# Web-Mining Agents

Dr. Özgür Özçep

Universität zu Lübeck Institut für Informationssysteme



#### **Structural Causal Models**

slides prepared by Özgür Özçep

Part IV: Counterfactuals



#### Literature

• J.Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics – A primer, Wiley, 2016.

(Main Reference)

• J. Pearl: Causality, CUP, 2000.



## Counterfactuals (Example)

#### **Example** (Freeway)

- Came to fork and decided for Sepulveda road (X=0) instead of freeway (X=1)
- Effect: long driving time of 1 hour (Y = 1h)

``If I had taken the freeway,

then I would have driven less than 1 hour"



### Counterfactuals (Informal Definition)

#### **Definition**

A counterfactual is an if-then statement where

the if-condition, aka antecedens, hypothesizes about an alternative non-actual situation/condition

(in example: taking freeway) and

 the then-condition, aka succedens, describes some consequence of the hypothetical situation

(in example: 1h drive)



#### Counterfactuals ≠ truth-conditional if

- Counterfactuals may be false even if antecedent is false
  - ``If Hamburg is capital of Germany,
     then Schulz is chancellor"
  - ``If Hamburg were capital of Germany,
     then Schulz would be chancellor"
- Usually, in natural language use, the antecedent in counterfactuals is false in actual world
- In natural language distinguished by different modes
  - indicative mode for truth-conditional if-statements vs.
  - conjunctive/subjunctive for counterfactuals
- "Hätte, hätte Fahrradkette...." <a href="https://www.youtube.com/watch?v=qt\_ppEL7OLI">https://www.youtube.com/watch?v=qt\_ppEL7OLI</a>
- L. Matthäus: "Wäre, wäre, Fahrradkette, so ungefähr oder wie auch immer"

## Counterfactuals Require Minimal Change

- Hypothetical world minimally different from actual world
  - If X=1 were the case (instead of X=0),
     but everything else the same (as far as possible),
     then Y < 1h would be the case</li>

Account for consequences of change (from X = 0 to X = 1).

- Idea of minimal change ubiquitous
  - in particular see discussion in belief revision
  - Master-Lecture "Information Systems"
  - D. Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.
  - D. Makinson. Five faces of minimality. Studia Logica, 52:339–379, 1993.
  - F. Wolter. The algebraic face of minimality. Logic and Logical Philosophy,6:225 240, 1998.



## Counterfactuals and Rigidity

- Rigidity as a consequence of minimal change of worlds/states:
  - Objects stay the same in compared worlds
- In example: Driver (characteristics) stays the same: if the driver is a moderate driver, then he will be a moderate driver in the hypothesized world, too

 Rigidity of objects across worlds also debated in early work on foundations of modal logic (work of Saul Kripke)



## Counterfactuals (Example cont'd)

- Try: Formalization with intervention doesn't work! Why?
  - E(driving time |do(freeway), driving time = 1 hour) ???
  - There is a clash for RV "driving time" (Y)
    - Y = 1h in actual world vs.
    - Y < 1h (expected) under hypothesized condition X = 1 (freeway)
- Solution: Distinguish Y (driving time) under different worlds/conditions X = 0 vs. X = 1

$$E(Y_{X=1} | X = 0, Y_{X=0} = Y = 1)$$

Y<sub>X=x</sub> formalizes counterfactual

Expected driving time  $Y_{X=1}$  if one had chosen freeway (X=1) knowing that other decision (X=0) lead to driving time  $Y_0$  of 1 hour.



#### Counterfactuals (Definition)

#### **Definition**

A counterfactual RV is of the form  $Y_{X=x}$  and its semantics is given by

$$Y_{X=X}(u) := Y_{MX}(u)$$

Note the rigidity assumption:
Definition talks about the same ``objects" u in different worlds

#### where

- Y, X are (sets of) RVs from an SEM M
- x is an instantiation of X
- M<sub>x</sub> is the SEM resulting from M by substituting the rhs of equation(s) for (all RVs in) X with value(s) x
- u is an instantiation of all exogenous variables in M



# Counterfactuals (consistency rule)

Consequence of the formal definition of counterfactuals

```
Consistency rule

If X = x, then Y_{X=x} = Y
```

- This case (hypothesized = actual) non-typical in natural language use (Merkel: "If I only would be cancellor…)
- In belief revision the corresponding rule is termed "vacuity":
   because there is no reason to change, the change is vacuous.



