Web-Mining Agents

Dr. Özgür Özçep

Universität zu Lübeck Institut für Informationssysteme

Structural Causal Models

slides prepared by Özgür Özçep

Part IV: Counterfactuals

Literature

• J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics – A primer, Wiley, 2016.

(Main Reference)

• J. Pearl: Causality, CUP, 2000.

Counterfactuals (Example)

Example (Freeway)

- Came to fork and decided for Sepulveda road (X=0) instead of freeway (X=1)
- Effect: long driving time of 1 hour (Y = 1h)

``If I had taken the freeway,

then I would have driven less than 1 hour"

Counterfactuals (Informal Definition)

Definition

A counterfactual is an if-then statement where

the if-condition, aka antecedens, hypothesizes about an alternative non-actual situation/condition

(in example: taking freeway) and

 the then-condition, aka succedens, describes some consequence of the hypothetical situation

(in example: 1h drive)

Counterfactuals ≠ truth-conditional if

- Counterfactuals may be false even if antecedent is false
 - ``If Hamburg is capital of Germany,
 then Schulz is chancellor"
 - ``If Hamburg were capital of Germany,
 then Schulz would be chancellor"
- Usually, in natural language use, the antecedent in counterfactuals is false in actual world
- In natural language distinguished by different modes
 - indicative mode for truth-conditional if-statements vs.
 - conjunctive/subjunctive for counterfactuals
- "Hätte, hätte Fahrradkette...." https://www.youtube.com/watch?v=qt_ppEL7OLI
- L. Matthäus: "Wäre, wäre, Fahrradkette, so ungefähr oder wie auch immer"

Counterfactuals Require Minimal Change

- Hypothetical world minimally different from actual world
 - If X=1 were the case (instead of X=0),
 but everything else the same (as far as possible),
 then Y < 1h would be the case

Account for consequences of change (from X = 0 to X = 1).

- Idea of minimal change ubiquitous
 - in particular see discussion in belief revision
 - Master-Lecture "Information Systems"
 - D. Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.
 - D. Makinson. Five faces of minimality. Studia Logica, 52:339–379, 1993.
 - F. Wolter. The algebraic face of minimality. Logic and Logical Philosophy,6:225 240, 1998.

Counterfactuals and Rigidity

- Rigidity as a consequence of minimal change of worlds/states:
 - Objects stay the same in compared worlds
- In example: Driver (characteristics) stays the same: if the driver is a moderate driver, then he will be a moderate driver in the hypothesized world, too

 Rigidity of objects across worlds also debated in early work on foundations of modal logic (work of Saul Kripke)

Counterfactuals (Example cont'd)

- Try: Formalization with intervention doesn't work! Why?
 - E(driving time |do(freeway), driving time = 1 hour) ???
 - There is a clash for RV "driving time" (Y)
 - Y = 1h in actual world vs.
 - Y < 1h (expected) under hypothesized condition X = 1 (freeway)
- Solution: Distinguish Y (driving time) under different worlds/conditions X = 0 vs. X = 1

$$E(Y_{X=1} | X = 0, Y_{X=0} = Y = 1)$$

Y_{X=x} formalizes counterfactual

Expected driving time $Y_{X=1}$ if one had chosen freeway (X=1) knowing that other decision (X=0) lead to driving time Y_0 of 1 hour.

Counterfactuals (Definition)

Definition

A counterfactual RV is of the form $Y_{X=x}$ and its semantics is given by

$$Y_{X=X}(u) := Y_{MX}(u)$$

Note the rigidity assumption:
Definition talks about the same ``objects" u in different worlds

where

- Y, X are (sets of) RVs from an SEM M
- x is an instantiation of X
- M_x is the SEM resulting from M by substituting the rhs of equation(s) for (all RVs in) X with value(s) x
- u is an instantiation of all exogenous variables in M

Counterfactuals (consistency rule)

Consequence of the formal definition of counterfactuals

```
Consistency rule

If X = x, then Y_{X=x} = Y
```

- This case (hypothesized = actual) non-typical in natural language use (Merkel: "If I only would be cancellor…)
- In belief revision the corresponding rule is termed "vacuity":
 because there is no reason to change, the change is vacuous.

