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Literature

. J. Pearl, M. Glymour, N. P. Jewell: Causal inference in
statistics — A primer, Wiley, 2016.

(Main Reference)

. J. Pearl: Causality, CUP, 2000.

(The book on causality from the perspective of
probabilistic graphical models)

. J. Pearl, D. Mackenzie: The book of why, Basic Books,
2018

(Popular science level, but definitely worth a read)
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Color Conventions for part on SCMs

Formulae will be encoded in this greenish color

- Newly introduced terminology and definitions will be given
in blue

- Important results (observations, theorems) as well as
emphasizing some aspects will be given in red

- Examples will be given with standard orange

- Comments and notes are given with

post-it-yellow background
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Motivation

 Usual warning:

,Correlation is not causation”

- But sometimes (if not very often) one needs causation
to understand statistical data
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A remarkable correlation? A simple causality!
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the book radio show ,Lesart”

on Deutschlandfunk Kultur)




Simpson’s Paradox

- Record recovery rates of 700 patients given access to a
drug

Recovery rate Recovery rate

with drug without drug
Men 81/87 (93%) 234/270 (87%)
Women 192/263 (73%) 55/80 (69%)
Combined  273/350 (78%) 289/350 (83%)

- Paradox:
— For men, taking drugs has benefit
— For women, taking drugs has benefit, too.
— But: for all persons taking drugs has no benefit

JJJJJJJ
3059 ¢ INSTITUT FUR INFORMATIONSSYSTEME

RSI
GERSIZ,



Resolving the Paradox (Informally)

« We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox

« In
— Why has taking drug less benefit for women?
Answer: Estrogen has negative effect on recovery
— Data: Women more likely to take drug than men

— Choosing randomly any person taking drugs will rather
give a woman - and for these recovery is less beneficial

- In this case: Have to consider segregated data
s (not aggregated data)
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Resolving the Paradox Formally (Look ahead)

« We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox

Gender

Drug usage Recovery

* Drug usage and recovery have common cause
* Genderis a confounder
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Simpson’s Paradox (Again)

- Record recovery rates of 700 patients given access to a
drug w.r.t. blood pressure (BP) segregation

Recovery rate Recovery rate

without drug with drug
Low BP 81/87 (93%) 234/270 (87%)
High BP 192/263 (73%) 55/80 (69%)
Combined 273/350 (78%) 289/350 (83%)

- BP recorded at end of experiment

. This time segregated data recommend not using drug
whereas aggregated data does
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Resolving the Paradox (Informally)

« We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox

« In
— Drug effect is: lowering blood pressure (but may have
toxic effects)

— Hence: In aggregated population drug usage
recommended

— In segregated data one sees only toxic effects
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Resolving the Paradox Formally (Lookahead)

- We have to understand the causal mechanisms that
lead to the data in order to resolve the paradox (look

ahead)

Blood pressure

e
Drug usage Recovery
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Ingredients of a Statistical Theory of Causality

:
'
11111

Working definition of causation
Method for creating causal models
Method for linking causal models with features of data

Method for reasoning over model and data

LLLLLL
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Working Definition

A (random) variable X is a cause of a (random) variable Y if
Y - in any way - relies on X for its value
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Structural Causal Model: Definition

Definition
A structural causal model (SCM) consists of
— A set U of exogenous variables

— A set V of endogenous variables

— A set of functions f assigning each variable in V a value
based on values of other variables from V U U

* Only endogenous variables are those that are descendants of
other variables

* Exogenous variables are roots of model.

* Value instantiations of exogenous variables completely
determine values of all variables in SCM
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Causality in SCMs

Definition
1. XisadirectcauseofY iff Y=1f(... X,...) forsomef.

2. Xisacauseof Y iff Xis a direct cause of Y or there is Z s.t. X
is a direct cause of Zand Z is a cause of Y.
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Graphical Causal Model

 Graphical causal model associated with SCM

— Nodes = variables
— Edges=from XtoYifY=1(... X, ....)