## Counterfactuals (for fully specified SCMs)

- How to formalize semantics of counterfactuals?
  - Use ideas similar to those of intervention
- Consider fully specified models
  - Values of all variables determined by values of exogenous variables  $U = U_1, ..., U_n$
  - So can write X = X(U) for any variable in SEM
  - Example
    - X: Salary,  $u = u_1, ..., u_n$  characterizes individual Joe
    - X(u) = Joe's salary
  - When considering different worlds, the individuals (such as Joe =  $(u_1, ..., u_n)$ ) stay the same.



Linear model M:

$$X = aU$$
 ;  $Y = bX + U$ 

• Find  $Y_{X=x}(u) = ?$ 

(value of Y if it were the case that X = x for individual u)

- Algorithm
  - 1. Identify u under evidence (here: u just given)
  - 2. Consider modified model  $M_x$ 
    - X = X
    - Y = bX + U
  - 3. Calculate  $Y_{X=x}(u)$

$$Y_{X=x}(u) = bx + u$$

Linear model M:

$$X = aU$$
 ;  $Y = bX + U$ 

with a = b = 1.

$$X_y(u) = ?$$

Algorithm

1. 
$$U = u$$
; 2.  $Y = y$ ; 3.  $X = aU = au = u$ .

(X unaltered by hypothetical condition Y = y)

| U | X(u) | Y(u) | Y <sub>X=1</sub> (u) | Y <sub>X=2</sub> (u) | Y <sub>X=3</sub> (u) | X <sub>Y=1</sub> (u) | X <sub>Y=2</sub> (u) | $X_{y=3}(u)$ |
|---|------|------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------|
| 1 | 1    | 2    | 2                    | 3                    | 4                    | 1                    | 1                    | 1            |
| 2 | 2    | 4    | 3                    | 4                    | 5                    | 2                    | 2                    | 2            |
| 3 | 3    | 6    | 4                    | 5                    | 6                    | 3                    | 3                    | 3            |

# Counterfactuals vs. Intervention with do()

| Counterfactual Y <sub>x</sub> (u) | Intervention do(X=x)                               |
|-----------------------------------|----------------------------------------------------|
| Defined locally for each u        | Defined globally for whole population/distribution |
| Can output individual value       | Outputs only expectation/distribution              |
| Allows cross-world speak          | Allows single-world speak                          |
| Can simulate intervention         | Cannot simulate counterfactual                     |



#### Linear model M:

$$-X=U_X$$

$$- H = aX + U_{H}$$

$$- Y = bX + cH + U_Y$$

$$- σUiUj = 0 for all i,j ∈ {X,H,Y}$$

(i.e., U<sub>i</sub>, U<sub>j</sub> are not linearly correlated/dependent)

$$a = 0.5$$
;  $b = 0.7$ ;  $c = 0.4$ 



X = time spent in after-school remedial program

$$b = 0.7$$

Linear model M:

$$-X = U_X$$

$$-H = aX + U_H$$

$$-Y = bX + cH + U_Y$$



Consider an individual Joe given by evidence:

$$X = 0.5, H = 1, Y = 1.5$$

Want to answer counterfactual query:

"What would Joe's exam score be if he had doubled study time at home?"