Counterfactuals (for fully specified SCMs)

- How to formalize semantics of counterfactuals?
 - Use ideas similar to those of intervention
- Consider fully specified models
 - Values of all variables determined by values of exogenous variables $U = U_1, ..., U_n$
 - So can write X = X(U) for any variable in SEM
 - Example
 - X: Salary, $u = u_1, ..., u_n$ characterizes individual Joe
 - X(u) = Joe's salary
 - When considering different worlds, the individuals (such as Joe = $(u_1, ..., u_n)$) stay the same.

Linear model M:

$$X = aU$$
 ; $Y = bX + U$

• Find $Y_{X=x}(u) = ?$

(value of Y if it were the case that X = x for individual u)

- Algorithm
 - 1. Identify u under evidence (here: u just given)
 - 2. Consider modified model M_x
 - X = X
 - Y = bX + U
 - 3. Calculate $Y_{X=x}(u)$

$$Y_{X=x}(u) = bx + u$$

Linear model M:

$$X = aU$$
 ; $Y = bX + U$

with a = b = 1.

$$X_y(u) = ?$$

Algorithm

1.
$$U = u$$
; 2. $Y = y$; 3. $X = aU = au = u$.

(X unaltered by hypothetical condition Y = y)

U	X(u)	Y(u)	Y _{X=1} (u)	Y _{X=2} (u)	Y _{X=3} (u)	X _{Y=1} (u)	X _{Y=2} (u)	$X_{y=3}(u)$
1	1	2	2	3	4	1	1	1
2	2	4	3	4	5	2	2	2
3	3	6	4	5	6	3	3	3

Counterfactuals vs. Intervention with do()

Counterfactual Y _x (u)	Intervention do(X=x)
Defined locally for each u	Defined globally for whole population/distribution
Can output individual value	Outputs only expectation/distribution
Allows cross-world speak	Allows single-world speak
Can simulate intervention	Cannot simulate counterfactual

Linear model M:

$$-X=U_X$$

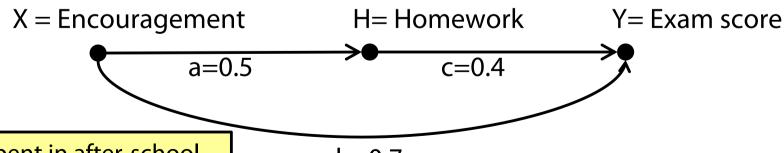
$$- H = aX + U_{H}$$

$$- Y = bX + cH + U_Y$$

$$- σUiUj = 0 for all i,j ∈ {X,H,Y}$$

(i.e., U_i, U_j are not linearly correlated/dependent)

$$a = 0.5$$
; $b = 0.7$; $c = 0.4$



X = time spent in after-school remedial program

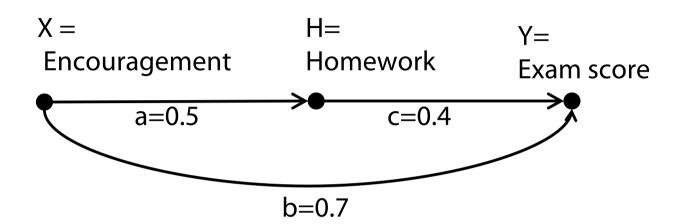
$$b = 0.7$$

Linear model M:

$$-X = U_X$$

$$-H = aX + U_H$$

$$-Y = bX + cH + U_Y$$



Consider an individual Joe given by evidence:

$$X = 0.5, H = 1, Y = 1.5$$

Want to answer counterfactual query:

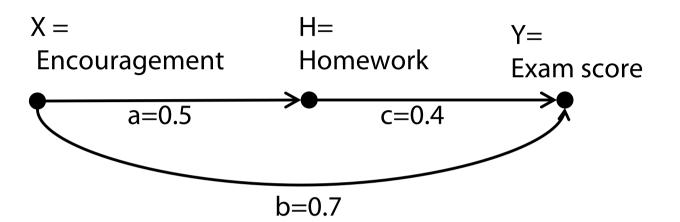
"What would Joe's exam score be if he had doubled study time at home?"

Linear model M:

$$-X=U_X$$

$$-H=aX+U_{H}$$

$$- Y = bX + cH + U_Y$$



Consider an individual Joe given by evidence:

$$X = 0.5$$
, $H = 1$, $Y = 1.5$

Step 1: Determine U-characteristics from evidence

$$- U_{x} = 0.5$$

The U-characteristics are rigid

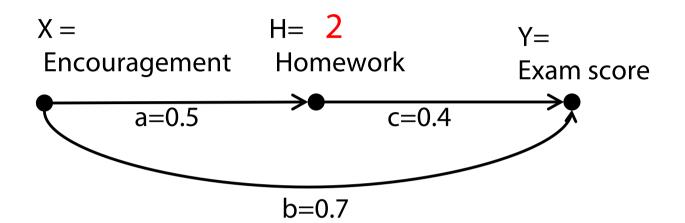
$$-$$
 U_H = 1-0.5 * 0.5

$$-$$
 U_Y = 1.5 -0.7 * 0.5 - 04.4 * 1 = 0.75

Linear model M:

$$- X = U_X$$
$$- H = aX + U_H$$

$$- Y = bX + cH + U_Y$$



- Step 2: Simulate hypothetical change (doubling)
 - Set H = 2
- Step 3: Calculate counterfactual $Y_{H=2}(u)$

$$- Y_{H=2}(U_X = 0.5, U_h = 0.75, U_Y = 0.75)$$

$$= 0.7 * 0.5 + 0.4 * 2 + 0.75 = 1.90$$

Joe would benefit from doubling homework

(Y=1.5 in actual world, Y=1.90 in hypothetical world when doubling H

Deterministic Counterfactuals Algorithm

Algorithm

- Step 1 (Abduction): Use evidence E = e to determine u
- Step 2 (Action): Modify model M to obtain model M_x
- Step 3 (Prediction): Compute counterfactual $Y_{x=x}(u)$ with M_x

- This algorithm considers single individual
- And answers query determined by counterfactual value
- What about classes of individuals and probabilistic counterfactuals?

Nondeterministic Counterfactuals Algorithm

Algorithm

- Step 1 (Abduction): Calculate P(U|E=e)
- Step 2 (Action): Modify model M to obtain model M_x
- Step 3 (Prediction): Compute expectation $E(Y_{X=x}|E=e)$ using M_x and P(U|E=e)
- Calculate the probabilities of obtaining some individual (step 1)
- Step 2 the same
- Calculate conditional expectation: What is the expected value of Y if one were to change X to x knowing E = e

Nondeterministic Counterfactuals (Example)

Model M: X = aU ; Y = bX + U (with a = b = 1)
 U = {1,2,3} represents three types of individuals with prob.
 P(U = 1) = 1/2; P(U = 2) = 1/3; P(U=3) = 1/6

Examples:

$$- P(Y_{X=2} = 3) = ? = P(U = 1) = 1/2$$

$$- P(Y_2 > 3, Y_1 < 4) = P(U=2)=1/3$$

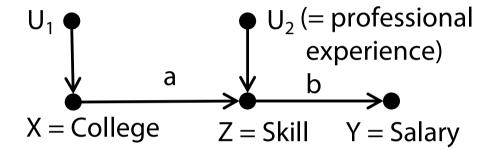
$$- P(Y_1 < Y_2) = 1$$

U	X(u)	Y(u)	Y _{X=1} (u)	Y _{X=2} (u))	Y _{X=3} (u)	X _{Y=1} (u)	X _{Y=2} (u)	$X_{y=3}(u)$
1	1	2	2	3		4	1	1	1
2	2	4	3	4		5	2	2	2
3	3	6	4	5		6	3	3	3

Counterfactuals More Expressive (Example)

- Counterfactuals more expressive than intervention
- Linear model

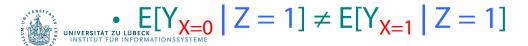
$$X = U_1; Z = aX + U_2; Y = bZ$$



$$- E[Y_{X=1} | Z = 1] = ?$$

- Not captured by E[Y|do(X=1), Z=1]. Why?
 - Gives only the salary Y of all individuals that went to college and since then acquired skill level Z=1.

 Talks about postintervention
 - E[Y|do(X=1), Z=1] = E[Y|do(X=0), Z=1]
 - In contrast: $E[Y_{X=1} | Z = 1]$ captures salary of individuals who in the actual world have skill level Z = 1 but might get Z > 1

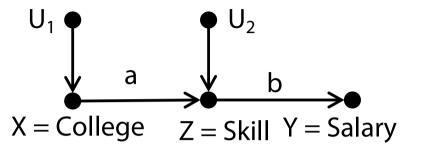


Talks about one group acting under different antecedents

for two different groups

Counterfactuals More Expressive (Example)

- $E[Y_{X=0} | Z = 1] \neq E[Y_{X=1} | Z = 1]$?
 - How is this reflected in numbers?
 - Later: How reflected in graph?



		$X = U_1; Z = aX + U_2; Y = bZ$			(for a \neq 1 and a \neq 0, b \neq 0)			
u ₁	u ₂	X(u)	Z(u)	Y(u)	$Y_{X=0}(u)$	Y _{X=1} (u)	$Z_{X=0}(u)$	$Z_{X=1}(u)$
0	0	0	0	0	0	ab	0	a
0	1	0	1	b	b	(a+1)b	1	a+1
1	0	1	a	ab	0	ab	0	a
1	1	1	a+1	(a+1)b	b	(a+1)b	1	a+1

- $E[Y_1|Z=1] = (a+1)b$; E[Y|do(X=1),Z=1] = b
- $E[Y_0|Z=1] = b$; E[Y|do(X=0),Z=1] = b

Counterfactuals vs. Intervention with do()

Counterfactual Y _x (u)	Intervention do(X=x)		
Defined locally for each u	Defined globally for whole population/distribution		
Can output individual value	Outputs only expectation/distribution		
Allows cross-world speak	Allows single-world speak		
Can simulate intervention	Cannot simulate counterfactual		

$$E[Y|do(X=1), Z=1] = ? = E[Y_{X=1}|Z_{X=1} = 1]$$

Counterfactuals vs. Intervention with do()

Counterfactual Y _x (u)	Intervention do(X=x)		
Defined locally for each u	Defined globally for whole population/distribution		
Can output individual value	Outputs only expectation/distribution		
Allows cross-world speak	Allows single-world speak		
Can simulate intervention	Cannot simulate counterfactual		

