Web-Mining Agents

> Dr. Özgür Özçep

Universität zu Lübeck
Institut für Informationssysteme

Structural Causal Models

slides prepared by Özgür Özçep

Part IV: Counterfactuals

Literature

- J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics - A primer, Wiley, 2016.
(Main Reference)
- J. Pearl: Causality, CUP, 2000.

Counterfactuals (Example)

Example (Freeway)

- Came to fork and decided for Sepulveda road $(X=0)$ instead of freeway ($\mathrm{X}=1$)
- Effect: long driving time of 1 hour $(Y=1 h)$
"If I had taken the freeway,
then I would have driven less than 1 hour"

Counterfactuals (Informal Definition)

Definition

A counterfactual is an if-then statement where

- the if-condition, aka antecedens, hypothesizes about an alternative non-actual situation/condition
(in example: taking freeway) and
- the then-condition, aka succedens, describes some consequence of the hypothetical situation
(in example: 1h drive)

Counterfactuals \neq truth-conditional if

- Counterfactuals may be false even if antecedent is false
- `lf Hamburg is capital of Germany, then Schulz is chancellor" true
- "If Hamburg were capital of Germany, then Schulz would be chancellor" false
- Usually, in natural language use, the antecedent in counterfactuals is false in actual world
- In natural language distinguished by different modes
- indicative mode for truth-conditional if-statements vs.
- conjunctive/subjunctive for counterfactuals
- „Hätte, hätte Fahrradkette...." https://www.youtube.com/watch?v=qt ppEL7OLI
- L. Matthäus: ,Wäre, wäre, Fahrradkette, so ungefähr - oder wie auch immer"

Counterfactuals Require Minimal Change

- Hypothetical world minimally different from actual world
- If $\quad X=1$ were the case (instead of $X=0$),
but everything else the same (as far as possible), then $Y<1 h$ would be the case

> Account for consequences of change (from $X=0$ to $X=1$).

- Idea of minimal change ubiquitous
- in particular see discussion in belief revision
- Master-Lecture "Information Systems"
D. Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.
D. Makinson. Five faces of minimality. Studia Logica, 52:339-379, 1993.
F. Wolter. The algebraic face of minimality. Logic and Logical Philosophy,6:225-240, 1998.

Counterfactuals and Rigidity

- Rigidity as a consequence of minimal change of worlds/states:

Objects stay the same in compared worlds

- In example: Driver (characteristics) stays the same: if the driver is a moderate driver, then he will be a moderate driver in the hypothesized world, too
- Rigidity of objects across worlds also debated in early work on foundations of modal logic (work of Saul Kripke)

Counterfactuals (Example cont'd)

- Try: Formalization with intervention doesn't work! Why?
- E(driving time |do(freeway), driving time = 1 hour) ???
- There is a clash for RV „driving time" (Y)
- $Y=1 \mathrm{~h}$ in actual world vs.
- $\mathrm{Y}<1 \mathrm{~h}$ (expected) under hypothesized condition $\mathrm{X}=1$ (freeway)
- Solution: Distinguish Y (driving time) under different worlds/conditions $X=0$ vs. $X=1$

$$
E\left(Y_{X=1} \mid X=0, Y_{X=0}=Y=1\right)
$$

$Y_{X=x}$ formalizes counterfactual

[^0]
Counterfactuals (Definition)

Definition

A counterfactual RV is of the form $Y_{X=x}$ and its semantics is given by

$$
Y_{X=x}(u):=Y_{M x}(u)
$$

Note the rigidity assumption: Definition talks about the same "objects" u in different worlds
where

- Y, X are (sets of) RVs from an SEM M
- x is an instantiation of X
- M_{x} is the SEM resulting from M by substituting the rhs of equation(s) for (all RVs in) X with value(s) X
- u is an instantiation of all exogenous variables in M

Counterfactuals (consistency rule)

- Consequence of the formal definition of counterfactuals

$$
\begin{aligned}
& \text { Consistency rule } \\
& \text { If } X=x \text {, then } Y_{X=x}=Y
\end{aligned}
$$

- This case (hypothesized = actual) non-typical in natural language use (Merkel: „If I only would be cancellor...)
- In belief revision the corresponding rule is termed „vacuity": because there is no reason to change, the change is vacuous.

Counterfactuals (for fully specified SCMs)

- How to formalize semantics of counterfactuals?
- Use ideas similar to those of intervention
- Consider fully specified models
- Values of all variables determined by values of exogenous variables $U=U_{1}, \ldots, U_{n}$
- So can write $X=X(U)$ for any variable in SEM
- Example
- X : Salary, $\mathrm{u}=\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}$ characterizes individual Joe
- X(u) = Joe's salary
- When considering different worlds, the individuals (such as Joe $\left.=\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\right)$ stay the same.

Counterfactuals in linear SEMs (Example)

- Linear model M:

$$
X=a U \quad ; \quad Y=b X+U
$$

- Find $Y_{X=x}(u)=$?
(value of Y if it were the case that $X=x$ for individual u)
- Algorithm

1. Identify u under evidence (here: u just given)
2. Consider modified model M_{x}

$$
\begin{array}{ll}
\text { - } & X=x \\
\text { - } & Y=b X+U
\end{array}
$$

3. Calculate $Y_{X=x}(u)$

$$
Y_{X=x}(u)=b x+u
$$

Counterfactuals in linear SEMs (Example)

- Linear model M:

$$
X=a U \quad ; \quad Y=b X+U
$$

with $\mathrm{a}=\mathrm{b}=1$.
$X_{y}(\mathrm{u})=$?
Algorithm

1. $U=u ; 2 . Y=y ; 3 . X=a U=a u=u$.
(X unaltered by hypothetical condition $\mathrm{Y}=\mathrm{y}$)

U	$\mathrm{X}(\mathrm{u})$	$\mathrm{Y}(\mathrm{u})$	$\mathrm{Y}_{\mathrm{X}=1}(\mathrm{u})$	$\mathrm{Y}_{\mathrm{X}=2}(\mathrm{u})$	$\mathrm{Y}_{\mathrm{X}=3}(\mathrm{u})$	$\mathrm{X}_{\mathrm{Y}=1}(\mathrm{u})$	$\mathrm{X}_{\mathrm{Y}=2}(\mathrm{u})$	$\mathrm{X}_{\mathrm{y}=3}(\mathrm{u})$
1	1	2	2	3	4	1	1	1
2	2	4	3	4	5	2	2	2
3	3	6	4	5	6	3	3	3

Counterfactuals vs. Intervention with do()

Counterfactual $\mathrm{Y}_{\mathrm{x}}(\mathrm{u})$	Intervention do(X=x)
Defined locally for each u	Defined globally for whole population/distribution
Can output individual value	Outputs only expectation/distribution
Allows cross-world speak	Allows single-world speak
Can simulate intervention	Cannot simulate counterfactual

Counterfactuals in Linear SEMs (Example)

- Linear model M:
- $\mathrm{X}=\mathrm{U}_{\mathrm{X}}$
$-\mathrm{H}=\mathrm{aX}+\mathrm{U}_{\mathrm{H}}$
$-\mathrm{Y}=\mathrm{bX}+\mathrm{cH}+\mathrm{U}_{\mathrm{Y}}$
- $\sigma_{\text {UiUj }}=0$ for all $i, j \in\{X, H, Y\} \quad$ (i.e., U_{i}, U_{j} are not linearly
correlated/dependent)

$$
a=0.5 ; \quad b=0.7 ; \quad c=0.4
$$

$$
\text { X = Encouragement } \quad H=\text { Homework } \quad Y=\text { Exam score }
$$

X = time spent in after-school
$b=0.7$
$\mathrm{C}=0.4$

Counterfactuals in Linear SEMs (Example)

- Linear model M : $\quad \mathrm{X}=$
- $\mathrm{X}=\mathrm{U}_{\mathrm{X}}$
$-\mathrm{H}=\mathrm{aX}+\mathrm{U}_{\mathrm{H}}$
$-\mathrm{Y}=\mathrm{bX}+\mathrm{cH}+\mathrm{U}_{\mathrm{Y}}$

- Consider an individual Joe given by evidence:

$$
X=0.5, \quad H=1, \quad Y=1.5
$$

- Want to answer counterfactual query:
„What would Joe's exam score be if he had doubled study time at home?"