- Example SCM . Associated graph
- U={X,Y}
- V={Z} .
- F= {fz}
— f,:Z=2X+3Y

(Z = salary, X = years of experience,
Y = years of profession)

qqqqqq
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Graphical Models

. Graphical models capture only partially SCMs

- But very intuitive and still allow for conserving much of
causal information of SCM

- Convention for the next lectures: Consider only
Directed Acyclic Graphs (DAGS)
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SCMs and Probabilities

Consider SCMs where all variables are random variables
(RVs)

Full specification of functions f not always possible

Instead: Use conditional probabilities as in BNs

— fy(...Y ...) becomes P(X|...Y...)
— Technically: Non-measurable RV U models (probabilistic)

indeterminism:
PX|....Y...)="f(...Y ..., U)
T~

U not mentioned here
%ﬁ&f@'fé UNIVERSITAT ZU LUBECK 19
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SCMs and Probabilities

 Product rule as in Bayesian networks (BNs) used for full
specification of joint distribution of all RVs X, ..., X,

P(X1 — X11 KRy Xn - Xn) — ﬂ1 <i<n P( Xi | parentSOf(Xi) )

- Can make same considerations on (probabilistic)
(in)dependence of RVs.

- Will be done in the following systematically
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Bayesian Networks vs. SCMs

- BNs model statistical dependencies
— Directed, but not necessarily cause-relation
— Inherently statistical
— Default application: discrete variables

« SCMs model causal relations
— SCMs with random variables (RVs) induce BNs

— Assumption: There is hidden causal (deterministic)
structure behind statistical data

— More expressive than BNs: Every BN can be modeled by
SCMs but not vice versa

— Default application: continuous variables

JJJJJJJ
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Reminder: Conditional Independence

Event A independent of event B iff P(A | B) = P(A)
RV X'is independent of RVY iff
P(X|Y)=P(X) iff
for every x-value of X and for every y-value Y
event X = x isindependent of event Y =y
Notation: (X ILY), oreven shorter: (X 1LY)
- Xis conditionally independent of Y given Z iff
PIX|Y,2Z)=P(X|2)
Notation: (X 1LY |Z), or even shorter: (X 1L Y|Z)
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Compatible distributions

Definition
Given a DAG Gon RVs X =X;, ..., X, and a probability

distribution P over X we say that P is compatible with
G iff it allows a factorization of the form

P (Xy, ..., X,) =T,-, P (X;| Parents(X)))

WU & UNIVERSITAT ZU LUBECK
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Independence in SCM graphs

. Almost all interesting independences of RVs in an SCM

« Relevant graph theoretical notion: d-separation

can be identified in its associated graph

Property
X is independent of Y conditioned on Z for all

distributions compatible with G
iff
X is d-separated from Y by Z in G

- D-separation in turn rests on 3 basic graph patterns

RSI
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— Chains
— Forks
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Independence in SCM graphs

Property
X is independent of Y conditioned on Z for all

distributions compatible with G
iff

X is d-separated from Y by Z in G

Note the scope of the all-quantifier.
Markov condition (<- direction):
If X is d-separated from Y by Z

then X is independent of Y conditioned on Z for all
probability distributions compatible with G

qqqqqqq
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Independence in SCM graphs

Property
X is independent of Y conditioned on Z for all

distributions compatible with G
iff
X is d-separated from Y by Z in G

Faithfulness ( -> direction):

If X is not d-separated from Y by Z

then X is not independent of Y conditioned on Z
for some probability distribution compatible
with G

« Note: We do not have: “For all distributions”; but

S i
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Chains

Example (SCM 1)
( X =school funding of high school, Y = its average SAT
score, Z =average college acceptance)
- V={X)Y,Z} U = {Uy,Uy,U} F = {fy,fy,f;}
— fy: X = Uy fy: Y =x/3 + Uy f2Z=y/16 + U,
UX
Uy .\. X
U, .\x Y
.\X i

5 "‘;ﬂi\\v :
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Chains

Example (SCM 2)

( X = switch, Y = circuit, Z = light bulb)