- See road example
- But in non-conditional case we have

$$P[Y_x=y] = P[Y=y|do(X=x)],$$

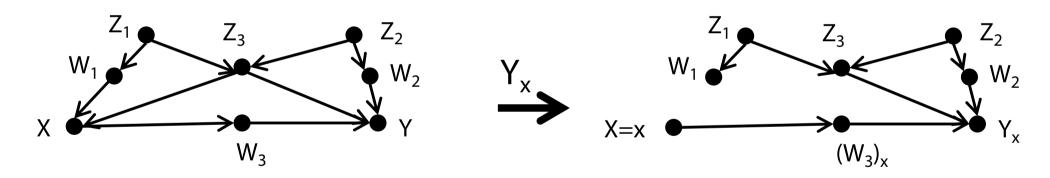
$$(E[Y_x] = E[Y|do(X=x)], resp.)$$

Graphical representation of counterfactuals

Rember definition of counterfactual

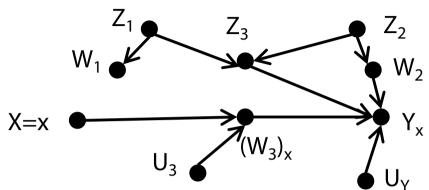
$$Y_{X=x}(u) := Y_{Mx}(u)$$

Modification as in intervention but with variable change



- Can answer (independence) queries regarding counterfactuals as for any other variable
- Note: Graphs do not show error variables

Independence criterion for counterfactuals



- Which variables can influence Y_x (i.e., Y if X fixed to x)?
 - Parents of Y and parents of nodes on pathway between X and Y (here: {Z₃, W₂, U₃, U_y})
- So blocking paths to these with a set of RVs Z renders Y_x independent of X given Z
- Special case: Z fulfills backdoor in original M w.r.t. (X,Y) (see next slide)

```
Theorem (Independence for Counterfactuals)

If set of RVs Z blocks U for all influencing variables U in between (X,Y_x), then P(Y_x \mid X,Z) = P(Y_x \mid Z) (for all x)
```

Independence criterion for counterfactuals

```
Theorem (Counterfactual interpretation of backdoor)

If set of RVs Z satisfies backdoor for (X,Y),

then P(Y_x \mid X,Z) = P(Y_x \mid Z) (for all x)
```

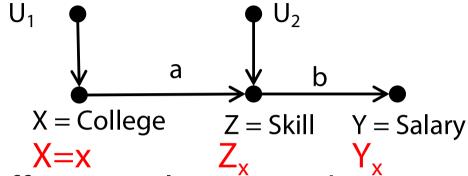
- Theorem useful for estimating prob. for counterfactuals
- In particular can use adjustment formula

$$P(Y_x = y) = \sum_{z} P(Y_x = y \mid z = z) P(z)$$
 (summing out)
= $\sum_{z} P(Y_x = y \mid z = z, X = x) P(z)$ (Thm)
= $\sum_{z} P(Y = y \mid z = z, X = x) P(z)$ (consistency)

Independence counterfactuals (example)

Reconsider linear model

$$X = U_1; Z = aX + U_2; Y = bZ$$



- Does college education have effect on salary, considering a group of fixed skill level?
- Formally: Is Y_x not independent of X, given Z?
 - Yes: Z a collider between X and U₂
 (by the way: Z does not fulfill backdoor w.r.t. (X,Y))
 - Hence: $E[Y_x \mid X, Z] \neq E[Y_x \mid Z]$ (hence education has effect for students of given skill)
 - But note that $E[Y \mid X, Z] = E[Y \mid Z]$

Counterfactuals in Linear Models

- In linear models any counterfactual is identifiable if linear parameters are identified.
 - In this case all functions in SEM fully determined
 - Can use $Y_x(u) = Y_{Mx}(u)$ for calculation
- What if some parameters not identified?
 - At least can identify statistical features of form $E[Y_{X=x}|Z=z]$

```
Theorem (Counterfactual expectation)
```

Let T denote (slope of) total effect of X on Y

$$\tau = E[Y|do(x+1)]-E[Y|do(x)]$$

Then, for any evidence Z = e

$$E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])$$

Counterfactuals in Linear Models

Theorem (Counterfactual expectation) Let T denote slope of total effect of X on Y $\tau = E[Y|do(x+1)]-E[Y|do(x)]$ Then, for any evidence Z = e $E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])$ **Expected effect change** when x shifted from current Current estimate of Y best estimate E[X|Z=e]

