Web-Mining Agents

Prof. Dr. Ralf Möller Dr. Özgür Özçep Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Structural Causal Models

slides prepared by Özgür Özçep

Part I: Basic Notions (SCMs, d-separation)

IM FOCUS DAS LEBEN

Literature

• J. Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics – A primer, Wiley, 2016.

(Main Reference)

• J. Pearl: Causality, CUP, 2000.

(The book on causality from the perspective of probabilistic graphical models)

 J. Pearl, D. Mackenzie: The book of why, Basic Books, 2018

(Popular science level, but definitely worth a read)

Color Conventions for part on SCMs

- Formulae will be encoded in this greenish color
- Newly introduced terminology and definitions will be given in blue
- Important results (observations, theorems) as well as emphasizing some aspects will be given in red
- Examples will be given with standard orange
- Comments and notes are given with post-it-yellow background

• Usual warning:

"Correlation is not causation"

 But sometimes (if not very often) one needs causation to understand statistical data

A remarkable correlation? A simple causality!

(Mentioned in a feauture called the "Mops des Monats" in the book radio show "Lesart" on Deutschlandfunk Kultur)

Simpson's Paradox (Example)

Record recovery rates of 700 patients given access to a drug

	Recovery rate with drug	Recovery rate without drug
Men	81/87 (93%)	234/270 (87%)
Women	192/263 (73%)	55/80 (69%)
Combined	273/350 (78%)	289/350 (83%)

• Paradox:

ERSITÄT ZU LÜBECK

INFORMATIONSSYSTEMI

- For men, taking drugs has benefit
- For women, taking drugs has benefit, too.
- But: for all persons taking drugs has no benefit

Resolving the Paradox (Informally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- In drug example
 - Why has taking drug less benefit for women?
 Answer: Estrogen has negative effect on recovery
 - Data: Women more likely to take drug than men
 - Choosing randomly any person taking drugs will rather give a woman – and for these recovery is less beneficial
- In this case: Have to consider segregated data

(not aggregated data)

Resolving the Paradox Formally (Look ahead)

• We have to understand the causal mechanisms that lead to the data in order to resolve the paradox

- Drug usage and recovery have common cause
- Gender is a confounder

Simpson's Paradox (Again)

 Record recovery rates of 700 patients given access to a drug w.r.t. blood pressure (BP) segregation

	Recovery rate without drug	Recovery rate with drug
Low BP	81/87 (93%)	234/270 (87%)
High BP	192/263 (73%)	55/80 (69%)
Combined	273/350 (78%)	289/350 (83%)

- BP recorded at end of experiment
- This time segregated data recommend not using drug whereas aggregated data does

Resolving the Paradox (Informally)

- We have to understand the causal mechanisms that lead to the data in order to resolve the paradox
- In this example
 - Drug effect is: lowering blood pressure (but may have toxic effects)
 - Hence: In aggregated population drug usage recommended
 - In segregated data one sees only toxic effects

Resolving the Paradox Formally (Lookahead)

 We have to understand the causal mechanisms that lead to the data in order to resolve the paradox (look ahead)

Ingredients of a Statistical Theory of Causality

- Working definition of causation
- Method for creating causal models
- Method for linking causal models with features of data
- Method for reasoning over model and data

Working Definition

A (random) variable X is a cause of a (random) variable Y if Y - in any way - relies on X for its value

Structural Causal Model: Definition

Definition

A structural causal model (SCM) consists of

- A set U of exogenous variables
- A set V of endogenous variables
- A set of functions f assigning each variable in V a value based on values of other variables from V U U
- Only endogenous variables are those that are descendants of other variables
- Exogenous variables are roots of model.
- Value instantiations of exogenous variables completely determine values of all variables in SCM

Definition

- 1. X is a direct cause of Y iff Y = f(...,X,...) for some f.
- 2. X is a cause of Y iff X is a direct cause of Y or there is Z s.t. X is a direct cause of Z and Z is a cause of Y.

Graphical Causal Model

- Graphical causal model associated with SCM
 - Nodes = variables
 - Edges = from X to Y if Y = f(...,X,...)

