[
\text{class(Page,C) :- links_to(OtherPage,Page),}
\]
\[
\text{class(OtherPage,OtherClass),}
\]
\[
\text{link_class(OtherPage,Page,OtherClass,C).}
\]
Sampling interpretations

\[P(\text{fact}) = \frac{\#(\text{fact true})}{\# \text{interpretations}} \]
Partial interpretations

• Not all facts are observed
 – Note: this is different from some facts Being false

• Use for this some form of the EM-algorithm (Expectation maximization)
 – Expected count used instead of count
 – \(P(Q|E)\) – conditional queries
Reminder: EM: How it Works on Naive Bayes

- Consider the following data,
 - N examples with Boolean attributes X_1, X_2, X_3, X_4

- which we want to categorize in one of three possible values of class $C = \{1,2,3\}$ (hidden, no observations given)

- We use a Naive Bayes classifier with hidden variable C
Reminder: EM: General Idea

• The algorithm starts from “invented” (e.g., randomly generated) information to solve the learning problem, i.e.
 • Determine the network parameters (CPT in Bayesian networks)

• It then refines this initial guess by cycling through two basic steps
 • **Expectation (E):** update the data with predictions generated via the current model
 • **Maximization (M):** given the updated data, update the model parameters using the Maximum Likelihood (ML) approach

✓ This is the same step that is used for learning parameters for fully observable networks
EM Cycle

Expected Counts ("Augmented data")

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>C</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Probabilities

- $P(C)$
- $P(X_1|C)$
- $P(X_2|C)$
- $P(X_3|C)$
- $P(X_4|C)$

Note: Actually you never generate any data in E-step but expected counts
Learning Rules/Structures

Information Extraction in NELL

instances for many different relations

degree of certainty

NELL: http://rtw.ml.cmu.edu/rtw/
ProbFOIL

• Upgrade rule-learning to a probabilistic setting within a relational learning / inductive logic programming setting
 – Works with a probabilistic logic program instead of a deterministic one.

• Introduce ProbFOIL, an adaption of Quinlan’s FOIL

• Apply to probabilistic databases like NELL
Example in Pro Log

surfing(X) :- not rain(X), windOK(X). %H
surfing(X) :- not rain(X), sunshine(X).

rain(e1). %B
windOK(e1).
sunshine(e1).

?- surfing(e1). % Query
No % Answer no, because surfing(e1) does not follow from H u B
Example in ProbLog

\[\begin{align*}
p1 &:: \text{surfing}(X) :- \neg \text{rain}(X), \text{windOK}(X). \quad \% \text{H} \\
p2 &:: \text{surfing}(X) :- \neg \text{rain}(X), \text{sunshine}(X).
\end{align*}\]

\[\begin{align*}
0.2 &:: \text{rain}(e1). \quad \% \text{B} \\
0.7 &:: \text{windOK}(e1). \\
0.6 &:: \text{Sunshine}(e1).
\end{align*}\]

?- P(\text{surfing}(e1)). \quad \% \text{Query}
\% \text{gives answer probability } P(\text{B U H } |\text{ e}) = \\
\% (1-0.2) \times 0.7 \times p1 + (1-0.2) \times 0.6 \times (1-0.7) \times p2 \\
\% \text{no rain x windok x p1 + no rain x sunshine x not windOk x p2}
\]

Note: probabilities \(p_1, p_2\) in front of rules are syntactic sugar.
Classical FOIL (Quinlan)

- **Input**
 - Prolog program (or any FOL theory)
 - Observed sequence of facts E (such as `surfing(e1)`)
 - Space of hypotheses L

- **Output**: Hypothesis set $H \subseteq L$ (rules) s.t. $B \cup H \models E$

- Hypothesis space contains all admissible rules over the language up to some complexity
- Various heuristics
Inductive Probabilistic Logic Programming

- **Input**
 - a set of example facts $e \in E$ together with the probability p that they hold
 - a background theory B in ProbLog
 (note: B may contain facts and rules, which we know to hold)
 - a hypothesis space L (a set of clauses)

- **Output**

$$\arg\min_H \text{loss}(H, B, E) = \arg\min_H \sum_{e_i \in E} |P_s(B \cup H \models e_i) - p_i|$$

with optimal probabilities for rules.
Next weeks

• More details on the efficient representation of probabilities and formula.
APPENDIX
Probability theory basics reminder

Random variable (RV)

- possible worlds defined by assignment of values to random variables.
- **Boolean** random variables
e.g., Cavity (do I have a cavity?).
 Domain is \langle true, false \rangle
- **Discrete** random variables
e.g., possible value of Weather is one of \langle sunny, rainy, cloudy, snow \rangle
 - Domain values must be exhaustive and mutually exclusive
 - Elementary propositions are constructed by assignment of a value to a random variable:
 - Cavity = false (abbreviated as \neg cavity)
 - Cavity = true (abbreviated as cavity)
- **(Complex) propositions** formed from elementary propositions and standard logical connectives, e.g., Weather = sunny \lor Cavity = false

Probabilities

- Axioms (for propositions $a, b, \top = (a \lor \neg a)$, and $\bot = \neg \top$):
 - $0 \leq P(a) \leq 1$; $P(\top) = 1$; $P(\bot) = 0$
 - $(P(a \lor b) = P(a) + P(b) - P(a \land b)$
- Joint probability distribution of $X = \{X_1, \ldots, X_n\}$
 - $P(x_1, \ldots, x_n)$
 - gives the probability of every atomic event on X
- Conditional probability
 $P(a \mid b) = P(a \land b) / P(b)$ if $P(b) > 0$
- Chain rule
 $P(x_1, \ldots, x_n) = \prod_{i=1}^{n} P(x_i \mid x_1, \ldots, x_{i-1})$
- Marginalization: $P(Y) = \sum_{z \in Z} P(Y, z)$
- Conditioning on Z:
 - $P(Y) = \sum_{z \in Z} P(Y \mid z)P(z)$ (discrete)
 - $P(Y) = \int P(Y \mid z)P(z)dz$ (continuous)
 $= \mathbb{E}_{z \sim P(z)}P(Y \mid z)$ (expected value notation)
- Bayes’ Rule
 $P(H \mid D) = \frac{P(D \mid H) \cdot P(H)}{P(D)} = \frac{P(D \mid H) \cdot P(H)}{\sum_h P(D \mid h)P(h)$
Color Convention in this Course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes in nearly opaque post-it
- Algorithms and program code
- Reminders (in the grey fog of your memory)
Today’s lecture is based on the following

- **Mainly**

- **A little bit**
 - Tutorial on

References