Effect of Treatment on the Treated (ETT)

```
Theorem (Counterfactual expectation)
Let \tau denote (slope of) total effect of X on Y
\tau = E[Y|do(x+1)]-E[Y|do(x)]
Then, for any evidence Z = e
E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])
```

```
ETT = E[Y_1 - Y_0|X=1]

= E[Y_1|X=1] - E[Y_0|X=1]

= E[Y|X=1] - E[Y|X=1] + \tau (1-E[X|X=1]) - \tau (0-E[X|X=1])

(using Thm with (Z = e) \triangleq (X = 1))

= \tau
```

Hence, in linear models, effect of treatment on the treated (individual) is the same as total treatment effect on population

Extended Example for ETT

- Job training program (X) for jobless funded by government to increase hiring Y
- Pilot randomized experiment shows:

```
Hiring-%(w/ training) > Hiring-%(w/o training) (*)
```

- Critics
 - (*) not relevant as it might falsely measure effect on those who chose to enroll for program by themselves (these may got job because they are more ambitious)
 - Instead, need to consider ETT

$$E[Y_1 - Y_0 | X=1] =$$
 causal effect of training X on hiring
Y for those who took the training

Extended Example for ETT (cont'd)

- Calculating the difficult summand: $E[Y_{x=0} | X=1]$
 - not given by observational or experimental data
 - but can be reduced to these if appropriate covariates Z (fulfilling backdoor criterion) exist

$$P(Y_x = y \mid X = x')$$

$$= \sum_{z} P(Y_x = y \mid Z = z, x') P(z \mid x') \qquad \text{(by conditioning on } z)$$

$$= \sum_{z} P(Y_x = y \mid Z = z, x) P(z \mid x') \qquad \text{(by Thm on }$$

$$= \sum_{z} P(Y_x = y \mid Z = z, x) P(z \mid x') \qquad \text{(consistency rule)}$$

Contains only observational/testable RVs

• $E[Y_0|X=1] = \sum_z E(Y | Z = z, X=0)P(z|X=1)$

Extended Example Additive Intervention

Scenario

- Add amount q of insulin to group of patients (with different insulin levels)
 - $do(X = X+q) = add_X(q)$
 - Different from simple intervention
- Calculate effect of additive intervention from data where such additions have not been oberved
- Formalization with counterfactual
 - Y =outcome RV =a RV relevant for measuring effect
 - X = x' (previous level of insulin)
 - $-Y_{x'+q}$ = outcome after additive intervention with q insul.

Extended Example Additive Intervention

- $E[Y_{x'+q}|x']$ = expected output of additive intervention
 - Part of ETT expression $E[Y_{x'+q}|x']$ $E[Y_{x'}|x']$ (for level x')
 - Averaging over all levels: $E[Y|add_X(q)] E[Y]$
 - Can be identified with adjustment formula (for backdoor Z such as weight, age, etc.)
- $E[Y|add_X(q)] E[Y]$ $= \sum_{x'} E[Y_{x'+q}|X=x']P(X=x') - E[Y]$ $= \sum_{x'} \sum_{z} E[Y|X=x'+q,Z=z]P(Z=z|X=x')P(X=x')-E[Y]$ (using already derived formula $E(Y_x \mid X=x') = \sum_{z} E(Y=y \mid Z=z,x)P(z|x')$ and substituting x = x' + q)

- Scenario 1
 - Cancer patient Ms Jones has to decide between
 - 1. Lumpectomy alone (X = 0)
 - 2. Lumpectomy with irradiation (X = 1)

hoping for remission of cancer (Y = 1)

- She decides for adding irradiation (X=1) and 10 years later the cancer remisses.
- Is the remission due to her decision?
- Formally: Determine probability of necessity

$$PN = P(Y_{X=0} = 0 | X = 1, Y = 1)$$

 If you want remission, you have to go for adding irradiation (irradiation necessary for remission)

- Scenario 2
 - Cancer patient Mrs Smith had lumpectomy alone (X=0) and her tumor reoccurred (Y=0).
 - She regrets not having gone for irradiation.
 Is she justified?
 - Formally: Determine probability of sufficiency

$$PS = P(Y_{X=1} = 1 | X = 0, Y = 0)$$

If you go for adding irradiation, you will achieve cancer remission

Note that, formally, PN and PS are the same.

