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Literature

• J. Pearl, M. Glymour, N. P. Jewell: Causal inference in 
statistics – A primer, Wiley, 2016. 

(Main Reference)

• J. Pearl: Causality, CUP, 2000. 

(The book on causality from the perspective of 
probabilistic graphical models)

• J. Pearl, D. Mackenzie: The book of why, Basic Books, 
2018 

(Popular science level, but definitely worth a read)
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Color Conventions for part on SCMs 

• Formulae will be encoded in this greenish color

• Newly introduced terminology and definitions will be given 
in blue

• Important results (observations, theorems) as well as 
emphasizing some aspects will be given in red

• Examples will be given with standard orange 

• Comments and notes are  given with
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post-it-yellow background 



Motivation

• Usual warning:

„Correlation is not causation“ 

• But sometimes (if not very often) one needs causation
to understand statistical data
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A remarkable correlation? A simple causality!
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(Mentioned in a feauture called the
„Mops des Monats“ in 
the book radio show „Lesart“ 
on Deutschlandfunk Kultur )



Simpson’s Paradox (Example)

• Record recovery rates of 700 patients given access to a 
drug

7

• Paradox: 
– For men, taking drugs has benefit

– For women, taking drugs has benefit, too.

– But: for all persons taking drugs has no benefit

Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)



Resolving the Paradox (Informally)

• We have to understand the causal mechanisms that 
lead to the data in order to resolve the paradox

• In drug example
– Why has taking drug less benefit for women? 

Answer: Estrogen has negative effect on recovery

– Data: Women more likely to take drug than men

– Choosing randomly any person taking drugs will rather 
give a woman – and for these recovery is less beneficial

• In this case: Have to consider segregated data 
(not aggregated data)
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Resolving the Paradox Formally (Look ahead)

• We have to understand the causal mechanisms that 
lead to the data in order to resolve the paradox
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Gender

Drug usage Recovery

• Drug usage and recovery have common cause
• Gender is a confounder



Simpson’s Paradox (Again)

• Record recovery rates of 700 patients given access to a 
drug w.r.t. blood pressure (BP) segregation
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• BP recorded at end of experiment

• This time segregated data recommend not using drug 
whereas aggregated data does

Recovery rate 
without drug

Recovery rate
with drug

Low BP 81/87 (93%) 234/270 (87%)

High BP 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)



Resolving the Paradox (Informally)

• We have to understand the causal mechanisms that 
lead to the data in order to resolve the paradox

• In this example
– Drug effect is: lowering blood pressure (but may have 

toxic effects)

– Hence: In aggregated population drug usage 
recommended

– In segregated data one sees only toxic effects
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Resolving the Paradox Formally (Lookahead)

• We have to understand the causal mechanisms that 
lead to the data in order to resolve the paradox (look 
ahead)
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Blood pressure

Drug usage Recovery



Ingredients of a Statistical Theory of Causality

• Working definition of causation

• Method for creating causal models

• Method for linking causal models with features of data

• Method for reasoning over model and data
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Working Definition

A (random) variable X is a cause of a (random) variable Y if 
Y - in any way - relies on X for its value
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Structural Causal Model: Definition

Definition

A structural causal model (SCM) consists of 
– A set U of exogenous variables 

– A set V of endogenous variables

– A set of functions f assigning each variable in V a value 
based on values of other variables from V ∪ U
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• Only endogenous variables are those that are descendants of
other variables

• Exogenous variables are roots of model. 
• Value instantiations of exogenous variables completely

determine values of all variables in SCM



Causality in SCMs
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Definition
1. X is a direct cause of Y iff Y = f( …,X,…) for some f.

2. X is a cause of Y iff X is a direct cause of Y or there is Z s.t. X
is a direct cause of Z and Z is a cause of Y. 



Graphical Causal Model 

• Graphical causal model associated with SCM
– Nodes = variables

– Edges = from X to Y if Y = f(…,X, ….) 
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• Example SCM 
– U = {X,Y}

– V = {Z}

– F = {fZ}

– fZ : Z = 2X + 3Y

• Associated graph

X Y

Z
( Z = salary, X = years of experience,

Y =  years of profession )



Graphical Models

• Graphical models capture only partially SCMs

• But very intuitive and still allow for conserving much of 
causal information of SCM

• Convention for the next lectures: Consider only 
Directed Acyclic Graphs (DAGs)
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SCMs and Probabilities

• Consider SCMs where all variables are random variables 
(RVs)

• Full specification of functions f not always possible

• Instead: Use conditional probabilities as in BNs
– fX(…Y …)   becomes P(X | … Y …)

– Technically: Non-measurable RV U models  (probabilistic) 
indeterminism:

P(X | …. Y ….) = fX( …Y …, U)

19

U not mentioned here



SCMs and Probabilities

• Product rule as in Bayesian networks (BNs) used for full 
specification of joint distribution of all RVs X1, …, Xn

P(X1 = x1, …, Xn = xn) = ∏1 ≤i≤n P( xi | parentsof(xi) )

• Can make same considerations on (probabilistic) 
(in)dependence of RVs. 

• Will be done in the following systematically
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Bayesian Networks vs. SCMs

• BNs model statistical dependencies
– Directed, but not necessarily cause-relation 

– Inherently statistical 

– Default application: discrete variables

• SCMs model causal relations
– SCMs with random variables (RVs) induce BNs

– Assumption: There is hidden causal (deterministic) 
structure behind statistical data

– More expressive than BNs:  Every BN can be modeled by 
SCMs but not vice versa

– Default application: continuous variables
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Reminder: Conditional Independence

• Event A independent of event B iff P(A | B) = P(A)

• RV X is independent of RV Y iff

P(X | Y) = P(X)                           iff

for every x-value of X and for every y-value Y

event X = x is independent of event Y = y

Notation: (X ⫫ Y)P or even shorter: (X ⫫ Y)

• X is conditionally independent of Y given Z iff

P(X | Y, Z) = P(X | Z)

Notation: (X ⫫ Y | Z)P or even shorter: (X ⫫ Y|Z)
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Compatible distributions
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Definition
Given a DAG G on RVs X = X1, ..., Xn, and a probability
distribution P over X we say that P is compatible with 
G iff it allows a factorization of the form

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))



Independence in SCM graphs

• Almost all interesting independences of RVs in an SCM 
can be identified in its associated graph 

• Relevant graph theoretical notion: d-separation

• D-separation in turn rests on 3 basic graph patterns
– Chains

– Forks

– Colliders 24

Property
X is independent of Y conditioned on Z for all 
distributions compatible with G
iff
X is d-separated from Y by Z in G



Independence in SCM graphs

Note the scope of the all-quantifier. 

Markov condition (<- direction): 

If X is d-separated from Y by Z   

then X is independent of Y conditioned on Z for all 
probability distributions compatible with G 
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Property
X is independent of Y conditioned on Z for all 
distributions  compatible with G
iff
X is d-separated from Y by Z in G



Independence in SCM graphs

Faithfulness ( -> direction): 

If X is not d-separated from Y by Z

then X is not independent of Y conditioned on Z     
for some probability distribution compatible 
with G

• Note:  We do not have: “For all distributions”; but 
usually the “some” is stronger: “for many”
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Property
X is independent of Y conditioned on Z for all 
distributions  compatible with G
iff
X is d-separated from Y by Z in G



Chains

Example (SCM 1) 

( X = school funding of high school , Y = its average SAT 
score, Z = average college  acceptance )

– V = {X,Y,Z} U = {UX,UY,UZ} F = {fX,fY,fZ}

– fX: X = UX fY: Y = x/3 + UY fZ: Z = y/16 + UZ
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UX

UY

UZ

X

Y

Z



Chains

Example (SCM 2) 

( X = switch, Y = circuit, Z = light bulb )
– V = {X,Y,Z} U = {UX,UY,UZ} F = {fX,fY,fZ}

– fX: X = UX

– closed if (X = up & UY = 0) or (X= down & UY=1)

open otherwise

– on if (Y=closed & UZ=0) or (Y=open & UZ=1)

off otherwise
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UX

UY

UZ

X

Y

Z

fY: Y = 

fZ: Z = 



Chains

Example (SCM 3)

( X = work hours, Y = training, Z = race time )
– V = {X,Y,Z}U = {UX,UY,UZ} F = {fX,fY,fZ}

– fX: X = UX

– fY: Y= 84 – x + UY

– fZ: Z = 100/y + UZ
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UX

UY

UZ

X

Y

Z



(In)Dependences in Chains

• Z and Y are likely dependent

( For some z,y: P(Z=z | Y = y) ≠ P(Z = z) )