Linear model M:

$$-X=U_X$$

$$-H=aX+U_{H}$$

$$- Y = bX + cH + U_Y$$



Consider an individual Joe given by evidence:

$$X = 0.5$$
,  $H = 1$ ,  $Y = 1.5$ 

Step 1: Determine U-characteristics from evidence

$$- U_{x} = 0.5$$

The U-characteristics are rigid

$$-$$
 U<sub>H</sub> = 1-0.5 \* 0.5

$$-$$
 U<sub>Y</sub> = 1.5 -0.7 \* 0.5 - 04.4 \* 1 = 0.75

Linear model M:

$$- X = U_X$$
$$- H = aX + U_H$$

$$- Y = bX + cH + U_Y$$



- Step 2: Simulate hypothetical change (doubling)
  - Set H = 2
- Step 3: Calculate counterfactual  $Y_{H=2}(u)$

$$- Y_{H=2}(U_X = 0.5, U_h = 0.75, U_Y = 0.75)$$

$$= 0.7 * 0.5 + 0.4 * 2 + 0.75 = 1.90$$

Joe would benefit from doubling homework



(Y=1.5 in actual world, Y=1.90 in hypothetical world when doubling H

## Deterministic Counterfactuals Algorithm

#### **Algorithm**

- Step 1 (Abduction): Use evidence E = e to determine u
- Step 2 (Action): Modify model M to obtain model  $M_x$
- Step 3 (Prediction): Compute counterfactual  $Y_{x=x}(u)$  with  $M_x$

- This algorithm considers single individual
- And answers query determined by counterfactual value
- What about classes of individuals and probabilistic counterfactuals?



### Nondeterministic Counterfactuals Algorithm

#### **Algorithm**

- Step 1 (Abduction): Calculate P(U|E=e)
- Step 2 (Action): Modify model M to obtain model  $M_x$
- Step 3 (Prediction): Compute expectation  $E(Y_{X=x}|E=e)$  using  $M_x$  and P(U|E=e)
- Calculate the probabilities of obtaining some individual (step 1)
- Step 2 the same
- Calculate conditional expectation: What is the expected value of Y if one were to change X to x knowing E = e



#### Nondeterministic Counterfactuals (Example)

Model M: X = aU ; Y = bX + U (with a = b = 1)
 U = {1,2,3} represents three types of individuals with prob.
 P(U = 1) = 1/2; P(U = 2) = 1/3; P(U=3) = 1/6

#### Examples:

$$- P(Y_{X=2} = 3) = ? = P(U = 1) = 1/2$$

$$- P(Y_2 > 3, Y_1 < 4) = P(U=2)=1/3$$

$$- P(Y_1 < Y_2) = 1$$

| U | X(u) | Y(u) | Y <sub>X=1</sub> (u) | Y <sub>X=2</sub> (u) | ) | Y <sub>X=3</sub> (u) | X <sub>Y=1</sub> (u) | X <sub>Y=2</sub> (u) | $X_{y=3}(u)$ |
|---|------|------|----------------------|----------------------|---|----------------------|----------------------|----------------------|--------------|
| 1 | 1    | 2    | 2                    | 3                    |   | 4                    | 1                    | 1                    | 1            |
| 2 | 2    | 4    | 3                    | 4                    |   | 5                    | 2                    | 2                    | 2            |
| 3 | 3    | 6    | 4                    | 5                    |   | 6                    | 3                    | 3                    | 3            |

## Counterfactuals More Expressive (Example)

- Counterfactuals more expressive than intervention
- Linear model

$$X = U_1; Z = aX + U_2; Y = bZ$$



$$- E[Y_{X=1} | Z = 1] = ?$$

- Not captured by E[Y|do(X=1), Z=1]. Why?
  - Gives only the salary Y of all individuals that went to college and since then acquired skill level Z=1.

    Talks about postintervention
  - E[Y|do(X=1), Z=1] = E[Y|do(X=0), Z=1]
  - In contrast:  $E[Y_{X=1} | Z = 1]$  captures salary of individuals who in the actual world have skill level Z = 1 but might get Z > 1



Talks about one group acting under different antecedents

for two different groups

## Counterfactuals More Expressive (Example)

- $E[Y_{X=0} | Z = 1] \neq E[Y_{X=1} | Z = 1]$ ?
  - How is this reflected in numbers?
  - Later: How reflected in graph?