The distinction comes from interpreting

value 1 = acting

value 0 = omitting an action

- Scenario 3
 - Cancer patient Mrs Daily faces same decision as Mrs Jones and argues
 - If my tumor is of type that disappears without irradiation, why should I take irradiation?
 - If my tumor is of type that does not disappear even with irradiation, why even take irradiation?
 - So should she go for irradiation?
- Formally: Determine probability of necessity and sufficiency

$$PNS = P(Y_{X=1} = 1, Y_{X=0} = 0)$$

Probability of necessity and sufficiency

$$PNS = P(Y_{X=1} = 1, Y_{X=0} = 0)$$

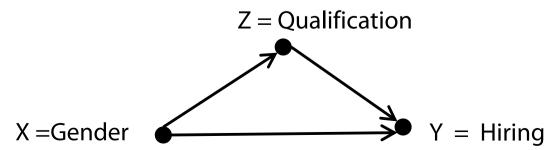
 PN (PS and PNS) can be estimated from data under assumption of monotonicity (adding irradiation cannot cause recurrence of tumor)

$$PNS = P(Y=1|do(X=1)) - P(Y=1|do(X=0))$$

= total effect on Y of changing X from no irradiation to irradiation

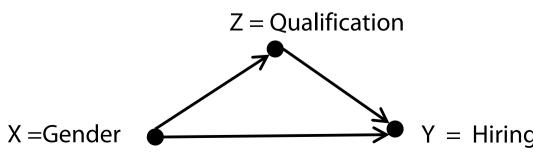
Extended Example Mediation

- Scenario (Indirect effect of gender on hiring)
 Policy maker wants to decide whether to
 - 1. Make hiring procedure gender-blind (direct effect) or
 - Eliminate gender inequality in education or job trainig (indirect effect)
 - (Controlled) direct effect identifiable with do expression (lecture on interventions)
 - Indirect effect for non-linear system ≠ total effect minus direct effect



Extended Example Mediation (cont'd)

- In order to determine indirect effect of gender:
 - Have to substract outcomes Y in two worlds where
 - In both gender X is kept fixed to male (X=1)
 - but its mediator (Z) is changed accordingly if one had changed the gender (from male to female)
 - Consider: $E[Y_{X=1,Z=Z_{X=0}} Y_{X=1,Z=Z_{X=1}}]$
 - $Y_{X=1, Z=Z_{X=0}(u)}(u) =$ Value of Y for u in world where X = 1 and where Z = same value as of Z for u in world where X = 0.
 - Note nesting of counterfactuals



Extended Example Mediation (cont'd)

- $Y_{X=1,Z=z}$ = hiring status with qualification Z=z when treated as male (X=1)
- Averaging over possible qualifications for females

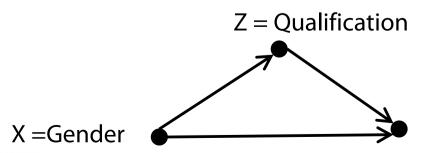
$$\sum_{z} E[Y_{x=1,Z=z}]P(Z=z|X=0)$$
 (= $E[Y_{x=1,Z=Zx=0}]$)

Averaging over possible qualifications for males

$$\sum_{z} E[Y_{x=1,Z=z}] P(Z=z|X=1)$$
 (= $E[Y_{x=1,Z=Z_{x=1}}]$)

Natural indirect effect (NIE)

$$\sum_{z} E[Y_{X=1,Z=z}] (P(Z=z|X=0) - P(Z=z|X=1))$$



Called ``natural" because nature determines value of Z (as opposed to controlled fixation in CDE)