• Y and X are likely dependent
(…)

• Z and X are likely dependent

• Z and X are independent, conditioned on Y

( For all x,z,y: P(Z=z | X=x,Y = y) = P(Z = z | Y = y) )
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UX

UY

UZ

X
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Dependence not Transitive

Example (SCM 4)

V = {X,Y,Z} U = {UX,UY,UZ} F = { fX,fY,fZ }
– fX: X =  UX

– fY: Y =  

– fZ: Z = 
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UX

UY

UZ

X

Y

Z

a   if X = 1 & UY= 1
b    if X = 2 & UY = 1
c    if UY = 2

i    if Y = c   or UZ = 1
j if Y ≠ c   &   UZ = 2 

• Y depends on X, Z depends on Y but
Z does not depend on X

• ``Variable level‘‘ graph hides independence

Typo in book of Pearl et al.



Independence Rule in Chains

Rule 1 (Conditional Independence in Chains)

Variables X and Z are independent given set of variables Y
iff

there is only one path between X and Z and this path is 
unidirectional and Y intercepts that path
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Forks

Example (SCM 5) 

( X = Temperature, Y = Ice cream sale, Z = Crime)
– V = {X,Y,Z} U = {UX,UY,UZ}  F = {fX,fY,fZ}

– fX: X = UX

– fY: Y = 4x + Uy

– fZ: Z= x/10 + UZ
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UX

UZUY

X

ZY



Forks

Example (SCM 5)

( X = switch, Y = light bulb 1, Z = light bulb 2)
– V = {X,Y,Z} U = {UX,UY,UZ} F = {fX,fY,fZ}

– fX: X = UX

– on   if (X = up & UY = 0) or (X= down & UY=1)       

off   otherwise

– on  if (X=up & UZ=0) or (X=down & UZ=1)

off   otherwise

34

fY: Y = 

fZ: Z = 

UX

UZUY

X

ZY



(In)Dependences in Forks

• X and Z are likely dependent

( ∃z,y: P(X=x | Z = z) ≠ P(X = x) )

• Y and X are likely dependent
…

• Z and Y are likely dependent

• Y and Z are independent, conditioned on X

( ∀x,z,y: P(Y=y | Z=z,X = x) = P(Y = y | X = x) )
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UZUY

X

ZY

UX



Independence Rule in Forks

Rule 2 (Conditional Independence in Forks)

If           variable X is a common cause of variables Y and Z

and there is only one path between Y, Z

then     Y and Z are conditionally independent given X. 
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UZUY

X

ZY

UX



Colliders

Example (SCM 6) 

( X = musical talent, Y = grade point, Z = scholarship)
– V = {X,Y,Z} U = {UX,UY,UZ} F = {fX,fY,fZ}

– fX: X = UX

– fY: X = UY

– fZ: Z =
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yes     if X = yes  or Y > 80%
no      otherwise

UZ

UYUX

YX

Z



(In)dependence in Colliders

• X and Z are likely dependent

( ∃z,y: P(X=x | Z = z) ≠ P(X = x) )

• Y and Z are likely dependent

• X and Y are independent

• X and Y are likely conditionally dependent, given Z

( ∃x,z,y: P(X= x | Y=y,Z = z) ≠  P(X = x | Z = z) )
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UZ

UYUX

Z

YX

If scholarship received (Z) 
but low grade (Y),  
then must be musically talented (X)

X-Y dependence (conditioned on Z)
is statistical but not causal



(In)dependence in Colliders (Extended)

Example (SCM 7) 

( X = coin flip, Y = second coin flip,                                                  
Z = bell rings, W = bell witness)

– V = {X,Y,Z,W} U = {UX,UY,UZ, UW } F = {fX,fY,, fW}

– fX: X = UX

– fY: Y = UY

– fZ: Z =

– fW: W = 
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UZ

UYUX

Z

YX

yes     if X = head  or Y  = head  
no       otherwise

yes     if Z= yes or (Z=no and UW = ½) 
no       otherwise

W

UW

X and Y are dependent conditioned on Z 
(and also on W ). 



