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Todays lecture (and the following five) based on 

• The AAMAS 2019 Tutorial „EPISTEMIC REASONING IN MULTI-AGENT 
SYSTEMS“
http://people.irisa.fr/Francois.Schwarzentruber/2019AAMAStutorial/
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MOTIVATION
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The need for knowledge

• Reasoning about other agents „knowledge“ in game
theory?
– Speculation about other one‘s strategies/values of things

(and about their speculations on our values...)?

– Collaborative agents (negotiation, communication) 

– Imperfect information

• Many multi-agent systems require to model knowledge
of others‘ due to imperfect information
– Agents have local view of environment

– Agents communicate

– Agents act -> Decisions taken w.r.t. knowledge
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Interaction relies on knowledge

• if I know it is safe then I go

• if I know you are at the market place then I join you

• if (I know it is safe) and (I know you do not know it is
safe) then I tell you it is safe

• if I know you know it is safe then
I do not tell you it is safe

• if I know you know I know it is safe or not then
I do not wait for a message from you
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Towards XAI?

• XAI = explainable AI:  Need to built understandable
(human comprehensible) AI systems

• XAI for multi-agent systems?
– Example: Robots interacting with humans

– Legal issues in case of failures
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Example Explanations of a robot exploring a world)
• I turned left because x = 0 and y > 5 

⇒ not human understandable
• I turned left because my neuron 53 was activated.

⇒ not human understandable
• I turned left because I knew this area was not explored. 

⇒ human understandable



The need for reasoning

• Given
– what agents sense

– The actions and communications that occurred

• What does each agent know? 
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Once upon a time ... In 2011 -212

• Schwarzentruber (2. presenter of AAMAS 2019) says:
„I explained epistemic logic to other researchers in 

logic/AI/verification... 

• ... But nobody understood me ...
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P= false

P= true



Possible worlds

• „...  But, since 2017, everybody understood me with
comics ...‘‘ 

• Have a look at http://hintikkasworld.irisa.fr/ 
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The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Motivation 1: face the di�culties in explaining possible worlds
Motivation 2: disseminating in many communities
Open software

Possible worlds

... but, since 2017, everybody understood me with comics...

http://hintikkasworld.irisa.fr/
[demo IJCAI-ECAI 2018]
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Semantics of knowing something

• Agent a knows that agent b is dirty

• Instance of the famous „muddy children puzzle“
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The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Motivation 1: face the di�culties in explaining possible worlds
Motivation 2: disseminating in many communities
Open software

Semantics of knowing something

Agent a knows that b is dirty.
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Muddy children Puzzle

„Three children are playing in the mud. Father calls the children to the house, 
arranging them in a semicircle so that each child can clearly see every other child. 
“At least one of you has mud on your forehead”, says Father. The children look
around, each examining every other child’s forehead. Of course, no child can
examine his or her own. Father continues, “If you know whether your forehead is
dirty, then step forward now”. No child steps forward. Father repeats himself a 
second time, “If you know whether your forehead is dirty, then step forward now”. 
Some but not all of the children step forward. Father repeats himself a third time, “If
you know whether your forehead is dirty, then step forward now”. All of the
remaining children step forward. How many children have muddy foreheads?“

We will reconsider this puzzle  in the context of dynamic epistemic
logic (epistemic logic with operators changing epistemic models)
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Epistemic states = pointed Kripke structures

• Comics correspond to unravelling of a pointed Kripke
structure
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The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Motivation 1: face the di�culties in explaining possible worlds
Motivation 2: disseminating in many communities
Open software

Epistemic states = pointed Kripke structures

Comics = unraveling of a pointed Kripke structure.
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Actual word

ma = agent a has muddy forehead
mb = agent b has muddy forehead



Explaining these in many communities

The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Motivation 1: face the di�culties in explaining possible worlds
Motivation 2: disseminating in many communities
Open software

Explaining these models in many communities

Logic Verification

AI
Robotics

Psychology

Distributed systems

Cryptography

Games

Philosophy
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Open-source project Hintikka‘s world

• http://hintikkasworld.irisa.fr/ 

• https://gitlab.inria.fr/ fschwarz/hintikkasworld

• Web app

• Modular source code in Typescript

• Easy to add examples

• Several contributors
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EPISTEMIC LOGICS (SYNTAX AND
SEMANTICS)
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Epistemic states

• 𝐴𝑃 = {𝑝, 𝑝), 𝑝*, … } countable set of atomic
propositions

• 𝐴𝐺𝑇 = {𝑎, 𝑏, 𝑐, … } finite set of agents

16

Definition
An epistemic model𝑀 = (𝑊, 𝑅6 6∈89: ,𝑉) is a tuplewhere

• 𝑊 = {𝑤,𝑢,…} isa non-emptysetofpossibleworlds

• 𝑅6 ⊆𝑊×𝑊 isan accessibilityrelationforagent𝑎
• 𝑉:𝑊 → 28D isa valuationfunction

A pair  (𝑀,𝑤) iscalled an epistemicstate , where𝑤 representsthe
actualworld.