|                |                | $X = U_1; Z = aX + U_2; Y = bZ$ |      |        | (for a $\neq$ 1 and a $\neq$ 0, b $\neq$ 0) |                      |              |              |
|----------------|----------------|---------------------------------|------|--------|---------------------------------------------|----------------------|--------------|--------------|
| u <sub>1</sub> | u <sub>2</sub> | X(u)                            | Z(u) | Y(u)   | $Y_{X=0}(u)$                                | Y <sub>X=1</sub> (u) | $Z_{X=0}(u)$ | $Z_{X=1}(u)$ |
| 0              | 0              | 0                               | 0    | 0      | 0                                           | ab                   | 0            | a            |
| 0              | 1              | 0                               | 1    | b      | b                                           | (a+1)b               | 1            | a+1          |
| 1              | 0              | 1                               | a    | ab     | 0                                           | ab                   | 0            | a            |
| 1              | 1              | 1                               | a+1  | (a+1)b | b                                           | (a+1)b               | 1            | a+1          |

- $E[Y_1|Z=1] = (a+1)b$  ; E[Y|do(X=1),Z=1] = b
- $E[Y_0|Z=1] = b$  ; E[Y|do(X=0),Z=1] = b



### Counterfactuals vs. Intervention with do()

| Counterfactual Y <sub>x</sub> (u) | Intervention do(X=x)                               |  |  |
|-----------------------------------|----------------------------------------------------|--|--|
| Defined locally for each u        | Defined globally for whole population/distribution |  |  |
| Can output individual value       | Outputs only expectation/distribution              |  |  |
| Allows cross-world speak          | Allows single-world speak                          |  |  |
| Can simulate intervention         | Cannot simulate counterfactual                     |  |  |

$$E[Y|do(X=1), Z=1] = ? = E[Y_{X=1}|Z_{X=1} = 1]$$



### Counterfactuals vs. Intervention with do()

| Counterfactual Y <sub>x</sub> (u) | Intervention do(X=x)                               |  |  |
|-----------------------------------|----------------------------------------------------|--|--|
| Defined locally for each u        | Defined globally for whole population/distribution |  |  |
| Can output individual value       | Outputs only expectation/distribution              |  |  |
| Allows cross-world speak          | Allows single-world speak                          |  |  |
| Can simulate intervention         | Cannot simulate counterfactual                     |  |  |

- See road example
- But in non-conditional case we have

$$P[Y_x=y] = P[Y=y|do(X=x)],$$

$$(E[Y_x] = E[Y|do(X=x)], resp.)$$



### Graphical representation of counterfactuals

Rember definition of counterfactual

$$Y_{X=x}(u) := Y_{Mx}(u)$$

Modification as in intervention but with variable change



- Can answer (independence) queries regarding counterfactuals as for any other variable
- Note: Graphs do not show error variables



### Independence criterion for counterfactuals



- Which variables can influence  $Y_x$  (i.e., Y if X fixed to x)?
  - Parents of Y and parents of nodes on pathway between X and Y (here: {Z<sub>3</sub>, W<sub>2</sub>, U<sub>3</sub>, U<sub>y</sub>})
- So blocking paths to these with a set of RVs Z renders Y<sub>x</sub> independent of X given Z
- Special case: Z fulfills backdoor in original M w.r.t. (X,Y) (see next slide)

```
Theorem (Independence for Counterfactuals)

If set of RVs Z blocks U for all influencing variables U in between (X,Y_x), then P(Y_x \mid X,Z) = P(Y_x \mid Z) (for all x)
```

### Independence criterion for counterfactuals

```
Theorem (Counterfactual interpretation of backdoor)

If set of RVs Z satisfies backdoor for (X,Y),

then P(Y_x \mid X,Z) = P(Y_x \mid Z) (for all x)
```

- Theorem useful for estimating prob. for counterfactuals
- In particular can use adjustment formula

$$P(Y_x = y) = \sum_{z} P(Y_x = y \mid z = z) P(z)$$
 (summing out)  
=  $\sum_{z} P(Y_x = y \mid z = z, X = x) P(z)$  (Thm)  
=  $\sum_{z} P(Y = y \mid z = z, X = x) P(z)$  (consistency)