- Example SCM
 - $U = \{X,Y\}$
 - $V = \{Z\}$
 - $F = \{f_Z\}$

IIVERSITÄT ZU LÜBECK

- $f_Z : Z = 2X + 3Y$
- (Z = salary, X = years of experience, Y = years of profession)

Associated graph

Graphical Models

- Graphical models capture only partially SCMs
- But very intuitive and still allow for conserving much of causal information of SCM
- Convention for the next lectures: Consider only Directed Acyclic Graphs (DAGs)

SCMs and Probabilities

- Consider SCMs where all variables are random variables (RVs)
- Full specification of functions **f** not always possible
- Instead: Use conditional probabilities as in BNs

U not mentioned here

- $f_X(...Y...)$ becomes P(X | ... Y...)
- Technically: Non-measurable RV U models (probabilistic) indeterminism:

$$P(X \mid ..., Y \dots) = f_X(\dots Y \dots, U)$$

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

SCMs and Probabilities

 Product rule as in Bayesian networks (BNs) used for full specification of joint distribution of all RVs X₁, ..., X_n

 $P(X_1 = x_1, ..., X_n = x_n) = \prod_{1 \le i \le n} P(x_i | parentsof(x_i))$

- Can make same considerations on (probabilistic) (in)dependence of RVs.
- Will be done in the following systematically

Bayesian Networks vs. SCMs

- BNs model statistical dependencies
 - Directed, but not necessarily cause-relation
 - Inherently statistical
 - Default application: discrete variables
- SCMs model causal relations
 - SCMs with random variables (RVs) induce BNs
 - Assumption: There is hidden causal (deterministic) structure behind statistical data
 - More expressive than BNs: Every BN can be modeled by SCMs but not vice versa
 - Default application: continuous variables

Reminder: Conditional Independence

- Event A independent of event B iff P(A | B) = P(A)
- RV X is independent of RV Y iff
 P(X | Y) = P(X) iff
 for every x-value of X and for every y-value Y
 event X = x is independent of event Y = y
 Notation: (X II Y)_P or even shorter: (X II Y)
- X is conditionally independent of Y given Z iff P(X | Y, Z) = P(X | Z)

Notation: $(X \perp Y \mid Z)_P$ or even shorter: $(X \perp Y \mid Z)$

Definition

Given a DAG G on RVs $X = X_1, ..., X_n$, and a probability distribution P over X we say that P is compatible with G iff it allows a factorization of the form

P (X₁, ..., X_n) = $\pi_{i=1}$ **P** (X_i | Parents(X_i))

Independence in SCM graphs

- Almost all interesting independences of RVs in an SCM can be identified in its associated graph
- Relevant graph theoretical notion: d-separation
 Property
 X is independent of Y conditioned on Z for all distributions compatible with G
 iff

X is d-separated from Y by Z in G

- D-separation in turn rests on 3 basic graph patterns
 - Chains
 - Forks

Independence in SCM graphs

```
Property
X is independent of Y conditioned on Z for all
distributions compatible with G
iff
X is d-separated from Y by Z in G
```

Note the scope of the all-quantifier.

```
Markov condition (<- direction):
```

```
If X is d-separated from Y by Z
```

then X is independent of Y conditioned on Z for all probability distributions compatible with G

Independence in SCM graphs

```
Property
X is independent of Y conditioned on Z for all
distributions compatible with G
iff
X is d-separated from Y by Z in G
```

```
Faithfulness (-> direction):
```

- If X is **not** d-separated from Y by Z
- then X is **not** independent of Y conditioned on Z for **some** probability distribution compatible with G
- Note: We do not have: "For all distributions"; but usually the "some" is stronger: "for many"

Chains

Chains

Chains

(In)Dependences in Chains

- Z and Y are likely dependent
 (For some z,y: P(Z=z | Y = y) ≠ P(Z = z))
- Y and X are likely dependent
 (...)
- Z and X are likely dependent
- Z and X are independent, conditioned on Y

(For all x,z,y: P(Z=z | X=x,Y=y) = P(Z=z | Y=y))

Dependence not Transitive

Independence Rule in Chains

Rule 1 (Conditional Independence in Chains) Variables X and Z are independent given set of variables Y iff there is only one path between X and Z and this path is

unidirectional and Y intercepts that path

Forks

33

Forks

(In)Dependences in Forks

- X and Z are likely dependent ($\exists z,y: P(X=x | Z = z) \neq P(X = x)$)
- Y and X are likely dependent
- Z and Y are likely dependent
- Y and Z are independent, conditioned on X ($\forall x,z,y$: P(Y=y | Z=z,X = x) = P(Y = y | X = x))

. . .

Independence Rule in Forks

Colliders

(In)dependence in Colliders

- X and Z are likely dependent ($\exists z,y: P(X=x | Z = z) \neq P(X = x)$)
- Y and Z are likely dependent
- X and Y are independent
- X and Y are likely conditionally dependent, given Z

$$(\exists x, z, y: P(X = x | Y = y, Z = z) \neq P(X = x | Z = z))$$

If scholarship received (Z) but low grade (Y), then must be musically talented (X)

X-Y dependence (conditioned on Z) is statistical but not causal

38

(In)dependence in Colliders (Extended)

Independence Rule in Colliders

Rule 3 (Conditional Independence in Colliders)

If a variable Z is the collision node between variables X and Y and there is only one path between X, Y,

then X and Y are unconditionally independent, but are dependent conditional on Z and any descendant of Z

D-separation

Property X independent of Y (conditioned on Z) for all compatible distributions iff X d-separated from Y by Z in graph

Definition (informal)X is d-separated from Y by ZiffZ blocks every possible path between X and Y

- Z (possibly a set of variables) prohibits the ``flow" of statistical effects/dependence between X and Y
 - Must block every path

Pipeline metaphor

Need only one blocking variable for each path

Blocking Conditions

Definition (formal)

A path p in G (between X and Y) is blocked by Z iff

- 1. p contains chain $A \rightarrow B \rightarrow C$ or fork $A \leftarrow B \rightarrow C$ s.t. B $\in Z$ or
- 2. p contains collider $A \rightarrow B \leftarrow C$ s.t. $B \notin Z$ and all descendants of B are $\notin Z$

If Z blocks every path between X and Y, then X and Y are d-separated conditional on Z, for short: $(X \perp Y \mid Z)_G$

In particular: X and Y are unconditionally independent iff X-Y paths contain collider.

- Unconditional relation between Z and Y?
 - D-separated because of collider on single Z-Y path.
 Hence unconditionally independent

- Relation between Z and Y conditioned on {W}?
 - Not d-separated

NIVERSITÄT ZU LÜBECK

UT FÜR INFORMATIONSSYSTEMI

- because fork $X \notin \{W\}$
- and collider $\in \{W\}$
- Hence conditionally dependent on {W} (and {T})

44

- Relation between Z and Y conditional on {W,X}?
 - d-separated
 - Because fork X blocks
 - Hence conditionally independent on {W,X}

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

- Relation between Z and Y?
 - Not d-separated because second path not blocked (no collider)
 - Hence not unconditionally independent

- Relation between Z and Y conditionally on {R}?
 - d-separated by {R} because

NIVERSITÄT ZU LÜBECK

UT FÜR INFORMATIONSSYSTEM

- First path blocked by fork R
- second path blocked by collider $W \notin \{R\}$)
- Hence independent conditioned on {R}

- Relation between Z and Y conditionally on {R,W}?
 - Not d-separated by {R,W} because W unblocks second path
 - Hence not independent conditioned on {R,W}

- Relation between Z and Y conditionally on {R,W,X}?
 - d-separated by {R,W,X} because
 - Now second path blocked by fork X
 - Hence independent conditioned on {R,W,X}

Using D-separation

- Verifying/falsifying causal models on observational data
 - 1. G = SCM to test for
 - 2. Calculate independencies I_G entailed by G using dseparation
 - 3. Calculate independencies I_D from data (by counting and estimating probabilities) and compare with I_G
 - 4. If $I_G = I_{D_i}$ SCM is a good solution. Otherwise identify problematic $I \in I_G$ and change G locally to fit corresponding $I' \in I_D$

