Web-Mining Agents

Dr. Özgür Özçep

Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Structural Causal Models

Slides prepared by Özgür Özçep Part III: Causality in Linear SCMs and Instrumental Variables

IM FOCUS DAS LEBEN

Literature

• J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics – A primer, Wiley, 2016.

(Main Reference)

- J. Pearl: Causality, CUP, 2000.
- B. Chen & Pearl: Graphical Tools for Linear Structural Equation Modeling, Technical Report R-432, July 2015

Causal Inference in Linear SCMs

- All techniques and notions developed so far applicable for any SCM
- Of importance are linear SCMs
 - Equations of form $Y = a_0 + a_1X_1 + a_2X_2 + \dots + a_nX_n$
 - In focus of traditional causal analysis (in economics)
- Assumption for the following
 - All variables depending linearly on others (if at all)
 - Error variables (exogenous variables) have Gaussian/Normal distribution

Want to learn something about Gauss?

Why Gaussian?

 Andrew Moore: "Gaussians are as natural as Orange Juice and Sunshine"

(http://www.cs.cmu.edu/~awm/tutorials)

(Used in the following slides on Gaussians)

- Proves useful to model RVs that are combinations of many (non)-measured influences
- Makes life easy because
 - 1. Efficient representation
 - 2. Substitute probabilities by expectations
 - 3. Linearity of expectations
 - 4. Invariance of regression coefficients

General Gaussian

(http://www.cs.cmu.edu/~awm/tutorials)

In the above figure, $X \sim N(100, 15^2)$

JNIVERSITÄT ZU LÜBECK

IM FOCUS DAS LEBEN

Bivariate Gaussians

Write r.v.
$$\mathbf{X} = \begin{pmatrix} X \\ Y \end{pmatrix}$$
 Then define $X \sim N(\mathbf{\mu}, \mathbf{\Sigma})$ to mean

$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$$

Where the Gaussian's parameters are...

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{xy} & \sigma^2_y \end{pmatrix} \quad \begin{array}{l} \text{OO: Covariance} \\ \text{matrix in 2 dimensions} \\ \sigma_{XY} = \text{E}[(X-\text{E}(X))(Y-\text{E}(Y))] \end{array}$$

Where we insist that Σ is symmetric non-negative definite

It turns out that $E[X] = \mu$ and $Cov[X] = \Sigma$. (Note that this is a resulting property of Gaussians, not a definition)*

*This note rates 7.4 on the pedanticness scale

DAS LEBEN

Multivariate Gaussians

Write r.v. $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$ $p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} \|\Sigma\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \Sigma^{-1}(\mathbf{x} - \mathbf{\mu})\right)$

Where the Gaussian's parameters have...

 $\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma^2_1 & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma^2_2 & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma^2_m \end{pmatrix}$

Where we insist that Σ is symmetric non-negative definite

Again, $E[X] = \mu$ and $Cov[X] = \Sigma$. (Note that this is a resulting property of Gaussians, not a definition) UNIVERSITAT ZU LÜBECK IN FOCUS DAS LEBEN

Why Gaussian?

 Andrew Moore: "Gaussians are as natural as Orange Juice and Sunshine"

(http://www.cs.cmu.edu/~awm/tutorials)

(Used in the following slides on Gaussians)

- Proves useful to model RVs that are combinations of many (non)-measured influences
- Makes life easy because
 - 1. Efficient representation
 - 2. Substitute probabilities by expectations

Substitute Probabilities by Expectations

- P(X) becomes E[X]
- P(Y|X) becomes E[Y|X]

(Conditional expectation defined as expected $E[Y|X=x] = \sum_{y} y P(Y=y|X=x)$)

- \rightarrow Can use regression to determine causal relations
 - E[Y|X] defines a function Y = f(X)
 - By regression we circumvent the problem of calculating the probabilities required for E[Y|X]

So, we will be guessing the deep/hidden structure (linear SCMs equations) as far as needed for our tasks – instead of working on level of probabilities

But remember also other direction

- Use probabibility to infer "crisp properties"
- Toy example:
 - If you know that the expected value for a RV is 0.5 (for RV in [0,1])
 - then you know (for sure) that there must be instances with value ≥ 0.5 .

Why Gaussian?