### Independence counterfactuals (example)

Reconsider linear model

$$X = U_1; Z = aX + U_2; Y = bZ$$



- Does college education have effect on salary, considering a group of fixed skill level?
- Formally: Is Y<sub>x</sub> not independent of X, given Z?
  - Yes: Z a collider between X and U<sub>2</sub>
     (by the way: Z does not fulfill backdoor w.r.t. (X,Y))
  - Hence:  $E[Y_x \mid X, Z] \neq E[Y_x \mid Z]$ (hence education has effect for students of given skill)
  - But note that  $E[Y \mid X, Z] = E[Y \mid Z]$

#### Counterfactuals in Linear Models

- In linear models any counterfactual is identifiable if linear parameters are identified.
  - In this case all functions in SEM fully determined
  - Can use  $Y_x(u) = Y_{Mx}(u)$  for calculation
- What if some parameters not identified?
  - At least can identify statistical features of form  $E[Y_{X=x}|Z=z]$

```
Theorem (Counterfactual expectation)
```

Let T denote (slope of) total effect of X on Y

$$\tau = E[Y|do(x+1)]-E[Y|do(x)]$$

Then, for any evidence Z = e

$$E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])$$



#### Counterfactuals in Linear Models

**Theorem** (Counterfactual expectation) Let T denote slope of total effect of X on Y  $\tau = E[Y|do(x+1)]-E[Y|do(x)]$ Then, for any evidence Z = e $E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])$ **Expected effect change** when x shifted from current Current estimate of Y best estimate E[X|Z=e]



#### Effect of Treatment on the Treated (ETT)

```
Theorem (Counterfactual expectation)
Let \tau denote (slope of) total effect of X on Y
\tau = E[Y|do(x+1)]-E[Y|do(x)]
Then, for any evidence Z = e
E[Y_{X=x}|Z=e] = E[Y|Z=e] + \tau (x-E[X|Z=e])
```

```
ETT = E[Y_1 - Y_0|X=1]

= E[Y_1|X=1] - E[Y_0|X=1]

= E[Y|X=1] - E[Y|X=1] + \tau (1-E[X|X=1]) - \tau (0-E[X|X=1])

(using Thm with (Z = e) \triangleq (X = 1))

= \tau
```

Hence, in linear models, effect of treatment on the treated (individual) is the same as total treatment effect on population

### **Extended Example for ETT**

- Job training program (X) for jobless funded by government to increase hiring Y
- Pilot randomized experiment shows:

```
Hiring-%(w/ training) > Hiring-%(w/o training) (*)
```

- Critics
  - (\*) not relevant as it might falsely measure effect on those who chose to enroll for program by themselves (these may got job because they are more ambitious)
  - Instead, need to consider ETT

$$E[Y_1 - Y_0 | X=1] =$$
 causal effect of training X on hiring  
Y for those who took the training



### Extended Example for ETT (cont'd)

- Calculating the difficult summand:  $E[Y_{x=0} | X=1]$ 
  - not given by observational or experimental data
  - but can be reduced to these if appropriate covariates Z (fulfilling backdoor criterion) exist

$$P(Y_x = y \mid X = x')$$

$$= \sum_{z} P(Y_x = y \mid Z = z, x') P(z \mid x') \qquad \text{(by conditioning on } z)$$

$$= \sum_{z} P(Y_x = y \mid Z = z, x) P(z \mid x') \qquad \text{(by Thm on }$$

$$= \sum_{z} P(Y_x = y \mid Z = z, x) P(z \mid x') \qquad \text{(consistency rule)}$$

Contains only observational/testable RVs

•  $E[Y_0|X=1] = \sum_z E(Y | Z = z, X=0)P(z|X=1)$ 



#### **Extended Example Additive Intervention**

#### Scenario

- Add amount q of insulin to group of patients (with different insulin levels)
  - $do(X = X+q) = add_X(q)$
  - Different from simple intervention
- Calculate effect of additive intervention from data where such additions have not been oberved
- Formalization with counterfactual
  - Y =outcome RV =a RV relevant for measuring effect
  - X = x' (previous level of insulin)
  - $-Y_{x'+q}$  = outcome after additive intervention with q insul.