Y = Hiring

Extended Example Mediation

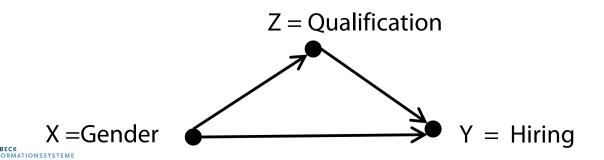
Natural indirect effect (NIE)

$$\sum_{z} E[Y_{X=1,Z=z}] (P(Z=z|X=0) - P(Z=z|X=1))$$

 NIE identifiable from data in absence of confounding (Pearl 2001)

$$\sum_{z} E[Y|X=1,Z=z] (P(Z=z|X=0) - P(Z=z|X=1))$$

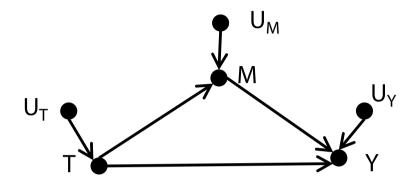
J. Pearl: Direct and indirect effects. Proceedings of the 7th Conference on Uncertainty in Al. 411-420, 2001



Toolkit for Mediation

Mediation problem

- $T = f(u_T)$;
- $\quad m = f_M(t, u_M);$
- $y = f_Y(t,m,u_Y)$

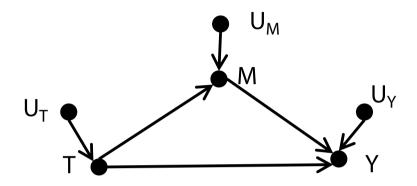


Effect	Formula
Total	TE = $E[Y_1-Y_0] = E[Y do(T=1)]-E[Y do(T=0)]$
Controlled direct (for fixed mediator M=m)	CDM(m) = $E[Y_{1,m}-Y_{0,m}]$ = = $E[Y do(T=1, M=m)-E[Y do(T=0, M=m)]$
Natural direct	NDE = $E[Y_{1,M_0} - Y_{0,M_0}]$
Natural indirect	$NIE = E[Y_{0,M_1} - Y_{0,M_0}]$

Toolkit for Mediation

Mediation problem

- $T = f(u_T)$;
- $m = f_M(t,u_M);$
- $y = f_Y(t,m,u_Y)$



Observations

- TE = NDE NIE_r (for changing T from 0 to 1)
 - where NIE_r is NIE under reverse transition of treatment, i.e., T changes from 1 to 0
- TE and CDE(m) are do-expressions, so estimable
 - from experimental data
 - or from observations with backdoor and frontdoor

Identification for NDE and NIE (optional slide)

- Consider set of covariates W such that
 - 1. No member of W descendant of T
 - 2. W blocks all M-Y backdoors after removing T-> M and T-> Y
 - 3. The W-specific effect is identifiable (using experiments or adjustment)
 - 4. The W-specific joint effect of {T,M} on Y is identifiable (using experiments or adjustment)

Theorem (Identification of NDE)

When 1.and 2. hold, then NDE identifiable by

NDE =
$$\sum_{m} \sum_{w} [E[Y|do(T=1,M=m),W=w] - E[Y|do(T=0,M=m),W=w]] * P(M = m|do(T=0),W=w)P(W=w)$$

If additionally 3. and 4., then do expressions also identifiable by backdoor or front-door

INSTITUT FÜR INFORMATIONSSYSTEME

IM LOCO2 DA2 FEBEN

Counterfactuals are of interest in recent recearch

- F. Zhu, A. Lin, G. Zhang, and J. Lu. Counterfactual inference with hidden confounders using implicit generative models. In T. Mitrovic, B. Xue, and X. Li, editors, Al 2018: Advances in Artificial Intelligence 31st Australasian Joint Conference, Wellington, New Zealand, December 11-14, 2018, Proceedings, volume 11320 of LNCS, pages 519–530. Springer, 2018.
- Symposium on Causality 2019
 - Beyond Curve Fitting: Causation, Counterfactuals, and Imagination-based AI
 - https://why19.causalai.net/