Counterfactuals in Linear SEMs (Example)

- Linear model M : $\mathrm{X}=$
- $\mathrm{X}=\mathrm{U}_{\mathrm{X}}$
$-\mathrm{H}=\mathrm{aX}+\mathrm{U}_{\mathrm{H}}$
$-\mathrm{Y}=\mathrm{bX}+\mathrm{cH}+\mathrm{U}_{\mathrm{Y}}$

- Consider an individual Joe given by evidence:

$$
X=0.5, \quad H=1, \quad Y=1.5
$$

- Step 1: Determine U-characteristics from evidence
$-\mathrm{U}_{\mathrm{x}}=0.5$
The U-characteristics are rigid
$-U_{H}=1-0.5 * 0.5$
$-U_{Y}=1.5-0.7 * 0.5-04.4 * 1=0.75$

Counterfactuals in Linear SEMs (Example)

- Linear model M : $X=\quad H=2$
$-X=U_{X}$
$-H=a X+U_{H}$
$-Y=b X+c H+U_{Y}$

- Step 2: Simulate hypothetical change (doubling)
- Set H = 2
- Step 3: Calculate counterfactual $\mathrm{Y}_{\mathrm{H}=2}(\mathrm{u})$
$-\mathrm{Y}_{\mathrm{H}=2}\left(\mathrm{U}_{\mathrm{X}}=0.5, \mathrm{U}_{\mathrm{h}}=0.75, \mathrm{U}_{\mathrm{Y}}=0.75\right)$
$=0.7 * 0.5+0.4 * 2+0.75=1.90$
Joe would benefit from doubling homework
($\mathrm{Y}=1.5$ in actual world, $\mathrm{Y}=1.90$ in hypothetical world when doubling H

Deterministic Counterfactuals Algorithm

Algorithm

- Step 1 (Abduction): Use evidence $\mathrm{E}=\mathrm{e}$ to determine u
- Step 2 (Action): Modify model M to obtain model M_{x}
- Step 3 (Prediction): Compute counterfactual $Y_{X=x}(u)$ with M_{x}
- This algorithm considers single individual
- And answers query determined by counterfactual value
- What about classes of individuals and probabilistic counterfactuals?

Nondeterministic Counterfactuals Algorithm

Algorithm

- Step 1 (Abduction): Calculate $P(U \mid E=e)$
- Step 2 (Action): Modify model M to obtain model M_{x}
- Step 3 (Prediction): Compute expectation $E\left(Y_{X=x} \mid E=e\right)$ using M_{x} and $\mathrm{P}(\mathrm{U} \mid \mathrm{E}=\mathrm{e})$
- Calculate the probabilities of obtaining some individual (step 1)
- Step 2 the same
- Calculate conditional expectation: What is the expected value of Y if one were to change X to x knowing $E=e$

Nondeterministic Counterfactuals (Example)

- Model M: $X=a U$; $Y=b X+U \quad$ (with $a=b=1$)
$U=\{1,2,3\}$ represents three types of individuals with prob.

$$
P(U=1)=1 / 2 ; \quad P(U=2)=1 / 3 ; \quad P(U=3)=1 / 6
$$

- Examples:

$$
\begin{aligned}
& -P\left(Y_{X=2}=3\right)=? \quad=P(U=1)=1 / 2 \\
& -P\left(Y_{2}>3, Y_{1}<4\right)=P(U=2)=1 / 3 \\
& -P\left(Y_{1}<Y_{2}\right)=1
\end{aligned}
$$

U	$\mathrm{X}(\mathrm{u})$	$\mathrm{Y}(\mathrm{u})$	$\mathrm{Y}_{\mathrm{X}=1}(\mathrm{u})$	$\mathrm{Y}_{\mathrm{X}=2}(\mathrm{u})$	$\mathrm{Y}_{\mathrm{X}=3}(\mathrm{u})$	$\mathrm{X}_{\mathrm{Y}=1}(\mathrm{u})$	$\mathrm{X}_{\mathrm{Y}=2}(\mathrm{u})$	$\mathrm{X}_{\mathrm{y}=3}(\mathrm{u})$
1	1	2	2	3	4	1	1	1
2	2	4	3	4	5	2	2	2
3	3	6	4	5	6	3	3	3

Counterfactuals More Expressive (Example)

- Counterfactuals more expressive than intervention
- Linear model

$$
\begin{aligned}
& X=U_{1} ; Z=a X+U_{2} ; Y=b Z \\
& \text { - } \mathrm{E}\left[\mathrm{Y}_{\mathrm{X}=1} \mid \mathrm{Z}=1\right]=\text { ? }
\end{aligned}
$$

- Not captured by $E[Y \mid d o(X=1), Z=1]$. Why?
- Gives only the salary Y of all individuals that went to college and since then acquired skill level $Z=1$.
- $E[Y \mid d o(X=1), Z=1]=E[Y \mid d o(X=0), Z=1]$

Talks about postintervention for two different groups

- In contrast: $E\left[Y_{X=1} \mid Z=1\right]$ captures salary of individuals who in the actual world have skill level $Z=1$ but might get $Z>1$
- $E\left[Y_{X=0} \mid Z=1\right] \neq E\left[Y_{X=1} \mid Z=1\right]$

Counterfactuals More Expressive (Example)

- $E\left[Y_{X=0} \mid Z=1\right] \neq E\left[Y_{X=1} \mid Z=1\right]$?
- How is this reflected in numbers?
- Later: How reflected in graph? $X=$ College $Z=$ Skill $Y=$ Salary

- $E\left[Y_{1} \mid Z=1\right]=(a+1) b \quad ; \quad E[Y \mid d o(X=1), Z=1]=b$
- $E\left[Y_{0} \mid Z=1\right]=b$
$\mathrm{E}[\mathrm{Y} \mid \mathrm{do}(\mathrm{X}=0), \mathrm{Z}=1]=\mathrm{b}$

In particular: $E\left[Y_{1}-Y_{0} \mid Z=1\right]=a b \neq 0$

Counterfactuals vs. Intervention with do()

Counterfactual $\mathrm{Y}_{\mathrm{x}}(\mathrm{u})$	Intervention do($\mathrm{X}=\mathrm{x})$
Defined locally for each u	Defined globally for whole population/distribution
Can output individual value	Outputs only expectation/distribution
Allows cross-world speak	Allows single-world speak
Can simulate intervention	Cannot simulate counterfactual

Counterfactuals vs. Intervention with do()

Counterfactual $\mathrm{Y}_{\mathrm{x}}(\mathrm{u})$	Intervention do($\mathrm{X}=\mathrm{x})$
Defined locally for each u	Defined globally for whole population/distribution
Can output individual value	Outputs only expectation/distribution
Allows cross-world speak	Allows single-world speak
Can simulate intervention	Cannot simulate counterfactual

- See road example
- But in non-conditional case we have

$$
\begin{aligned}
& P\left[Y_{x}=y\right]=P[Y=y \mid \operatorname{do}(X=x)], \\
& \left(E\left[Y_{x}\right]=E[Y \mid \operatorname{do}(X=x)], \text { resp. }\right)
\end{aligned}
$$

Graphical representation of counterfactuals

- Rember definition of counterfactual

$$
\mathrm{Y}_{\mathrm{X}=\mathrm{x}}(\mathrm{u}):=\mathrm{Y}_{\mathrm{Mx}}(\mathrm{u})
$$

- Modification as in intervention but with variable change

- Can answer (independence) queries regarding counterfactuals as for any other variable
- Note: Graphs do not show error variables

Independence criterion for counterfactuals

- Which variables can influence Y_{x} (i.e., Y if X fixed to x)?
- Parents of Y and parents of nodes on pathway between X and Y (here: $\left\{Z_{3}, W_{2}, U_{3}, U_{y}\right\}$)
- So blocking paths to these with a set of RVs Z renders Y_{x} independent of X given Z
- Special case: Z fulfills backdoor in original M w.r.t. (X, Y) (see next slide)

Theorem (Independence for Counterfactuals)
If set of $R V s Z$ blocks U for all influencing variables U in between (X, Y_{X}), then $P\left(Y_{x} \mid X, Z\right)=P\left(Y_{x} \mid Z\right) \quad$ (for all x)

Independence criterion for counterfactuals

Theorem (Counterfactual interpretation of backdoor)
If set of RVs Z satisfies backdoor for (X, Y), then $P\left(Y_{x} \mid X, Z\right)=P\left(Y_{x} \mid Z\right)$
(for all x)

- Theorem useful for estimating prob. for counterfactuals
- In particular can use adjustment formula

$$
\begin{aligned}
P\left(Y_{x}=y\right) & =\sum_{z} P\left(Y_{x}=y \mid Z=z\right) P(z) \\
& =\sum_{z} P\left(Y_{x}=y \mid Z=z, X=x\right) P(z) \\
& =\Sigma_{z} P\left(Y=y \mid Z=z_{1} X=x\right) P(z)
\end{aligned}
$$

Clear in light of $P\left(Y_{x}=y\right)=P(Y=y \mid$ do $(X=x))$

Independence counterfactuals (example)

- Reconsider linear model

$$
X=U_{1} ; Z=a X+U_{2} ; Y=b Z
$$

- Does college education have effect on salary, considering a group of fixed skill level?
- Formally: Is Y_{x} not independent of X, given Z ?
- Yes: Z a collider between X and U_{2} (by the way: Z does not fulfill backdoor w.r.t. (X,Y))
- Hence: $E\left[Y_{x} \mid X, Z\right] \neq E\left[Y_{x} \mid Z\right]$
(hence education has effect for students of given skill)
- But note that $E[Y \mid X, Z]=E[Y \mid Z]$

Counterfactuals in Linear Models

- In linear models any counterfactual is identifiable if linear parameters are identified.
- In this case all functions in SEM fully determined
- Can use $Y_{x}(u)=Y_{M x}(u)$ for calculation
- What if some parameters not identified?
- At least can identify statistical features of form $E\left[Y_{X=x} \mid Z=z\right]$

Theorem (Counterfactual expectation)
Let τ denote (slope of) total effect of X on Y

$$
\tau=E[Y \mid d o(x+1)]-E[Y \mid d o(x)]
$$

Then, for any evidence $Z=e$

$$
E\left[Y_{X=x} \mid Z=e\right]=E[Y \mid Z=e]+\tau(x-E[X \mid Z=e])
$$

Counterfactuals in Linear Models

Theorem (Counterfactual expectation)
Let τ denote slope of total effect of X on Y

$$
\tau=E[Y \mid d o(x+1)]-E[Y \mid d o(x)]
$$

Then, for any evidence $Z=e$

$$
E\left[Y_{X=x} \mid Z=e\right]=E[Y \mid Z=e]+\tau(x-E[X \mid Z=e])
$$

Current estimate of Y
Expected effect change when x shifted from current best estimate $\mathrm{E}[\mathrm{X} \mid \mathrm{Z}=\mathrm{e}$]

Effect of Treatment on the Treated (ETT)

Theorem (Counterfactual expectation)
Let τ denote (slope of) total effect of X on Y

$$
\tau=E[Y \mid d o(x+1)]-E[Y \mid d o(x)]
$$

Then, for any evidence $Z=e$

$$
E\left[Y_{X=x} \mid Z=e\right]=E[Y \mid Z=e]+\tau(x-E[X \mid Z=e])
$$

```
\(E T T=E\left[Y_{1}-Y_{0} \mid X=1\right]\)
    \(=E\left[Y_{1} \mid X=1\right]-E\left[Y_{0} \mid X=1\right]\)
    \(=E[Y \mid X=1]-E[Y \mid X=1]+\tau(1-E[X \mid X=1])-\tau(0-E[X \mid X=1])\)
        (using Thm with \((Z=e) \hat{=}(X=1))\)
    \(=\tau\)
```

Hence, in linear models, effect of treatment on the treated (individual) is the same as total treatment effect on population

Extended Example for ETT

- Job training program (X) for jobless funded by government to increase hiring Y
- Pilot randomized experiment shows:

```
Hiring-%(w/ training) > Hiring-%(w/o training) (*)
```

- Critics
- (*) not relevant as it might falsely measure effect on those who chose to enroll for program by themselves (these may got job because they are more ambitious)
- Instead, need to consider ETT
$E\left[Y_{1}-Y_{0} \mid X=1\right]=$ causal effect of training X on hiring Y for those who took the training