- V={X)Y,Z}
— fX: X= UX

— closed
fy: Y =
open

— on
fZ=
’ {off

U — {UXIUYIUZ} F — {fXIfYIfZ}

|f (X — Up & UY — O) or (X= dOWh & UY=1)
otherwise

if (Y=closed & U,=0) or (Y=0pen & U,=1)
otherwise




Chains

Example (SCM 3)
( X =work hours, Y = training, Z =race time)
- V — {XIYIZ}U — {UXIUYIUZ} F - {lelefZ}
— fX: X= UX
— fY:Y=84—X+UY
- fz!Z=100/y+UZ UX .\.
X
Uy .\x
U, Y
.\X i
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(In)Dependences in Chains

- ZandY are likely dependent
(Forsomezy:P(Z=z|Y=y)=P(Z=2))

- Y and X are|likely dependent
(...)
- Zand X are likely dependent

- Zand X are independent, conditioned on Y
(Forall x,zy:P(Z=z | X=x,Y =y)=P(Z=2z|Y =vy))




Dependence not Transitive

Example (SCM 4)
V — {X,Y,Z} U — {UXIUYIUZ} F — { f If IfZ}
— fX: X= UX
T a ifX=1&Uy=1 Uy

~f:Y= — b ifX=28&Uy=1

c ifUy=2 UY\X
i ifY=c or U,=1 UZ'\xY
— . —_ o L™
f2: 2 { ifY#c & Uy=2 z

J
* Y dependson X, Zdependson Y but

X

—

/ does not depend on X Typo in book of Pearl et al.

e seeVariable level” graph hides independence i rocus oas cesen 3




Independence Rule in Chains

Rule 1 (Conditional Independence in Chains)

Variables X and Z are independent given set of variables Y
iff

there is only one path between X and Z and this path is
unidirectional and Y intercepts that path

Ux.\.
Uy.\xx
U, Y
QQQQQQQQ .\xz
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Forks

Example (SCM 5)

(X =Temperature, Y = Ice cream sale, Z = Crime)
- V={X)Y,Z} U = {Uyx,Uy,Uz} F= {fx:fY:fz}
— fy: X =Uy
- fy:Y=4x+U,
- f,:Z=x/10+ Uy
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Forks

Example (SCM 5)
( X =switch, Y =light bulb 1, Z = light bulb 2)

- V={XY,Z} U ={Uy,Uy,U} F = {fy.fy.f/}
— fy: X=Uy
- on if X=up &Uy=0)or (X=down & Uy=1)
fy: ¥ = { off otherwise
- fiZ= { on if (X=up & U,=0) or (X=down & U,=1)
off otherwise

IM FOCUS DAS LEBEN
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(In)Dependences in Forks

- XandZ are
(3dzy: P(X=x
« Yand X are

ikely dependent
L=2z)#P(X=x))

ikely dependent

- Z and Y are likely dependent

- Y and Z are independent, conditioned on X
(Vx,zy:P(Y=y|Z=zX=x)=P(Y=y | X=X))
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Independence Rule in Forks

Rule 2 (Conditional Independence in Forks)

If variable X is a common cause of variables Y and Z
and there is only one path between Y, Z

then Y and Z are conditionally independent given X.

qqqqqq
s
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Colliders

Example (SCM 6)
( X =musical talent, Y = grade point, Z = scholarship)

- V={X)Y,Z} U = {Uy,Uy,Uz} F= {fx:fY:fz}
— fy: X =Uy
- fy: X=Uy
e { yes if X=yes orY>80%
Z no otherwise




(In)dependence in Colliders

- Xand Z are likely dependent
(3zy: PX=x|Z=2) #P(X=x))
- Y and Z are likely dependent
- X and Y are independent
- XandY are likely conditionally dependent, given Z

(Ix,zy:PX=x|Y=y,Z=2)= PX=x|Z=2))

If scholarship received (7)
but low grade (Y),
then must be musically talented (X)

X-Y dependence (conditioned on Z) X Y

SXRSSE Y INSTITUT FOR INFORMATIONSSYSTEME
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(In)dependence in Colliders (Extended)

Example (SCM 7)

( X =coin flip, Y = second coin flip,
Z = bell rings, W = bell witness)

- V={X)Y,ZW}
— fX: X = UX
— fY: Y = UY

yes
no

“—

- fZZZ: —

yes

- fW:Wz -‘~no

U= {UXIUYIUZ, UW} F= {erfYn fW}

if X=head orY = head
otherwise

if Z=yesor(Z=noand Uy =)
otherwise

(and alsoon W ).