Example of an epistemic state

• Muddy children in Hintikka‘s world

• 𝑊 = 𝑤, 𝑢, 𝑣, 𝑠
• 𝑅6 = 𝑤,𝑤 , 𝑤, 𝑢 , 𝑢, 𝑤 , 𝑢, 𝑢 , 𝑣, 𝑣 , 𝑣, 𝑠 , 𝑠, 𝑣 , 𝑠, 𝑠
• 𝑅G = { 𝑤,𝑤 , 𝑤, 𝑣 , 𝑢, 𝑤 , 𝑣, 𝑤 , 𝑣, 𝑣 , 𝑢, 𝑢 , 𝑢, 𝑠 , 𝑠, 𝑢 , (𝑠, 𝑠 )}
• 𝑉 𝑤 = {𝑚6,𝑚G}; 𝑉 𝑢 = {𝑚G} ; 𝑉 𝑣 = 𝑚6 ; 𝑉 𝑠 = ∅
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The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Models
Syntax

Example of an epistemic state

In Hintikka’s World: Muddy children

W = {w , u, v , s};
Ra = {(w , w), (w , u), (u, w), (u, u), (v , v), (v , s), (s, v), (s, s)};
Rb = {(w , w), (w , v), (v , w), (v , v), (u, u), (u, s), (s, u), (s, s)};
V (w) = {ma, mb}; V (u) = {mb}; V (v) = {ma}; V (s) = ÿ.
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𝑤
𝑢

𝑣
𝑠



Syntax of ℒLM

• 𝐾6𝜙 read as „agent a knows/believes that 𝜙 is true“

• P𝐾6𝜙 read as „agent a considers 𝜙 as possible“
18

Definition
• The syntax ofℒLM (moreconcretely: ist setofwell-formed

formulae) isgivenbythefollowinggrammar: 
𝜙 ∷= 𝑝 ¬𝜙 𝜙 ∨𝜙 |𝐾6𝜙
where𝑝 rangesover𝐴𝑃and𝑎 rangesover𝐴𝐺𝑇

• Other operators are definedasfollows: 

• U𝐾6 abbreviates ¬𝐾6¬𝜙
• ...



Syntax of ℒLM
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Definition
• Other operators are definedasfollows: 

• 𝜙 ∧𝜓 abbreviates ¬ ¬𝜙 ∨ ¬𝜓
• 𝜙 → 𝜓 abbreviates ¬𝜙∨𝜓
• ⊥ abbreviates 𝑝 ∧¬𝑝
• ⊤ abbreviates ¬⊥



Length and Depth
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Definition
The size/lengthandthemodal depthofformulaaredefinedasfollows

• 𝑝 = 1 𝑑 𝑝 = 0
• ¬𝜙 = 𝜙 +1 𝑑 ¬𝜙 = 𝑑 𝜙
• 𝜙 ∧𝜓 = 𝜙 + 𝜓 +1 𝑑 𝜙 ∧𝜓 =max 𝑑(𝜙),𝑑(𝜓)
• 𝐾6𝜙 = 𝜙+1 𝑑 𝐾6𝜙 = 1+𝑑(𝜙)



Semantics of ℒLM

If ℳ,𝑤 ⊨ 𝜙 for all worlds, then writeℳ⊨𝜙 (𝜙 is true/valid  
in ℳ) 
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Definition
The semantics of ℒLM (the modelling/satisfactionrelation⊨ ) is 
definedrecursively by

• ℳ,𝑤 ⊨ 𝑝 if  𝑝 ∈ 𝑉(𝑤)
• ℳ,𝑤 ⊨ ¬𝜙 if not ℳ,𝑤 ⊨ 𝜙
• ℳ,𝑤 ⊨ 𝜙 ∨𝜓 if  ℳ,𝑤 ⊨ 𝜙or ℳ,𝑤 ⊨ 𝜓
• ℳ,𝑤 ⊨ 𝐾6𝜙 if forall 𝑢 s.t.  𝑤𝑅6𝑢:  ℳ,𝑢 ⊨ 𝜙
Wording:  ℳ,𝑤models𝜙; ