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Causal Inference in Linear SCMs

• All techniques and notions developed so far applicable 
for any SCM

• Of importance are linear SCMs
– Equations of form Y = a0 + a1X1 + a2X2 + … anXn

– In focus of traditional causal analysis (in economics)

• Assumption for the following
– All variables depending linearly on others (if at all)

– Error variables (exogenous variables)  have 
Gaussian/Normal distribution 
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Want to learn something about Gauss?
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Why Gaussian?

• Andrew Moore: “Gaussians are as natural as Orange 
Juice and Sunshine”

(http://www.cs.cmu.edu/~awm/tutorials)

(Used in the following slides on Gaussians)

• Proves useful to model RVs that are combinations of 
many (non)-measured influences

• Makes life easy because
1. Efficient representation

2. Substitute probabilities by expectations

3. Linearity of expectations

4. Invariance of regression coefficients
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General Gaussian
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Shorthand: We say X ~ N(µ,s2) to mean “X is distributed as a Gaussian with 
parameters µ and s2”.

In the above figure, X ~ N(100,152)

Also known as 
the normal 

distribution or 
Bell-shaped 

curve 

(http://www.cs.cmu.edu/~awm/tutorials)

ÖÖ: So need only specify µ,s2

http://www.cs.cmu.edu/~awm/tutorials


Bivariate Gaussians
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Then define ),(~ ΣμNX to mean

Where the Gaussian’s parameters are…

Where we insist that S is symmetric non-negative definite

It turns out that E[X] = µ and Cov[X] = S. (Note that this is a resulting property of 
Gaussians, not a definition)*

*This note rates 7.4 on the pedanticness scale

ÖÖ: So need only specify 5= 2*2 + 2(2-1)/2 paramters

ÖÖ: Covariance
matrix in 2 dimensions
σXY = E[(X-E(X))(Y-E(Y))]



Multivariate Gaussians
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Then define ),(~ ΣμNX to mean

Where the Gaussian’s parameters 
have…

Where we insist that S is symmetric non-negative definite

Again, E[X] = µ and Cov[X] = S. (Note that this is a resulting property of Gaussians, not a definition)

ÖÖ: So, it is sufficient to consider pairwise correlation
Of Xi, Xj (next to their expectations and variances)
2*m + m(m-1)/2  => efficient representation of joint
distribution of X1... Xm



Why Gaussian?

• Andrew Moore: “Gaussians are as natural as Orange 
Juice and Sunshine”

(http://www.cs.cmu.edu/~awm/tutorials)

(Used in the following slides on Gaussians)

• Proves useful to model RVs that are combinations of 
many (non)-measured influences

• Makes life easy because
1. Efficient representation

2. Substitute probabilities by expectations
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Substitute Probabilities by Expectations

• P(X) becomes E[X]

• P(Y|X) becomes E[Y|X]

(Conditional expectation defined as expected

E[Y|X=x] = ∑y    y P(Y=y|X=x)                       )

→ Can use regression to determine causal relations
– E[Y|X] defines a function Y= f(X) 

– By regression we circumvent the problem of calculating 
the probabilities required for E[Y|X]

11

So, we will be guessing  the deep/hidden structure (linear SCMs equations)
as far as needed for our tasks – instead of working on level of probabilities 



But remember also other direction

• Use probabibility to infer „crisp
properties“

• Toy example: 
– If you know that the expected value

for a RV is 0.5 (for RV in [0,1])

– then you know (for sure) that there
must be instances with value ≥ 0.5.
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Why Gaussian?

• Andrew Moore: “Gaussians are as natural as Orange 
Juice and Sunshine”

(http://www.cs.cmu.edu/~awm/tutorials)

(Used in the following slides on Gaussians)

• Proves useful to model RVs that are combinations of 
many (non)-measured influences

• Makes life easy because
1. Efficient representation

2. Substitute probabilities by expectations

3. Linearity of expectations

4. Invariance of regression coefficients
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Linearity of Expectations

• Expectations can be written as linear combinations
– E[Y|X1=x1,X2=x2, …, Xn=xn] = r0 + r1x1 + … + rnxn

– Each of the slopes ri are partial regression coefficients

– Example and Notation 
ri =   RY Xi . X1…Xi-1, Xi+1,…Xn

=   slope of Y on Xi when fixing all other Xj (j ≠ i)

– ri does not depend on the values of the Xi but only on  
which set of Xis (the set of regressors) was chosen

– This independency is also part of a continuous version of 
the Simpson’s paradox (next slides)
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Slope Constancy

• Measure weakly exercise and cholesterol in different age 
groups

15

Exercise = X

Y=
 C

ho
le

st
er

ol

Age = Z

10

20

30

40

• Y = r0 + r1X + r2Z
• r1 = RYX . Z < 0
• Z-fixed slope for Y,X

independent of Z
(and negative)