X and Y are dependent conditioned on Z

UUUUUUUUUUUUUUUUUUUU
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Independence Rule in Colliders

Rule 3 (Conditional Independence in Colliders)

If  avariable Z is the collision node between
variables X and Y and there is only one path
between X, Y,

then XandY are unconditionally independent, but are
dependent conditional on Z and any descendant of Z
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D-separation

Property

X independent of Y (conditioned on Z) for all compatible
distributions iff

X d-separated from Y by Z in graph

Definition (informal)
X is d-separated from Y by Z iff
Z blocks every possible path between X and Y

- Z (possibly a set of variables) prohibits the " flow” of
statistical effects/dependence between X and Y

— Must block every path APEIS i EpIe:

- Need only one blocking variable for each path

S REUT S UNIVERSITAT ZU LUBECK
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Blocking Conditions

Definition (formal)
A path p in G (between X and Y) is blocked by Z iff

1. pcontainschain A— B — Corfork A« B— Cs.t.
BeZor

2. pcontains colliderA— B« Cs.t.B& Zandall
descendants of B are & Z

If Z blocks every path between X and Y, then Xand Y are
d-separated conditional on Z, for short: (X L Y | Z),

In particular: X and Y are unconditionally independent
iff X-Y paths contain collider.

42



Example 1 (d-separation)

- Unconditional relation between Zand Y ?
— D-separated because of collider on single Z-Y path.
Hence unconditionally independent
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Example 1 (d-separation)

« Relation between Z and Y conditioned on {W}?

— Not d-separated
« because fork X & {W}
« and collider € {W}

— Hence conditionally dependent on {W} (and {T})

R | ™

B | -

S e IM FOCUS DAS LEBEN 44
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Example 1 (d-separation)

« Relation between Z and Y conditional on {W,X}?

— d-separated
« Because fork X blocks

- Hence conditionally independent on {W, X}

S

SN
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Example 2 (d-separation)

« Relation between Z and Y?

— Not d-separated because second path not blocked (no
collider)

- Hence not unconditionally independent

NEY

R |

S £ universiTAT zu LoBECK

i:‘—;‘%_& INSTITUT FUR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN 46
O, oY




Example 2 (d-separation)

- Relation between Z and Y conditionally on {R}?

— d-separated by {R} because
- First path blocked by fork R
- second path blocked by collider W & {R})

- Hence independent conditioned on {R}

WU & UNIVERSITAT ZU LUBECK

2
3REEE S INSTITUT FOR INFORMATIONSSYSTEME
e

47



Example 2 (d-separation)

- Relation between Z and Y conditionally on {R,W}?

— Not d-separated by {R,W} because W unblocks second
path

— Hence not independent conditioned on {R,W}

ERSI
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Example 2 (d-separation)

- Relation between Z and Y conditionally on {R,W,X}?
— d-separated by {R,W, X} because
- Now second path blocked by fork X
— Hence independent conditioned on {R,W,X}

WU & UNIVERSITAT ZU LUBECK
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Using D-separation

- Verifying/falsifying causal models on observational data
1. G=SCM to test for

2. Calculate independencies I entailed by G using d-
separation

3. Calculate independencies |, from data (by counting and
estimating probabilities) and compare with I

4. Iflg=1p SCMis a good solution. Otherwise identify
problematic | € I; and change G locally to fit
corresponding |” € I

RSI
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Using D-separation

« This approach is local

— If I;not equal I, then can manipulate G w.r.t. RVs only
involved in incompatibility

— Usually seen as benefit w.r.t. global approaches via
likelihood with scores, say

— Note: In score-based approach one always considers
score of whole graph

(But: one also aims at decomposability/locality of scoring
functions)

. This approach is qualitative and constraint based

- Known algorithms: PC (Spirtes) , IC (Verma & Pearl)