Using D-separation

- This approach is local
 - If I_G not equal I_D, then can manipulate G w.r.t. RVs only involved in incompatibility
 - Usually seen as benefit w.r.t. global approaches via likelihood with scores, say
 - Note: In score-based approach one always considers score of whole graph

(But: one also aims at decomposability/locality of scoring functions)

- This approach is qualitative and constraint based
- Known algorithms: PC (Spirtes) , IC (Verma & Pearl)

- One learns graphs that are (observationally) equivalent w.r.t. entailed independence assumptions
- Formalization
 - -v(G) = v-structure of G = set of colliders in G of form

 $A \rightarrow B \leftarrow C$ where A and C not adjacent

- sk(G) = skeleton of G = undirected graph resulting from G

Definition G₁ is equivalent to G₂ iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$

Theorem

Equivalent graphs entail same set of d-separations

Intuitively clear:

- Forks and chains have similar role w.r.t. independence (Hence forgetting about the direction in skeleton does not lead to loss of information)
- Collider has different role (hence need v-structure)

- v(G) = v-structure of G = set of colliders in G of form
 A→B←C where A and C not adjacent
- sk(G) = skeleton of G = undirected graph resulting from
 G

Definition G₁ is equivalent to G₂ iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$

- v(G) = v-structure of G = set of colliders in G of form
 A→B←C where A and C not adjacent
- sk(G) = skeleton of G = undirected graph resulting from
 G

Definition G₁ is equivalent to G₂ iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$

IC-Algorithm (Verma & Pearl, 1990)

Definition

Pattern = partially directed DAG

= DAG with directed and non-directed edges

Directed edge A-> B in pattern: In any of the DAGs the edge is A->B Undirected edge A-B in pattern: There exists (equivalent) DAGs with A->B in one and B ->A in the other

Verma, T. & Pearl, J: Equivalence and synthesis of causal models. MATIONSSYSTEME Proceedings of the 6. conference on Uncertainty in AI, 220-227, 1990.

IM FOCUS DAS LEBEN 56

IC-Algorithm (Informally)

- 1. Find all pairs of variables that are dependent of each other (applying standard statistical method on the database) and eliminate indirect dependencies
- 2. + 3. Determine directions of dependencies

Note: "Possible" in step 3 means: if you can find two patterns such that in the first the edge A-B becomes A->B but in the other A<-B, then do not orient.

IC-Algorithm (schema)

- 1. Add (undirected) edge A-B iff there is no set of RVs Z such that $(A \parallel B \mid Z)_{P_{.}}$ Otherwise let Z_{AB} denote some set Z with $(A \parallel B \mid Z)_{P_{.}}$
- 2. If A-B-C and not A-C, then $A \rightarrow B \leftarrow C$ iff

$B \notin Z_{AC}$

- 3. Orient as many of the undirected edges as possible, under the following constraints:
 - orientation should not create a new v-structure and
 - orientation should not create a directed cycle.

Steps 1 and step 3 leave out details of search

- Hierarchical refinement of step 1 gives PC algorithm (next slide)
- A refinement of step 3 possible with 4 rules (thereafter)

PC algorithm (Spirtes & Glymour, 1991)

- Remember Step 1 of IC
 - 1. Add (undirected) edge A-B iff there is no set of RVs Z such that $(A \parallel B \mid Z)_{P_{.}}$ Otherwise let Z_{AB} denote some set Z with $(A \parallel B \mid Z)_{P_{.}}$
- Have to search all sets Z of RVs for given nodes A,B
 - Start with fully connected graph (with undirected edges)
 - Done systematically by sets of cardinality 0,1,2,3...
 - Remove edges from graph as soon as independence found
 - Polynomial time for graphs of finite degree (because can restrict search for Z to nodes adjacent to A,B)

P.Spirtes, C. Glymour: An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review 9: 62-72, 1991.