Independence Rule in Colliders

Rule 3 (Conditional Independence in Colliders)

If        a variable Z is the collision node between

variables X and Y and there is only one path 

between X, Y, 

then   X and Y are unconditionally independent, but are 
dependent conditional on Z and any descendant of Z
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UZ

UYUX

Z

W
UW

X Y



D-separation

• Z (possibly a set of variables) prohibits the ``flow’’ of 
statistical effects/dependence between X and Y
– Must block every path

– Need only one blocking variable for each path
41

Property
X independent of Y (conditioned on Z)  for all compatible 
distributions iff
X d-separated from Y by Z in graph

Definition (informal)
X is d-separated from Y by Z iff
Z blocks every possible path between X and Y

Pipeline metaphor



Blocking Conditions
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Definition (formal) 

A path p in G (between X and Y) is blocked by Z iff

1. p contains chain A → B → C or fork A ← B → C s.t.
B ∈ Z or

2. p contains collider A → B ← C s.t. B ∉ Z and all  
descendants of B  are ∉ Z

If Z blocks every path between X and Y, then X and Y are
d-separated conditional on Z, for short: (X ⫫ Y | Z)G

In particular: X and Y are unconditionally independent
iff X-Y paths contain collider.  



Example 1 (d-separation)
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UW

UXUZ

W

X
Z

• Unconditional relation between Z and Y ?
– D-separated because of collider on single Z-Y path. 

Hence unconditionally independent

UT

Y

UY

T



Example 1 (d-separation)
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UW

UXUZ

W

X
Z

• Relation between Z and Y conditioned on {W}?
– Not d-separated 

• because fork X ∉ {W} 

• and collider ∈ {W}

– Hence conditionally dependent on {W} (and {T})

UT

Y

UY

T



Example 1 (d-separation)
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UW

UXUZ

W

X
Z

• Relation between Z and Y conditional on {W,X}?
– d-separated 

• Because fork X blocks 

– Hence conditionally independent on {W,X}

UT

Y

UY

T



Example 2 (d-separation)
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UW

UX

UZ

W

X
Z

• Relation between Z and Y?
– Not d-separated because second path not blocked (no 

collider)

– Hence not unconditionally independent 

UT

Y

UY

T

R
UR



Example 2 (d-separation)
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UW

UX

UZ

W

X
Z

• Relation between Z and Y conditionally on {R}?
– d-separated by {R} because

• First path blocked by fork R

• second path blocked by collider W ∉ {R} )

– Hence independent conditioned on {R}

UT

Y

UY

T

R
UR



Example 2 (d-separation)
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UW

UX

UZ

W

X
Z

• Relation between Z and Y conditionally on {R,W}?
– Not d-separated by {R,W} because W unblocks second 

path

– Hence not independent conditioned on {R,W}

UT

Y

UY

T

R
UR



Example 2 (d-separation)
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UW

UX

UZ

W

X
Z

• Relation between Z and Y conditionally on {R,W,X}?
– d-separated by {R,W,X} because 

• Now second path blocked by fork X

– Hence independent conditioned on {R,W,X}

UT

Y

UY

T

R
UR



Using D-separation

• Verifying/falsifying causal models on observational data 
1. G = SCM to test for

2. Calculate independencies IG entailed by G using d-
separation

3. Calculate independencies ID from data (by counting and 
estimating probabilities)      and compare with IG

4. If IG = ID, SCM is a good solution. Otherwise identify 
problematic I ∈ IG and change G locally to fit 
corresponding I’  ∈ ID
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Using D-separation

• This approach is local 
– If IG not equal ID, then can manipulate G w.r.t. RVs only 

involved in incompatibility 

– Usually seen as benefit w.r.t. global approaches via 
likelihood with scores, say

– Note: In score-based approach one always considers 
score of whole graph

(But: one also aims at decomposability/locality of scoring 
functions)

• This approach is qualitative and constraint based 

• Known algorithms: PC (Spirtes) , IC (Verma & Pearl)
51



Equivalent Graphs

• One learns graphs that are (observationally) equivalent
w.r.t. entailed independence assumptions

• Formalization
– v(G) = v-structure of G = set of colliders in G of form   

A→B←C where A and C not adjacent

– sk(G) = skeleton of G = undirected graph resulting from G

52

Definition 
G1 is equivalent to G2 iff v(G1) = v(G2) and sk(G1) = sk(G2)



Equivalent Graphs

Intuitively clear:

• Forks and chains have similar role w.r.t. independence

(Hence forgetting about the direction in skeleton does

not lead to loss of information)

• Collider has different role (hence need v-structure)

53

Theorem
Equivalent graphs entail same set of d-separations



Equivalent Graphs

• v(G) = v-structure of G = set of colliders in G of form   
A→B←C where A and C not adjacent

• sk(G) = skeleton of G = undirected graph resulting from 
G

54

X1  Season

X2
rain

X3
Sprinkler

X4 Wet

X5 slippery

X1  Season

X2
Rain

X3
Sprinkler

X4 Wet

X5 slipperyG1 G2

• v(G1) = v(G2)
• sk(G1) = sk(G2)

• Hence equivalent

Definition 
G1 is equivalent to G2 iff v(G1) = v(G2) and sk(G1) = sk(G2)



Equivalent Graphs
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X1  Season

X2
rain

X3
Sprinkler

X4 Wet

X5 slippery

X1  Season

X2
Rain

X3
Sprinkler

X4 Wet

X5 slipperyG1 G2

• v(G1) ≠ v(G2)
• sk(G1) = sk(G2)

• Hence not 
equivalent

• v(G) = v-structure of G = set of colliders in G of form   
A→B←C where A and C not adjacent

• sk(G) = skeleton of G = undirected graph resulting from 
G

Definition 
G1 is equivalent to G2 iff v(G1) = v(G2) and sk(G1) = sk(G2)



IC-Algorithm (Verma & Pearl, 1990)
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Input 
P resp. 
P-independencies

(C ⫫ A | B)
(C ⫫ D | B)
(D ⫫ A | B)
(E ⫫ A | B)
(E ⫫ B | C,D)

Output
Pattern 
(represents compatible class of
equivalent DAGs)Algorithm

Steps 1-3 A B E
C

D

Verma, T. & Pearl, J: Equivalence and synthesis of causal models. 
Proceedings of the 6. conference on Uncertainty in AI, 220-227, 1990. 

Definition 
Pattern =   partially directed DAG

=   DAG with directed and non-directed edges

Directed edge A-> B in pattern:    In any of the DAGs the edge is A->B
Undirected edge A-B in pattern:  There exists (equivalent) DAGs with A->B in one and

B ->A in the other



IC-Algorithm (Informally)

1. Find all pairs of variables that are dependent of each 
other (applying standard statistical method on the 
database) and eliminate indirect dependencies

2. + 3. Determine directions of dependencies
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IC-Algorithm (schema) 
1. Add (undirected) edge A-B iff there is no set of RVs Z 

such that (A⫫B|Z)P. Otherwise let ZAB denote some set Z
with (A⫫B|Z)P.

2. If A−B−C and not A-C, then  A→B←C   iff

B  ∉ ZAC

3. Orient as many of the undirected edges as possible, 
under the following constraints: 
• orientation should not create a new v-structure and

• orientation should not create a directed cycle.

58

Steps 1 and step 3 leave out details of search
• Hierarchical refinement of step 1 gives PC algorithm (next slide)
• A refinement of step 3 possible with 4 rules (thereafter)

Note: „Possible“ in step 3 means: if you can find two patterns such that in the first
the edge A-B becomes A->B but in the other A<-B, then do not orient. 



PC algorithm (Spirtes & Glymour, 1991) 

• Remember Step 1 of IC
1. Add (undirected) edge A-B iff there is no set of RVs  Z 

such that (A⫫B|Z)P. Otherwise let ZAB denote some set Z
with (A⫫B|Z)P.

• Have to search all sets Z of RVs for given nodes A,B
– Start with fully connected graph (with undirected edges)

– Done systematically by sets of cardinality 0,1,2,3…

– Remove edges from graph as soon as independence 
found

– Polynomial time for graphs of finite degree (because can 
restrict search for Z to nodes adjacent to A,B) 

59

P.Spirtes, C. Glymour:  An algorithm for fast recovery of sparse
causal graphs. Social Science Computer Review 9: 62-72, 1991.



IC-Algorithm (with rule-specified last step) 
1. as before

2. as before

3. Orient undirected edges as follows
• B — C  into B→C if there is an arrow A→B s.t. A and C are 

not adjacent;

• A — B  into A→B  if there is a chain A→C→B;

• A — B  into A→B if there are two chains A—C→B and      
A—D→B such that C and D are nonadjacent;

• A — B  into A→B if there are two chains A—C→D and 
C→D→B s.t. C and B are nonadjacent;
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IC algorithm 

61

Theorem
The 4 rules specified in step 3 of the IC algorithm are necessary 
(Verma & Pearl, 1992) and sufficient (Meek, 95) for getting a 
maximally oriented pattern of DAGs compatible with the input-
independencies. 

T. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies
has a causal explanation.   In D. Dubois and M. P. Wellman, editors, UAI ’92: Proceedings of the Eighth
Annual Conference on Uncertainty in Artificial Intelligence, 1992, pages 323–330.
Morgan Kaufmann, 1992.

Christopher Meek: Causal inference and causal explanation
with background knowledge. UAI 1995: 403-410, 1995.



Stable Distribution

• The IC algorithm accepts stable distributions P (over set 
of variables) as input, i.e. distribution P s.t. there is DAG 
G giving exactly the P-independencies

• Extension IC*  works also for sampled distributions 
generated by so-called latent structures
– A latent structure (LS) specifies additionally  a (subset) of 

observation variables for a causal structure

– A LS not determined by independencies

– IC*  not discussed here, see, e.g.,  

J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.
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Criticism and further developments

• Problem of ignorance ubiquitous in science practice

• IC faces the problem of ignorance (Leuridan 2009)

• (Leuridan 2009) approaches this with adaptive logic

63

B. Leuridan. Causal discovery and the problem of ignorance: an adaptive logic
approach. Journal of Applied Logic, 7(2):188–205, 2009.

Definition
The problem of ignorance denotes the fact that there are RVs 
A, B and sets of RVs Z such that it is not known whether 
(A⫫B|Z)P or not  (A⫫B|Z)P



APPENDIX
Uhhh, a lecture with a hopefully useful
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Probability theory basics reminder

Random variable (RV)

• possible worlds defined by assignment of 
values to random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?).                

Domain is < true , false >

• Discrete random variables
e.g., possible value of  Weather is one of         

< sunny, rainy, cloudy, snow >

• Domain values must be exhaustive and 
mutually exclusive

• Elementary propositions are constructed by 
assignment of a value to a
random variable: e.g., 

– Cavity = false (abbreviated as ¬cavity)
– Cavity = true (abbreviated as cavity)

• (Complex) propositions formed from 
elementary propositions and standard logical 
connectives, e.g., Weather = sunny Ú Cavity = 
false

Probabilities
• Axioms (for propositions 𝑎, 𝑏, ⊤ = (𝑎 ∨ ¬𝑎), and

⊥ = ¬ ⊤):

– 0 ≤ 𝑃 𝑎 ≤ 1; 𝑃(⊤) = 1; 𝑃(⊥) = 0
– (𝑃(𝑎 ∨ 𝑏) = 𝑃(𝑎) + 𝑃(𝑏) − 𝑃(𝑎 ∧ 𝑏)

• Joint probability distribution of 𝐗 = {𝑋<,… , 𝑋>}
– 𝑷 𝑋<,… ,𝑋>
– gives the probability of every atomic event on 𝑿

• Conditional probability                                         
𝑃(𝑎 | 𝑏) = 𝑃(𝑎 ∧ 𝑏) / 𝑃(𝑏) 𝑖𝑓 𝑃(𝑏) > 0

• Chain rule 

𝑷 𝑋<,… , 𝑋> = G
HI<

>
𝑷(𝑋H|𝑋<,… , 𝑋HJ<)

• Marginalization: 𝑷 𝑌 = ∑M∈N 𝑷(𝑌, 𝑧)
• Conditioning on 𝑍: 

– 𝑷 𝑌 = ∑M∈N 𝑷 𝑌 𝑧 𝑷(𝑧) (discrete)

– 𝑷 𝑌 = ∫𝑷 𝑌 𝑧 𝑷 𝑧 𝑑𝑧 (continuous)
= 𝔼𝒛∼V(M)P(Y|z)    (expected value 

notation)

• Bayes‘ Rule

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) Y 𝑃(𝐻)

𝑃(𝐷) =
𝑃(𝐷|𝐻) Y 𝑃(𝐻)
∑Z 𝑃 𝐷|ℎ 𝑃(ℎ)
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