• Ignoring Z (regressing
Y w.r.t X only)  leads to
combined positive 
slope RYX

→ Simpson‘s paradox 



Resolving the Paradox

• Measure weakly exercise and cholesterol in different age 
groups
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• Age a cofounder of
Exercise and
Cholosterol

• Need to condition on 
Age=Z  to find correct

P(Y|do(X))

Age

Exercise Cholesterol



Regression Coefficients and Covariance

• Usually one finds (partial) regression coefficients by
sampling

• But there exist formulae expressing connections to
statistical measures such as covariance

• σXY = E[(X-E[X])(Y-E[Y])]     (covariance of X and Y) 

• ρXY = σXY/(σXσY) (Correlation)

• Note: σXY = 0 = ρXY iff X and Y are (linearly) 
independent
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Theorem (Orthogonality principle)
If Y = r0 + r1X1 + ... + rkXk + ε

then the best (least-square error minimizing) 
coefficients ri (for any distributions Xi) result when σεXi

= 0 for all 1 ≤ i ≤ k



Regression Coefficients and Covariance

• Assume w.l.o.g. E[ε] = 0

• Y = r0 + r1X + ε (*)

• E[Y] = r0 + r1E[X]               (by applying E)

• XY = Xr0 + r1X2 + Xε (by multiyplying (*) with X)      

• E[XY] = r0E[X] + r1E[X2] + E[Xε]                   (by applying E)

• E[Xε] = 0 (by orthogonality)

• Solving for r0 and r1

– r0 = E[Y] – E[X](σXY/σXX)

– r1 =  σXY/σXX

19

Similar derivations for multiple regression



Path Coefficients (Example)

Example

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY

• Graph of SCM as usual 

• But now additional information by edge labels:

Path Coefficients

20
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Linearity assumption makes association of coefficient to edge a well-
formed operation



Path Coefficients (Example)

Example

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY

• Graph of SCM as usual 

• But now additional information by edge labels:

Path Coefficients
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Warning from the beginning: 
Path coefficients (causal) ≠ regression coefficients (descriptive) 



Path Coefficients (Semantics)

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY
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• Q: What is the semantics of the path coefficients on edge
Z-Y?

• A: Direct effect CDE on Y of change Z=+1

CDE = E[Y|do(Z=z+1), do(W=w)]- E[Y|do(Z = z), do(W=w)]

= d(z+1) +ew +E[UY]– (dz +ew+E[UY]) 

= d = label on Z-Y edge

Note: CDE does not 
depend on the exact change
of Z but only its change rate 
Z=+1

We used the linearity of E
E[aX + bY] = aE[X]+bE[Y]



Total Effect in Linear Systems (Example)

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY
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• Q: What is the total effect of Z on Y?

• A:  Sum of coefficient products over each directed Z-Y 
path
– Directed path 1: Z-d->Y;  product = d

– Directed path 2: Z-c->W-e->Y; product =ec

– Total effect = d + ec

Total effect = ACE



Total Effect in Linear Systems (Intuition)

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY
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• Q: What is the total effect of Z on Y?

• A:  Sum of coefficient products over each directed Z-Y
path
– Total effect τ: Intervene on Z and express Y by Z

– Y = dZ +eW + UY = dZ +e(bX +cZ + UW) + UY

= (d+ec)Z + ebX + UY + eUW = τZ+ U Note 1: X, UY, UW

do not depend on Z

Z= z

Note 3: Holds for any linear SCM (Uis may be dependent)

Note 2: Total effect does not 
depend on the exact change
of Z but only its rate Z=+1



Note 4

• We followed (Bollen 1989) and summed over directed
paths for calculating total effect in linear SCMs

• In book of Pearl, Glymour & Jewell (p.82-83) summation
over non-backdoor paths
– Not clear to me (maybe wrongly applied Wright‘s rule)

– Consider SCM 
• W = bY + aX

• Y = cX

• ACE = c ( and not c + b*a )

25
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K. Bollen: Structural Equations with latent variables. New York, 1989. 



Addendum and Historical Note to Note 4

• Earliest use of graphs in causal analysis in (Wright 1920)

• Wright path tracing for calculating covariances in linear 
SCMs

σXY = ∑p product(p)     
– where all p are X-Y paths not containing a collider and

– product(p) = product of all structural coefficients and
covariances of error terms

26

S. Wright. Correlation and Causation. 
Journal of Agricultural Research 20, 557-585, 1921. 



Identifying Structural Coefficients 

• What if path coefficients are not known apriori or are 
not testable?