IC-Algorithm (with rule-specified last step)

- 1. as before
- 2. as before
- 3. Orient undirected edges as follows
 - B C into B \rightarrow C if there is an arrow A \rightarrow B s.t. A and C are not adjacent;
 - $A \longrightarrow B$ into $A \longrightarrow B$ if there is a chain $A \longrightarrow C \longrightarrow B$;
 - A B into $A \rightarrow B$ if there are two chains A—C $\rightarrow B$ and A—D $\rightarrow B$ such that C and D are nonadjacent;
 - A B into A \rightarrow B if there are two chains A C \rightarrow D and C \rightarrow D \rightarrow B s.t. C and B are nonadjacent;

IC algorithm

Theorem

The 4 rules specified in step 3 of the IC algorithm are necessary (Verma & Pearl, 1992) and sufficient (Meek, 95) for getting a maximally oriented pattern of DAGs compatible with the inputindependencies.

T. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies has a causal explanation. In D. Dubois and M. P. Wellman, editors, UAI '92: Proceedings of the Eighth Annual Conference on Uncertainty in Artificial Intelligence, 1992, pages 323–330. Morgan Kaufmann, 1992.

Christopher Meek: Causal inference and causal explanation with background knowledge. UAI 1995: 403-410, 1995.

Stable Distribution

- The IC algorithm accepts stable distributions P (over set of variables) as input, i.e. distribution P s.t. there is DAG G giving exactly the P-independencies
- Extension IC* works also for sampled distributions generated by so-called latent structures
 - A latent structure (LS) specifies additionally a (subset) of observation variables for a causal structure
 - A LS not determined by independencies
 - IC* not discussed here, see, e.g.,
 - J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.

Criticism and further developments

Definition

The problem of ignorance denotes the fact that there are RVs A, B and sets of RVs Z such that it is not known whether $(A \parallel B \mid Z)_P$ or not $(A \parallel B \mid Z)_P$

- Problem of ignorance ubiquitous in science practice
- IC faces the problem of ignorance (Leuridan 2009)
- (Leuridan 2009) approaches this with adaptive logic

B. Leuridan. Causal discovery and the problem of ignorance: an adaptive logic approach. Journal of Applied Logic, 7(2):188–205, 2009.

Uhhh, a lecture with a hopefully useful

APPENDIX

IM FOCUS DAS LEBEN 64

Probability theory basics reminder

Random variable (RV)

- possible worlds defined by assignment of values to random variables.
- Boolean random variables

 e.g., Cavity (do I have a cavity?).
 Domain is < true , false >
- Discrete random variables
 e g possible value of Weather
 - e.g., possible value of Weather is one of < sunny, rainy, cloudy, snow >
- Domain values must be exhaustive and mutually exclusive
- Elementary propositions are constructed by assignment of a value to a random variable: e.g.,
 - Cavity = false (abbreviated as ¬cavity)
 - Cavity = true (abbreviated as cavity)
- (Complex) propositions formed from elementary propositions and standard logical connectives, e.g., Weather = sunny \vee Cavity = false

Probabilities

- Axioms (for propositions $a, b, T = (a \lor \neg a)$, and $\bot = \neg T$):
 - $0 \le P(a) \le 1; P(T) = 1; P(\bot) = 0$
 - $(P(a \lor b) = P(a) + P(b) P(a \land b))$
- Joint probability distribution of $\mathbf{X} = \{X_1, \dots, X_n\}$
 - $P(X_1,\ldots,X_n)$
 - gives the probability of every atomic event on X
- Conditional probability $P(a \mid b) = P(a \land b) / P(b) if P(b) > 0$
 - Chain rule $\boldsymbol{P}(X_1, \dots, X_n) = \prod_{i=1}^n \boldsymbol{P}(X_i | X_1, \dots, X_{i-1})$
- Marginalization: $P(Y) = \sum_{z \in Z} P(Y, z)$
- Conditioning on Z:
 - $\boldsymbol{P}(Y) = \sum_{z \in Z} \boldsymbol{P}(Y|z)\boldsymbol{P}(z)$ (discrete)
 - $P(Y) = \int P(Y|z)P(z)dz$ (continuous) = $\mathbb{E}_{z \sim P(z)} P(Y|z)$ (expected value notation)
 - Bayes' Rule $P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)} = \frac{P(D|H) \cdot P(H)}{\sum_{h} P(D|h)P(h)}$