3 %
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Equivalent Graphs

- One learns graphs that are (observationally) equivalent
w.r.t. entailed independence assumptions
- Formalization

— v(G) = v-structure of G = set of colliders in G of form
A—B<«—C where A and C not adjacent

— sk(G) = skeleton of G = undirected graph resulting from G

Definition
G, is equivalent to G, iff v(G,) = v(G,) and sk(G,) = sk(G,)

qqqqqq
i
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Equivalent Graphs

Theorem
Equivalent graphs entail same set of d-separations

Intuitively clear:
- Forks and chains have similar role w.r.t. independence

(Hence forgetting about the direction in skeleton does
not lead to loss of information)

« Collider has different role (hence need v-structure)

ﬁz%;\g}c UNIVERSITAT ZU LUBECK
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Equivalent Graphs

« Vv(G) = v-structure of G = set of colliders in G of form
A—B<«—C where A and C not adjacent

. sk(G) = skeleton of G = undirected graph resulting from
G

Definition
G, is equivalent to G, iff v(G,) = v(G,) and sk(G;) = sk(G,)

X1 Season X1 Season
V(G,) = V(G,)
X3 X2 X3 X2
Sprinkler rain Sprinkler Rain 0 nlemEe eyl
X4 Wet X4 Wet
% G1 X5 slippery Gz X5 slippery

S
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Equivalent Graphs

« Vv(G) = v-structure of G = set of colliders in G of form
A—B<«—C where A and C not adjacent

. sk(G) = skeleton of G = undirected graph resulting from
G

Definition
G, is equivalent to G, iff v(G,) = v(G,) and sk(G;) = sk(G,)

X1 Season X1 Season

v(G,) = v(G,)
sk(G,) = sk(G,)

X3 X2 X3 X2
Sprinkler rain Sprinkler Rain * Hence not
equivalent
X4 Wet X4 Wet
S5 G1 X5 slippery Gz X5 slippery

S
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IC-Algorithm (Verma & Pearl, 1990)

Input
P resp.
P-independencies

Output
Pattern
(represents compatible class of

Pattern = partially directed DAG
= DAG with directed and non-directed edges

Algorithm equivalent DAGS)
(CLA|B) é
(CLD|B) C
(D 1LA|B) Steps 1-3 A E
(ELA|B)
(ELB|CD) -
Definition

Directed edge A-> B in pattern: In any of the DAGs the edge is A->B
Undirected edge A-B in pattern: There exists (equivalent) DAGs with A->B in one and
B ->Ain the other

gﬁ& Verma, T. & Pearl, J: Equivalence and synthesis of causal models.

{5 venstir 20 0tek | cvreme Proceedings of the 6. conference on Uncertainty in Al, 220-227, 1990.
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IC-Algorithm (Informally)
1. Find all pairs of variables that are dependent of each
other (applying standard statistical method on the

database) and eliminate indirect dependencies

2.+ 3. Determine directions of dependencies

LLLLLL
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Note: ,Possible” in step 3 means: if you can find two patterns such that in the first

the edge A-B becomes A->B but in the other A<-B, then do not orient.

IC-Algorithm (schema)

1. Add (undirected) edge A-B iff there is no set of RVs Z
such that (ALLB|Z), Otherwise let Z,; denote some set Z
with (ALLB|Z)p

2. If A—-B—C and not A-C, then A—B«C iff
B & Zc

3. Orient as many of the undirected edges as possible,
under the following constraints:
- orientation should not create a new v-structure and

. orientation should not create a directed cycle.

Steps 1 and step 3 leave out details of search
* Hierarchical refinement of step 1 gives PC algorithm (next slide)
=i+ Avrefinement of step 3 possible with 4 rules (thereafter)
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PC algorithm (Spirtes & Glymour, 1991)

« Remember Step 1 of IC

1. Add (undirected) edge A-B iff there is no set of RVs Z
such that (ALLB|Z), Otherwise let Z,; denote some set Z
with (ALLB|Z)p

- Have to search all sets Z of RVs for given nodes A,B
— Start with fully connected graph (with undirected edges)

— Done systematically by sets of cardinality 0,1,2,3...