Extended Example for ETT (cont'd)

- Calculating the difficult summand: $\mathrm{E}\left[\mathrm{Y}_{\mathrm{X}=0} \mid \mathrm{X}=1\right]$
- not given by observational or experimental data
- but can be reduced to these if appropriate covariates Z (fulfilling backdoor criterion) exist

$$
\begin{aligned}
& P\left(Y_{x}=y \mid X=x^{\prime}\right) \\
& =\Sigma_{z} P\left(Y_{x}=y \mid Z=z, x^{\prime}\right) P\left(z \mid x^{\prime}\right) \\
& =\Sigma_{z} P\left(Y_{x}=y \mid Z=z, x\right) P\left(z \mid x^{\prime}\right)
\end{aligned}
$$

counterfactual backdoor $P\left(Y_{x} \mid X, Z\right)=P\left(Y_{x} \mid Z\right)$)
$=\Sigma_{z} P(Y=y \mid Z=z, x) P\left(z \mid x^{\prime}\right) \quad$ (consistency rule)
Contains only observational/testable RVs

- $E\left[Y_{0} \mid X=1\right]=\sum_{z} E(Y \mid Z=z, X=0) P(z \mid X=1)$

Extended Example Additive Intervention

- Scenario
- Add amount q of insulin to group of patients (with different insulin levels)
- $\left.\operatorname{do}^{(X}=X+q\right)=\operatorname{add}_{x}(q)$
- Different from simple intervention
- Calculate effect of additive intervention from data where such additions have not been oberved
- Formalization with counterfactual
- $\mathrm{Y}=$ outcome RV = a RV relevant for measuring effect
- $X=x^{\prime}$ (previous level of insulin)
$-Y_{x^{\prime}+q}=$ outcome after additive intervention with q insul.

Extended Example Additive Intervention

- $E\left[Y_{X^{\prime}+q} \mid x^{\prime}\right]=$ expected output of additive intervention
- Part of ETT expression $E\left[Y_{x^{\prime}+q} \mid x^{\prime}\right]-E\left[Y_{x^{\prime}} \mid x^{\prime}\right]$ (for level x^{\prime})
- Averaging over all levels: $\mathrm{E}\left[\mathrm{Y} \mid \operatorname{add}_{\mathrm{x}}(\mathrm{q})\right]-\mathrm{E}[\mathrm{Y}]$
- Can be identified with adjustment formula (for backdoor Z such as weight, age, etc.)
- $\mathrm{E}\left[\mathrm{Y} \mid \operatorname{add}_{\mathrm{x}}(\mathrm{q})\right]-\mathrm{E}[\mathrm{Y}]$

$$
\begin{aligned}
& =\Sigma_{x^{\prime}} E\left[Y_{x^{\prime}+\mathrm{q}} \mid X=x^{\prime}\right] P\left(X=x^{\prime}\right)-E[Y] \\
& =\Sigma_{x^{\prime}} \Sigma_{z} E\left[Y \mid X=x^{\prime}+q, Z=z\right] P\left(Z=z \mid X=x^{\prime}\right) P\left(X=x^{\prime}\right)-E[Y]
\end{aligned}
$$

(using already derived formula

$$
E\left(Y_{x} \mid X=x^{\prime}\right)=\Sigma_{z} E(Y=y \mid Z=z, x) P\left(z \mid x^{\prime}\right)
$$ and substituting $x=x^{\prime}+q$)

Extended Example Decision Making (cont'd)

- Scenario 1
- Cancer patient Ms Jones has to decide between

1. Lumpectomy alone $(X=0)$
2. Lumpectomy with irradiation $(X=1)$ hoping for remission of cancer $(Y=1)$

- She decides for adding irradiation $(X=1)$ and 10 years later the cancer remisses.
- Is the remission due to her decision?
- Formally: Determine probability of necessity

$$
\mathrm{PN}=\mathrm{P}\left(\mathrm{Y}_{\mathrm{X}=0}=0 \mid \mathrm{X}=1, \mathrm{Y}=1\right)
$$

- If you want remission, you have to go for adding irradiation (irradiation necessary for remission)

Extended Example Decision Making (cont'd)

- Scenario 2
- Cancer patient Mrs Smith had lumpectomy alone ($\mathrm{X}=0$) and her tumor reoccurred ($\mathrm{Y}=0$).
- She regrets not having gone for irradiation.