• One has to identify only those relevant for the specific 
task, e.g., total effect of X to Y or direct effect of Z on X

• For those required for the task one can use linear 
regression on the data
1. Identify relevant variables for linear regression

2. Identify within linear equation coefficients for the 
specific task

27



Direct Effect in Incomplete Linear Systems

• Q: Direct effect of X on Y? 

• A: Here, direct effect = 0
– There is no edge from X to Y

– Which amounts to path coefficient

for X-Y edge = 0

28
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Total effect in Incomplete Linear Systems

• Q: Total effect of X on Y? 

• Now path coefficients not necessarily 
known (greek letters)

• Recall: With backdoor criterion identify 
variable set Z to adjust for 

GCE =   P(y|do(x)) = ∑zP(y | x,z)P(z)
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• Use backdoor to identify variables to regress for

• Here Z = {T}, so do linear regression on X,T:
– Y(X,T) = rXX + rTT + ε

– rX = total effect of X on Y
• linear regression equation ≠ 

structural equation
• Regression coefficients handmade
• Path coefficients nature-made 

Wake-Up: Why not also regress for W? 



Direct Effect in Incomplete Linear Systems

• Q: Direct effect of X on Y? 

• A: In general find blocking variables Z for 
• X-Y backdoor paths or, more generally, 

• Indirect X-Y paths
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• This can be achieved as follows
– Gα = Graph G without edge X –α->Y

– Z = variables d-separating X and Y

• Y = rXX + rZZ + ε
Direct effect of X on Y= rX =:α

UX

Here: Z = {W} 

Here: Y= rXX + rWW + ε



Direct Effect in Incomplete Linear Systems

• Q: What if there are no d-separating Z?  

• A: 
1. Find instrumental variables Z

1. Z is d-connected to X in Gα and 

2. Z is d-separated from Y in Gα

2. Regress Y = r1Z + ε

3. Regress X = r2Z + ε

4. r1/r2 = βYZ/ βXZ =: α = direct effect of X on Y
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Here: Z = H

This is because: Since  Z = H emits no backdoors
• r2 = β and
• r1 = total effect of Z on Y = βα

=Z

Dashed arrow denotes an
unobservable confounder



Instrumental Variables (IVs)

• Usage of IVs to trace causal effects starts already in 1925 
(econometrics)

• Standard definitions in econometrics defined IVs w.r.t. 
single equation not w.r.t. parameter

32

Definition (classically according to economist‘s)
For an equation

Y = α1X1 +  . . . + αkXk + UY   (*)
Z is instrumtenal variable for equation (*) iff
• Z is correlated with X={X1, ... Xk} and
• Z is not correlated with UY

Wright. Corn and Hog correlations, Tech. Rep. 1300, US Department of Agriculture, 1925. 



What‘s in a definition?

• The early economist‘s definition not (!) equivalent with
our official definition
– General question: What‘s a good definition*)? 

– Main problem with classical equation: too global 
• Full equation may not be identifiable, though some

parameters are. 

• The new definition is an example of a general
interesting phenomenon
– Many simplifications (clarifications/disambiguations) of

(IV) research in econometrics by considering associated
graph structure for SCM 
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*) An Addendum for Teatime on a Sunday ...

• More about „good definitions“:
N. D. Belnap. On rigorous definitions. Philosophical Studies: An International Journal of Philosophy in the Analytic Tradition, 
72(2,3):115–146, instrumental 1993.

• Rough summary:  A definition is good (formally correct) 
if it fulfills
1. eliminability (defined symbol can be replaced via old

symbols)

2. Non-creativity (no new sentences derivable in old
language)

• The kind of goodness mentioned on slide before not 
(intended to be) captured by Belnap‘s explication. 
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Conditional IVs

• Z no IV anymore for α, because
– Z not d-separated from Y

• But conditioning on W helps

35
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Definition (Brito & Pearl, 02) A variable Z is a conditional
instrumental variable given set W for coefficient α (from
X to Y) iff

– Set of descendants of Y not intersecting with W

– W d-separates Z from Y in Gα

– W does not d-separate Z from X in Gα

If conditions fulfilled, then α = βYZ.W / βXZ.W

C. Brito & J.Pearl: Generalized instrumental variables. In Uncertainty in Artificial Intelligence, 
Proceedings of the Eighteenth Conference, 85–93, 2002.  



Conditional IVs (Examples)
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Z instrument for α given W? 

yes no yes

Definition Z is a conditional IV given set W for α iff
– Set of descendants of Y are not intersecting with W
– W d-separates Z from Y in Gα

– W does not d-separate Z from X in Gα



Sets of IVs

• Sometimes need sets of instrumental 
variables 

• Neither Z1 nor Z2 (on their own) are 
instrumental variables (for the 
identification of α or γ)

• Using both helps
– Definition not trivial due to possible

intersections of paths
• Zi -> .. -> Xi->Y and Zj -> .. -> Xj->Y 

37

Y

X1 X2

α

Z1 Z2

γ

• Using Wright‘s path tracing and solving for γ and α 
σZ1Y =σZ1X1γ+ σZ1X2α
σZ2Y =σZ2X1γ+ σZ2X2α

Remember: 
σXY = ∑p product(p)     where all p are X-Y paths

not containing a collider ...  