— Remove edges from graph as soon as independence
found

— Polynomial time for graphs of finite degree (because can
restrict search for Z to nodes adjacent to A,B)

P.Spirtes, C. Glymour: An algorithm for fast recovery of sparse
<5~ causal graphs. Social Science Computer Review 9: 62-72, 1991.
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IC-Algorithm (with rule-specified last step)
1. as before
2. as before

3. Orient undirected edges as follows

« B— C into B—Cifthereisan arrow A—Bs.t. Aand C are
not adjacent;

- A— B into A—B if there is a chain A—>C—B;

- A— B into A—Bif there are two chains A—C—B and
A—D—B such that C and D are nonadjacent;

- A— B into A—B if there are two chains A—C—D and
C—D—Bs.t. Cand B are nonadjacent;

WU & UNIVERSITAT ZU LUBECK
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IC algorithm

Theorem

The 4 rules specified in step 3 of the IC algorithm are necessary
(Verma & Pearl, 1992) and sufficient (Meek, 95) for getting a

maximally oriented pattern of DAGs compatible with the input-
independencies.

T.Verma and J. Pearl. An algorithm for deciding if a set of observed independencies

has a causal explanation. In D. Dubois and M. P. Wellman, editors, UAI '92: Proceedings of the Eighth
Annual Conference on Uncertainty in Artificial Intelligence, 1992, pages 323-330.
Morgan Kaufmann, 1992.

Christopher Meek: Causal inference and causal explanation
with background knowledge. UAI 1995: 403-410, 1995.
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Stable Distribution

- The IC algorithm accepts stable distributions P (over set
of variables) as input, i.e. distribution P s.t. there is DAG
G giving exactly the P-independencies

Extension IC* works also for sampled distributions
generated by so-called latent structures

— A latent structure (LS) specifies additionally a (subset) of
observation variables for a causal structure

— A LS not determined by independencies
— IC* not discussed here, see, e.g.,
J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.
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Criticism and further developments

Definition

The problem of ignorance denotes the fact that there are RVs
A, B and sets of RVs Z such that it is not known whether
(ALLB|Z)p or not (ALB|Z),

- Problem of ignorance ubiquitous in science practice
. |C faces the problem of ignorance (Leuridan 2009)
 (Leuridan 2009) approaches this with adaptive logic

B. Leuridan. Causal discovery and the problem of ignorance: an adaptive logic
approach. Journal of Applied Logic, 7(2):188-205, 2009.
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Uhhh, a lecture with a hopefully useful

APPENDIX
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Probability theory basics reminder

Random variable (RV)

possible worlds defined by assignment of
values to random variables.

Boolean random variables

e.g., Cavity (do | have a cavity?).
Domain is < true, false >

Discrete random variables

e.g., possible value of Weather is one of
< sunny, rainy, cloudy, snow >

Domain values must be exhaustive and
mutually exclusive

Elementary propositions are constructed by
assignment of a value to a
random variable: e.g.,

—  Cavity = false (abbreviated as —cavity)
— Cavity = true (abbreviated as cavity)

(Complex) propositions formed from
elementary propositions and standard logical
connectives, e.g., Weather = sunny v Cavity =
false

Probabilities

Axioms (for propositions a, b, T = (a VvV —a),and
1l ==T):

- 0<P@sL,P(M=1PWL =0

- (P(avb) = P(a) + P(b) — P(anb)
Joint probability distribution of X = {X, ..., X, }

- P(Xy, . X))
- gives the probability of every atomic event on X

Conditional probability
P(a|b) = P(an b)/P(b)if P(b) > 0
Chain rule

P(Xy, .., X)) =

n
izlP(Xi|X1, v, Xi—q1)
Marginalization:  P(Y) = Y, c, P(Y,2)
Conditioning on Z:
- PY)= )Y,c; P(Y|2)P(2) (discrete)
- P(Y)= [P(Y|z)P(z)dz (continuous)
=[E,-p)P(Y|2) (expected value
notation)

Bayes’ Rule
_ P(DIH)-P(H) _ P(D|H)-P(H)
PUEID)= P(D) Y, P(D|R)P(h)
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