Is she justified?

- Formally: Determine probability of sufficiency

$$
P S=P\left(Y_{X=1}=1 \mid X=0, Y=0\right)
$$

- If you go for adding irradiation, you will achieve cancer remission

Note that, formally, PN and PS are the same.
The distinction comes from interpreting
value $1=$ acting
value $0=$ omitting an action

Extended Example Decision Making (cont'd)

- Scenario 3
- Cancer patient Mrs Daily faces same decision as Mrs Jones and argues
- If my tumor is of type that disappears without irradiation, why should I take irradiation?
- If my tumor is of type that does not disappear even with irradiation, why even take irradiation?
- So should she go for irradiation?
- Formally: Determine probability of necessity and sufficiency

$$
P N S=P\left(Y_{X=1}=1, Y_{X=0}=0\right)
$$

Extended Example Decision Making (cont'd)

- Probability of necessity and sufficiency

$$
P N S=P\left(Y_{X=1}=1, Y_{X=0}=0\right)
$$

- PN (PS and PNS) can be estimated from data under assumption of monotonicity (adding irradiation cannot cause recurrence of tumor)

$$
\begin{aligned}
& \text { PNS }=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0)) \\
& =\text { total effect on } Y \text { of changing } X \text { from no } \\
& \quad \text { irradiation to irradiation }
\end{aligned}
$$

Extended Example Mediation

- Scenario (Indirect effect of gender on hiring)

Policy maker wants to decide whether to

1. Make hiring procedure gender-blind (direct effect) or
2. Eliminate gender inequality in education or job trainig (indirect effect)

- (Controlled) direct effect identifiable with do expression (lecture on interventions)
- Indirect effect for non-linear system \neq total effect minus direct effect

Extended Example Mediation (cont'd)

- In order to determine indirect effect of gender:
- Have to substract outcomes Y in two worlds where
- In both gender X is kept fixed to male ($X=1$)
- but its mediator (Z) is changed accordingly if one had changed the gender (from male to female)
- Consider: $E\left[Y_{X=1, z=z_{X=0}}-Y_{X=1, z=z_{X=1}}\right]$
- $Y_{X=1, Z=} Z_{X=0}(\mathrm{u})(\mathrm{u})=$

Value of Y for u in world where $X=1$ and where $Z=$ same value as of Z for u in world where $X=0$.

- Note nesting of counterfactuals

Extended Example Mediation (cont'd)

- $Y_{X=1, Z=z}=$ hiring status with qualification $Z=z$ when treated as male ($X=1$)
- Averaging over possible qualifications for females

$$
\sum_{\mathrm{z}} \mathrm{E}\left[\mathrm{Y}_{\mathrm{X}=1, \mathrm{Z}=\mathrm{z}}\right] \mathrm{P}(\mathrm{Z}=\mathrm{z} \mid \mathrm{X}=0) \quad\left(=\mathrm{E}\left[\mathrm{Y}_{\mathrm{X}=1, \mathrm{Z}=\mathrm{ZX}=0}\right]\right)
$$

- Averaging over possible qualifications for males

$$
\Sigma_{\mathrm{z}} \mathrm{E}\left[\mathrm{Y}_{\mathrm{X}=1, \mathrm{Z}=\mathrm{z}}\right] \mathrm{P}(\mathrm{Z}=\mathrm{z} \mid \mathrm{X}=1) \quad\left(=\mathrm{E}\left[\mathrm{Y}_{\left.\mathrm{X}=1, \mathrm{Z}=\mathrm{Z}_{\mathrm{x}=\mathrm{r}}\right]}\right]\right)
$$

- Natural indirect effect (NIE)

$$
\sum_{z} E\left[Y_{X=1, Z=z}\right](P(Z=z \mid X=0)-P(Z=z \mid X=1))
$$

Called "natural" because nature determines value of Z (as opposed to controlled fixation in CDE)