 Andrew Moore: "Gaussians are as natural as Orange Juice and Sunshine"

(http://www.cs.cmu.edu/~awm/tutorials)

(Used in the following slides on Gaussians)

- Proves useful to model RVs that are combinations of many (non)-measured influences
- Makes life easy because
 - 1. Efficient representation
 - 2. Substitute probabilities by expectations
 - 3. Linearity of expectations
 - 4. Invariance of regression coefficients

Linearity of Expectations

- Expectations can be written as linear combinations
 - $E[Y|X_1=x_1, X_2=x_2, ..., X_n=x_n] = r_0 + r_1x_1 + ... + r_nx_n$
 - Each of the slopes r_i are partial regression coefficients
 - Example and Notation

 $\mathbf{r}_{i} = \mathbf{R}_{\mathbf{Y} \mathbf{X} i \dots \mathbf{X} i - 1, \mathbf{X} i + 1, \dots \mathbf{X} n}$

- = slope of Y on X_i when fixing all other X_j ($j \neq i$)
- r_i does not depend on the values of the X_i but only on which set of X_is (the set of regressors) was chosen
- This independency is also part of a continuous version of the Simpson's paradox (next slides)

Slope Constancy

 Measure weakly exercise and cholesterol in different age groups

- $\mathbf{Y} = \mathbf{r}_0 + \mathbf{r}_1 \mathbf{X} + \mathbf{r}_2 \mathbf{Z}$
- $r_1 = R_{YX,Z} < 0$
- Z-fixed slope for Y,X independent of Z (and negative)
- Ignoring Z (regressing Y w.r.t X only) leads to combined positive slope R_{YX}
- \rightarrow Simpson's paradox

Resolving the Paradox

 Measure weakly exercise and cholesterol in different age groups

- Age a cofounder of Exercise and Cholosterol
- Need to condition on Age=Z to find correct
 P(Y|do(X))

Regression Coefficients and Covariance

- Usually one finds (partial) regression coefficients by sampling
- But there exist formulae expressing connections to statistical measures such as covariance
- $\sigma_{XY} = E[(X-E[X])(Y-E[Y])]$ (covariance of X and Y)
- $\rho_{XY} = \sigma_{XY} / (\sigma_X \sigma_Y)$
- Note: $\sigma_{XY} = 0 = \rho_{XY}$ iff X and Y are (linearly)

independent

(Correlation)

 $\begin{array}{ll} \mbox{Theorem (Orthogonality principle)} \\ \mbox{If} & Y = r_0 + r_1 X_1 + ... + r_k X_k + \epsilon \\ \mbox{then the best (least-square error minimizing)} \\ \mbox{coefficients } r_i \mbox{ (for any distributions } X_i) \mbox{ result when } \sigma_{\epsilon Xi} \\ = 0 \mbox{ for all } 1 \leq i \leq k \end{array}$

Regression Coefficients and Covariance

- Assume w.l.o.g. $E[\varepsilon] = 0$
- $Y = r_0 + r_1 X + \epsilon$ (*)
- $E[Y] = r_0 + r_1 E[X]$
- $XY = Xr_0 + r_1X^2 + X\epsilon$
- $E[XY] = r_0 E[X] + r_1 E[X^2] + E[X\epsilon]$
- $E[X\epsilon] = 0$
- Solving for r_0 and r_1
 - $r_0 = E[Y] E[X](\sigma_{XY}/\sigma_{XX})$
 - $r_1 = \sigma_{XY}/\sigma_{XX}$

Similar derivations for multiple regression

(by applying E) (by multiyplying (*) with X) (by applying E) (by orthogonality)

Path Coefficients (Example)

Example

- Linear SCM
 - $\ X = U_X$
 - $Z = aX + U_Z$
 - $-W = bX + cZ + U_W$
 - $Y = dZ + eW + U_Y$
- Graph of SCM as usual
- But now additional information by edge labels: Path Coefficients

Linearity assumption makes association of coefficient to edge a wellformed operation

U_X

a

 U_7

U_W

W

h

U_v

Path Coefficients (Example)

Example

- Linear SCM
 - $\ X = U_X$
 - $Z = aX + U_Z$
 - $-W = bX + cZ + U_W$
 - $Y = dZ + eW + U_Y$
- Graph of SCM as usual
- But now additional information by edge labels: Path Coefficients

Warning from the beginning: Path coefficients (causal) ≠ regression coefficients (descriptive)

U_X

a

 U_7

U_W

W

h

U_v

Path Coefficients (Semantics)

- Note: CDE does not Ux Linear SCM • depend on the exact change $- X = U_x$ of Z but only its change rate Uw b а U_{Z} $-Z = aX + U_7$ Z=+1 7 $-W = bX + cZ + U_W$ W U_Y $- Y = dZ + eW + U_Y$
 - Q: What is the semantics of the path coefficients on edge Z-Y?
 - A: Direct effect CDE on Y of change Z=+1

CDE = E[Y|do(Z=z+1), do(W=w)] - E[Y|do(Z=z), do(W=w)]

 $= d(z+1) + ew + E[U_Y] - (dz + ew + E[U_Y])$

= d = label on Z-Y edge

WA.WATTI S. ST

We used the linearity of E E[aX + bY] = aE[X]+bE[Y]

Total Effect in Linear Systems (Example)

- Linear SCM
 - $X = U_X$
 - $-Z = aX + U_Z$
 - $-W = bX + cZ + U_W$
 - $Y = dZ + eW + U_Y$
 - Total effect = ACE

- Q: What is the total effect of Z on Y?
- A: Sum of coefficient products over each directed Z-Y path
 - Directed path 1: Z-d->Y; product = d
 - Directed path 2: Z-c->W-e->Y; product =ec

Total Effect in Linear Systems (Intuition)

Note 2: Total effect does not

depend on the exact change

of Z but only its rate Z=+1

- Linear SCM
 - $X = U_X$

WA-WATTLE

- $-Z = aX + U_Z$
- $-W = bX + cZ + U_W$
- $Y = dZ + eW + U_Y$

Note 3: Holds for any linear SCM (U_is may be dependent)

- Q: What is the total effect of Z on Y?
- A: Sum of coefficient products over each directed Z-Y path
 - Total effect \mathbf{T} : Intervene on Z and express Y by Z
 - $Y = dZ + eW + U_Y = dZ + e(bX + cZ + U_W) + U_Y$
 - $= (d+ec)Z + ebX + U_{Y} + eU_{W} = \tau Z + U$

Ux

а

d

 U_{Z}

7

Z = z

b

 $U_{\rm Y}$

W

e

Note 4

- We followed (Bollen 1989) and summed over directed paths for calculating total effect in linear SCMs
- In book of Pearl, Glymour & Jewell (p.82-83) summation over non-backdoor paths
 - Not clear to me (maybe wrongly applied Wright's rule)
 - Consider SCM
 - W = bY + aX
 - Y = cX
 - ACE = c (and not c + b*a)

K. Bollen: Structural Equations with latent variables. New York, 1989.

Addendum and Historical Note to Note 4

- Earliest use of graphs in causal analysis in (Wright 1920)
- Wright path tracing for calculating covariances in linear SCMs
 - $\sigma_{XY} = \Sigma_p \text{ product}(p)$
 - where all p are X-Y paths not containing a collider and
 - product(p) = product of all structural coefficients and covariances of error terms

Identifying Structural Coefficients

- What if path coefficients are not known apriori or are not testable?
- One has to identify only those relevant for the specific task, e.g., total effect of X to Y or direct effect of Z on X
- For those required for the task one can use linear regression on the data
 - 1. Identify relevant variables for linear regression
 - 2. Identify within linear equation coefficients for the specific task

Direct Effect in Incomplete Linear Systems

- Q: Direct effect of X on Y?
- A: Here, direct effect = 0
 - There is no edge from X to Y
 - Which amounts to path coefficient

for X-Y edge = 0

Total effect in Incomplete Linear Systems

- Q: Total effect of X on Y?
- Now path coefficients not necessarily known (greek letters)
- Recall: With backdoor criterion identify variable set Z to adjust for
 GCE = P(y|do(x)) = Σ_zP(y | x,z)P(z)

- Use backdoor to identify variables to regress for
- Here Z = {T}, so do linear regression on X,T:

 $- Y(X,T) = r_X X + r_T T + \varepsilon$

- r_X = total effect of X on Y

Wake-Up: Why not also regress for W?

INIVERSITÄT ZU LÜBECK

ITUT FÜR INFORMATIONSSYSTEM

- linear regression equation ≠ structural equation
- Regression coefficients handmade
- Path coefficients nature-made

Direct Effect in Incomplete Linear Systems

- Q: Direct effect of X on Y?
- A: In general find blocking variables Z for
 - X-Y backdoor paths or, more generally,
 - Indirect X-Y paths

- This can be achieved as follows
 - G_{α} = Graph G without edge X - α ->Y
 - Z = variables d-separating X and Y
- $Y = r_X X + r_Z Z + \varepsilon$

Here:
$$Y = r_X X + r_W W + \epsilon$$

Direct effect of X on $Y = r_X =: \alpha$

Here: $Z = \{W\}$

Direct Effect in Incomplete Linear Systems

Instrumental Variables (IVs)

 Usage of IVs to trace causal effects starts already in 1925 (econometrics)

Wright. Corn and Hog correlations, Tech. Rep. 1300, US Department of Agriculture, 1925.

• Standard definitions in econometrics defined IVs w.r.t. single equation not w.r.t. parameter

Definition (classically according to economist's) For an equation

 $Y = \alpha_1 X_1 + ... + \alpha_k X_k + U_Y$ (*)

Z is instrumtenal variable for equation (*) iff

- Z is correlated with $X = \{X_1, \dots, X_k\}$ and
- Z is not correlated with U_{γ}

What's in a definition?

- The early economist's definition not (!) equivalent with our official definition
 - General question: What's a good definition*)?
 - Main problem with classical equation: too global
 - Full equation may not be identifiable, though some parameters are.
- The new definition is an example of a general interesting phenomenon
 - Many simplifications (clarifications/disambiguations) of (IV) research in econometrics by considering associated graph structure for SCM

*) An Addendum for Teatime on a Sunday ...

More about "good definitions":

N. D. Belnap. On rigorous definitions. Philosophical Studies: An International Journal of Philosophy in the Analytic Tradition, 72(2,3):115–146, instrumental 1993.

- Rough summary: A definition is good (formally correct) if it fulfills
 - 1. eliminability (defined symbol can be replaced via old symbols)
 - 2. Non-creativity (no new sentences derivable in old language)
- The kind of goodness mentioned on slide before not (intended to be) captured by Belnap's explication.

Conditional IVs

- Z no IV anymore for α , because
 - Z not d-separated from Y
- But conditioning on W helps

C. Brito & J.Pearl: Generalized instrumental variables. In *Uncertainty in Artificial Intelligence, Proceedings of the Eighteenth Conference*, 85–93, 2002.

Definition (Brito & Pearl, 02) A variable Z is a conditional instrumental variable given set W for coefficient α (from X to Y) iff

- Set of descendants of Y not intersecting with W
- W d-separates Z from Y in G_{α}
- W does not d-separate Z from X in G_{α}

If conditions fulfilled, then $\alpha = \beta_{YZ.W} / \beta_{XZ.W}$

Conditional IVs (Examples)

Z instrument for α given W?

Definition Z is a conditional IV given set W for α iff

- Set of descendants of Y are not intersecting with W
- W d-separates Z from Y in G_{α}
- W does not d-separate Z from X in G_{α}

yes

ERSITÄT ZU LÜBECK

ÜR INFORMATIONSSYSTEMI

Sets of IVs

- Sometimes need sets of instrumental variables
- Neither Z₁ nor Z₂ (on their own) are instrumental variables (for the identification of α or γ)
- Using both helps

NIVERSITÄT ZU LÜBECK

UR INFORMATIONSSYSTEM

- Definition not trivial due to possible intersections of paths
 - $Z_i \rightarrow ... \rightarrow X_i \rightarrow Y$ and $Z_j \rightarrow ... \rightarrow X_j \rightarrow Y$
- Using Wright's path tracing and solving for γ and α

 $\sigma_{Z1Y} = \sigma_{Z1X1}\gamma + \sigma_{Z1X2}\alpha$ $\sigma_{Z2Y} = \sigma_{Z2X1}\gamma + \sigma_{Z2X2}\alpha$

Remember:

 $\sigma_{XY} = \sum_{p}$ product(p) where all p are X-Y paths not containing a collider ...

Definition (Instrumental Set)

ERSITÄT ZU LÜBECK

Set {Z₁, ..., Z_k} is an instrumental set for path coefficients $\alpha_1,...,\alpha_k$, where X_i- α_k ->Y, iff

- 1. For each i, Z_i is separated from Y in G' (where G' is G with edges $X_1 \rightarrow Y$, ..., $X_k \rightarrow Y$ deleted)
- 2. There are paths p_i : Z_i to Y containing $X_i \rightarrow Y$ ($1 \le i \le k$), and for all paths $p_i p_j$ ($i \ne j$ in {1,2,...k}) with any common RV V one of the following holds:
 - Both $p_i[Z_i...V]$ and $p_j[V...Y]$ point to V or
 - Both $p_j[Z_j...V]$ and $p_i[V...Y]$ point to V

$p_i[W...H] = subpath of p_i from W to H$

Definition (Instrumental Set)

Condition 2. says:

JNIVERSITÄT ZU LÜBECK

Cannot merge two intersecting paths p_i and p_j to yield two unblocked paths: one must contain collider

- There are paths p_i: Z_i to Y containing X_i→Y (1 ≤ i ≤ k), and for all paths p_i p_j (i ≠j in {1,2,...k}) with any common RV V one of the following holds:
 - Both $p_i[Z_i...V]$ and $p_j[V...Y]$ point to V or
 - Both $p_j[Z_j...V]$ and $p_i[V...Y]$ point to V

 $p_i[W...H] = subpath of p_i from W to H$

Theorem

Let $\{Z_1, ..., Z_k\}$ be an instrumental set for coefficients $\alpha_1...\alpha_k$ with $X_i-\alpha_k->Y$.

Then: The equations below are linearly independent for almost all parameterizations of the model and can be solved to obtain expressions for $\alpha_1...\alpha_k$ in terms of the covariance matrix

 $\sigma_{Z1Y} = \sigma_{Z1X1}\alpha_1 + \sigma_{Z1X2}\alpha_2 + \dots + \sigma_{Z1Xk}\alpha_k$

 $\sigma_{Z2Y} = \sigma_{Z2X1}\alpha_1 + \sigma_{Z2X2}\alpha_2 + \dots + \sigma_{Z2Xk}\alpha_k$

 $\sigma_{ZkY} = \sigma_{ZkX1}\alpha_1 + \sigma_{ZkX2}\alpha_2 + \dots + \sigma_{ZkXk}\alpha_k$

Ensuring linear independence:

- The rank of the covariance matrix has its maximum
- -> no information loss
- ensuring identifiability of parameters α₁...α_k.

Example: Instrumental sets (positive case)

- $p_1 = Z_1 \longrightarrow Z_2 \longrightarrow X_1 \longrightarrow Y$
- $p_2 = Z_2 \leftrightarrow X_2 \rightarrow Y$
- p_1 and p_2 satisfy condition 2 w.r.t. common variable $V = Z_2$
 - $p_1[Z_1...V] = Z_1 \rightarrow Z_2$ points to Z_2
 - $p_2[V...Y] = p_2$ also points to Z_2
 - Z₂ as a collider blocks possible path merges of p₁ and p₂

Example: Instrumental sets (positive case)

- Algebraically
 - σ_{Z1Y} lacks influence of path
 - $Z_2 \leftrightarrow X_2 \rightarrow Y$ and hence does not contain term aca
 - σ_{Z2Y} contains term ca

• Applying Wright's rule

 $\sigma_{Z1Y} = \sigma_{Z1X1}\gamma + \sigma_{Z1X2}\alpha = \sigma_{Z1X1}\gamma + 0\alpha = ab\gamma$

 $\sigma_{Z2Y} = \sigma_{Z2X1}\gamma + \sigma_{Z2X2}\alpha = b\gamma + c\alpha$

- Solving linearly independent equations:
 - $\gamma = \sigma_{Z1Y}\sigma_{Z1X1}$

Example: Instrument sets (negative case)

- $p_1 = Z_1 \longrightarrow Z_2 \longrightarrow X_1 \longrightarrow Y$
- $p_2 = Z_2 \rightarrow X_2 \rightarrow Y$
- Every path from Z₂ to Y is a "sub-path" of a path from Z₁ to Y

• Applying Wright's rule

 $\sigma_{Z2Y} = b\gamma + c\alpha$

 $\sigma_{Z1Y} = ab\gamma + ac\alpha = a(b\gamma + c\alpha) = a\sigma_{Z2Y}$

Conditional Instrumental Sets

• See

C. Brito & J.Pearl: Generalized instrumental variables. In *Uncertainty in Artificial Intelligence, Proceedings of the Eighteenth Conference*, 85–93, 2002.

Mediation in Linear Systems

- Direct effect (DE) of X on Y mediated by Z
 - Remember in nonlinear case:

Definition The controlled direct effect (CDE) on Y of changing X from x to x' is defined by P(Y=y| do(X=x), do(Z=z)) - P(Y=y| do(X=x'), do(Z=z))

- In linear case: Estimate path coefficient between X and Y as shown before (using, say, IVs)
- Total effect (τ) of X on Y
 - Estimate by regression as shown before
- Indirect effect of X on Y
 - IE = τ DE

(For non-linear systems need counterfactuals)