Definition (Instrumental Set)

Set {Z1, ..., Zk} is an instrumental set for path coefficients
α1,...,αk , where Xi-αk->Y, iff

1. For each i, Zi is separated from Y in G‘                      
(where G‘ is G with edges X1→Y, ..., Xk→Y deleted)

2. There are paths pi: Zi to Y containing Xi→Y (1 ≤ i ≤ k),  
and for all paths pi pj (i ≠j in {1,2,...k}) with any common
RV V one of the following holds:

– Both pi[Zi...V] and pj[V...Y] point to V or

– Both pj[Zj...V] and pi[V...Y] point to V

38

pi[W...H] = subpath of pi from W to H



Definition (Instrumental Set)

Set {Z1, ..., Zk} is instrumental set for coefficient α1...αk with
Xi-αk->Y iff

1. For each i, Zi is separated from Y in G‘ (= G with edges
X1->Y, ..., Xk->Y

2. There are paths pi: Zi to Y containing Xi→Y (1 ≤ i ≤ k),  
and for all paths pi pj (i ≠j in {1,2,...k}) with any common
RV V one of the following holds:

– Both pi[Zi...V] and pj[V...Y] point to V or

– Both pj[Zj...V] and pi[V...Y] point to V

39pi[W...H] = subpath of pi from W to H

Condition 2. says: 
Cannot merge two intersecting paths pi and pj

to yield two unblocked paths: one must contain
collider



Theorem

Let {Z1, ..., Zk} be an instrumental set for coefficients α1...αk

with Xi-αk->Y. 

Then:  The equations below are linearly independent for
almost all parameterizations of the model and can be
solved to obtain expressions for α1...αk in terms of the
covariance matrix

σZ1Y =σZ1X1α1 + σZ1X2α2 + ... + σZ1Xkαk

σZ2Y =σZ2X1α1 + σZ2X2α2 + ... + σZ2Xkαk

...

σZkY =σZkX1α1 + σZkX2α2 + ... + σZkXkαk
40

Ensuring linear independence:
• The rank of the covariance

matrix has its maximum
• -> no information loss
• ensuring identifiability of
parameters α1...αk.



Example: Instrumental sets (positive case)

• p1 = Z1→ Z2→ X1→ Y

• p2 = Z2 ⟷ X2→ Y

• p1 and p2 satisfy condition 2 w.r.t. 
common variable V = Z2

– p1[Z1…V] = Z1→ Z2 points to Z2

– p2[V…Y] = p2 also points to Z2

– Z2 as a collider blocks possible path 
merges of p1 and p2

41
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Example: Instrumental sets (positive case)

• Algebraically
– σZ1Y lacks influence of path 

Z2 ⟷ X2→ Y and hence does not 
contain term acα

– σZ2Y contains term cα

42
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• Applying Wright‘s rule
σZ1Y =σZ1X1γ+ σZ1X2α =σZ1X1γ+ 0α = abγ

σZ2Y =σZ2X1γ+ σZ2X2α = bγ + cα

• Solving linearly independent equations: 
– γ=  σZ1Y/σZ1X1

– α = σZ2Y/σZ2X2 –σZ2X1σZ1Y/σZ2X2σZ1X1 



Example: Instrument sets (negative case)

• p1 = Z1→ Z2→ X1→ Y

• p2 = Z2→ X2→ Y

• Every path from Z2 to Y is a “sub-path” 

of a path from Z1 to Y

43
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• Applying Wright’s rule

σZ2Y = bγ+ cα

σZ1Y = abγ + acα = a(bγ + cα) = aσZ2Y 



Conditional Instrumental Sets

• See 

44

C. Brito & J.Pearl: Generalized instrumental variables. In Uncertainty in Artificial Intelligence, 
Proceedings of the Eighteenth Conference, 85–93, 2002.  



Mediation in Linear Systems

• Direct effect (DE) of X on Y mediated by Z
– Remember in  nonlinear case: 

– In linear case: Estimate path coefficient between X and Y
as shown before (using, say, IVs)

• Total effect (τ) of X on Y
– Estimate by regression as shown before 

• Indirect effect of X on Y
– IE = τ- DE

(For non-linear systems need counterfactuals)
45

Definition The controlled direct effect (CDE) on 
Y of changing X from x to x’ is defined by 

P(Y= y| do(X=x), do(Z=z)) - P(Y= y| do(X=x’), do(Z=z))