$Y=$ Hiring

Extended Example Mediation

- Natural indirect effect (NIE)

$$
\sum_{z} E\left[Y_{X=1, Z=z}\right](P(Z=z \mid X=0)-P(Z=z \mid X=1))
$$

- NIE identifiable from data in absence of confounding (Pearl 2001)

$$
\Sigma_{z} E[Y \mid X=1, Z=z](P(Z=z \mid X=0)-P(Z=z \mid X=1))
$$

J. Pearl: Direct and indirect effects. Proceedings of the 7th Conference on Uncertainty in AI. 411-420, 2001

Toolkit for Mediation

Mediation problem

$$
\begin{array}{ll}
- & T=f\left(u_{T}\right) ; \\
- & m=f_{M}\left(t, u_{M}\right) ; \\
- & y=f_{Y}\left(t, m, u_{Y}\right)
\end{array}
$$

Effect	Formula
Total	$\mathrm{TE}=\mathrm{E}\left[\mathrm{Y}_{1}-\mathrm{Y}_{0}\right]=\mathrm{E}[\mathrm{Y} \mid \mathrm{do}(\mathrm{T}=1)]-\mathrm{E}[\mathrm{Y} \mid \mathrm{do}(\mathrm{T}=0)]$
Controlled direct (for fixed mediator $M=m$)	$\begin{aligned} C D M(m) & =E\left[Y_{1, m}-Y_{0, m}\right]= \\ & =E[Y \mid \operatorname{do}(T=1, M=m)-E[Y \mid d o(T=0, M=m)] \end{aligned}$
Natural direct	NDE $=E\left[Y_{1, M_{0}}-Y_{0, M_{0}}\right]$
Natural indirect	NIE $=E\left[Y_{0, M_{1}-} Y_{0, M_{0}}\right]$

Toolkit for Mediation

Mediation problem

$$
\begin{array}{ll}
- & T=f\left(u_{T}\right) ; \\
- & m=f_{M}\left(t, u_{M}\right) ; \\
- & y=f_{Y}\left(t, m, u_{Y}\right)
\end{array}
$$

Observations

- $\mathrm{TE}=\mathrm{NDE}-\mathrm{NIE}_{\mathrm{r}}$ (for changing T from 0 to 1)
- where NIE $_{r}$ is NIE under reverse transition of treatment, i.e., T changes from 1 to 0
- TE and CDE(m) are do-expressions, so estimable
- from experimental data
- or from observations with backdoor and frontdoor

Identification for NDE and NIE (optional slide)

- Consider set of covariates W such that

1. No member of W descendant of T
2. W blocks all $M-Y$ backdoors after removing $T->M$ and $T->Y$
3. The W-specific effect is identifiable (using experiments or adjustment)
4. The W-specific joint effect of $\{T, M\}$ on Y is identifiable (using experiments or adjustment)

Theorem (Identification of NDE)

When 1.and 2. hold, then NDE identifiable by
$\mathrm{NDE}=\Sigma_{\mathrm{m}} \Sigma_{\mathrm{w}}[\mathrm{E}[\mathrm{Y} \mid \mathrm{do}(\mathrm{T}=1, \mathrm{M}=\mathrm{m}), \mathrm{W}=\mathrm{w}]-\mathrm{E}[\mathrm{Y} \mid \mathrm{do}(\mathrm{T}=0, \mathrm{M}=\mathrm{m}), \mathrm{W}=\mathrm{w}]]$ *

$$
P(M=m \mid d o(T=0), W=w) P(W=w)
$$

If additionally 3. and 4., then do expressions also identifiable by backdoor or front-door

- Counterfactuals are of interest in recent recearch
- F. Zhu, A. Lin, G. Zhang, and J. Lu. Counterfactual inference with hidden confounders using implicit generative models. In T. Mitrovic, B. Xue, and X. Li, editors, Al 2018: Advances in Artificial Intelligence - 31st Australasian Joint Conference, Wellington, New Zealand, December 11-14, 2018, Proceedings, volume 11320 of LNCS, pages 519-530. Springer, 2018.
- Symposium on Causality 2019
- Beyond Curve Fitting: Causation, Counterfactuals, and Imagination-based AI
- https://why19.causalai.net/

[^0]: Expected driving time $Y_{X=1}$ if one had chosen freeway $(X=1)$ knowing that other decision $(X=0)$ lead to driving time Y_{0} of 1 hour.