### **Extended Example Additive Intervention**

- $E[Y_{x'+q}|x']$  = expected output of additive intervention
  - Part of ETT expression  $E[Y_{x'+q}|x']$   $E[Y_{x'}|x']$  (for level x')
  - Averaging over all levels:  $E[Y|add_X(q)] E[Y]$
  - Can be identified with adjustment formula (for backdoor Z such as weight, age, etc.)
- $E[Y|add_X(q)] E[Y]$   $= \sum_{x'} E[Y_{x'+q}|X=x']P(X=x') - E[Y]$   $= \sum_{x'} \sum_{z} E[Y|X=x'+q,Z=z]P(Z=z|X=x')P(X=x')-E[Y]$ (using already derived formula  $E(Y_x \mid X=x') = \sum_{z} E(Y=y \mid Z=z,x)P(z|x')$ and substituting x = x' + q)

- Scenario 1
  - Cancer patient Ms Jones has to decide between
    - 1. Lumpectomy alone (X = 0)
    - 2. Lumpectomy with irradiation (X = 1)

hoping for remission of cancer (Y = 1)

- She decides for adding irradiation (X=1) and 10 years later the cancer remisses.
- Is the remission due to her decision?
- Formally: Determine probability of necessity

$$PN = P(Y_{X=0} = 0 | X = 1, Y = 1)$$

 If you want remission, you have to go for adding irradiation (irradiation necessary for remission)

- Scenario 2
  - Cancer patient Mrs Smith had lumpectomy alone (X=0) and her tumor reoccurred (Y=0).
  - She regrets not having gone for irradiation.
    Is she justified?
  - Formally: Determine probability of sufficiency

$$PS = P(Y_{X=1} = 1 | X = 0, Y = 0)$$

If you go for adding irradiation, you will achieve cancer remission

Note that, formally, PN and PS are the same.

The distinction comes from interpreting

value 1 = acting

value 0 = omitting an action

- Scenario 3
  - Cancer patient Mrs Daily faces same decision as Mrs Jones and argues
    - If my tumor is of type that disappears without irradiation, why should I take irradiation?
    - If my tumor is of type that does not disappear even with irradiation, why even take irradiation?
  - So should she go for irradiation?
- Formally: Determine probability of necessity and sufficiency

$$PNS = P(Y_{X=1} = 1, Y_{X=0} = 0)$$



Probability of necessity and sufficiency

$$PNS = P(Y_{X=1} = 1, Y_{X=0} = 0)$$

 PN (PS and PNS) can be estimated from data under assumption of monotonicity (adding irradiation cannot cause recurrence of tumor)

$$PNS = P(Y=1|do(X=1)) - P(Y=1|do(X=0))$$

= total effect on Y of changing X from no irradiation to irradiation



## **Extended Example Mediation**

- Scenario (Indirect effect of gender on hiring)
   Policy maker wants to decide whether to
  - 1. Make hiring procedure gender-blind (direct effect) or
  - Eliminate gender inequality in education or job trainig (indirect effect)
  - (Controlled) direct effect identifiable with do expression (lecture on interventions)
  - Indirect effect for non-linear system ≠ total effect minus direct effect



## Extended Example Mediation (cont'd)

- In order to determine indirect effect of gender:
  - Have to substract outcomes Y in two worlds where
    - In both gender X is kept fixed to male (X=1)
    - but its mediator (Z) is changed accordingly if one had changed the gender (from male to female)
  - Consider:  $E[Y_{X=1,Z=Z_{X=0}} Y_{X=1,Z=Z_{X=1}}]$ 
    - $Y_{X=1, Z=Z_{X=0}(u)}(u) =$ Value of Y for u in world where X = 1 and where Z = same value as of Z for u in world where X = 0.
    - Note nesting of counterfactuals



### Extended Example Mediation (cont'd)

- $Y_{X=1,Z=z}$  = hiring status with qualification Z=z when treated as male (X=1)
- Averaging over possible qualifications for females

$$\sum_{z} E[Y_{x=1,Z=z}]P(Z=z|X=0)$$
 (=  $E[Y_{x=1,Z=Zx=0}]$ )

Averaging over possible qualifications for males

$$\sum_{z} E[Y_{x=1,Z=z}] P(Z=z|X=1)$$
 (=  $E[Y_{x=1,Z=Z_{x=1}}]$ )

Natural indirect effect (NIE)

$$\sum_{z} E[Y_{X=1,Z=z}] (P(Z=z|X=0) - P(Z=z|X=1))$$



Called ``natural" because nature determines value of Z (as opposed to controlled fixation in CDE)

Y = Hiring

## **Extended Example Mediation**

Natural indirect effect (NIE)

$$\sum_{z} E[Y_{X=1,Z=z}] (P(Z=z|X=0) - P(Z=z|X=1))$$

 NIE identifiable from data in absence of confounding (Pearl 2001)

$$\sum_{z} E[Y|X=1,Z=z] (P(Z=z|X=0) - P(Z=z|X=1))$$

J. Pearl: Direct and indirect effects. Proceedings of the 7th Conference on Uncertainty in Al. 411-420, 2001



### **Toolkit for Mediation**

### Mediation problem

- $T = f(u_T)$ ;
- $\quad m = f_M(t, u_M);$
- $y = f_Y(t,m,u_Y)$



| Effect                                     | Formula                                                                   |
|--------------------------------------------|---------------------------------------------------------------------------|
| Total                                      | TE = $E[Y_1-Y_0] = E[Y do(T=1)]-E[Y do(T=0)]$                             |
| Controlled direct (for fixed mediator M=m) | CDM(m) = $E[Y_{1,m}-Y_{0,m}]$ =<br>= $E[Y do(T=1, M=m)-E[Y do(T=0, M=m)]$ |
| Natural direct                             | NDE = $E[Y_{1,M_0} - Y_{0,M_0}]$                                          |
| Natural indirect                           | $NIE = E[Y_{0,M_1} - Y_{0,M_0}]$                                          |

### **Toolkit for Mediation**

#### Mediation problem

- $T = f(u_T)$ ;
- $m = f_M(t,u_M);$
- $y = f_Y(t,m,u_Y)$



#### **Observations**

- TE = NDE NIE<sub>r</sub> (for changing T from 0 to 1)
  - where NIE<sub>r</sub> is NIE under reverse transition of treatment, i.e., T changes from 1 to 0
- TE and CDE(m) are do-expressions, so estimable
  - from experimental data
  - or from observations with backdoor and frontdoor

# Identification for NDE and NIE (optional slide)

- Consider set of covariates W such that
  - 1. No member of W descendant of T
  - 2. W blocks all M-Y backdoors after removing T-> M and T-> Y
  - 3. The W-specific effect is identifiable (using experiments or adjustment)
  - 4. The W-specific joint effect of {T,M} on Y is identifiable (using experiments or adjustment)

#### **Theorem** (Identification of NDE)

When 1.and 2. hold, then NDE identifiable by

NDE = 
$$\sum_{m} \sum_{w} [E[Y|do(T=1,M=m),W=w] - E[Y|do(T=0,M=m),W=w]] * P(M = m|do(T=0),W=w)P(W=w)$$

If additionally 3. and 4., then do expressions also identifiable by backdoor or front-door

INSTITUT FÜR INFORMATIONSSYSTEME

IM LOCO2 DA2 FEBEN

#### Counterfactuals are of interest in recent recearch

- F. Zhu, A. Lin, G. Zhang, and J. Lu. Counterfactual inference with hidden confounders using implicit generative models. In T. Mitrovic, B. Xue, and X. Li, editors, Al 2018: Advances in Artificial Intelligence 31st Australasian Joint Conference, Wellington, New Zealand, December 11-14, 2018, Proceedings, volume 11320 of LNCS, pages 519–530. Springer, 2018.
- Symposium on Causality 2019
  - Beyond Curve Fitting: Causation, Counterfactuals, and Imagination-based AI
  - https://why19.causalai.net/

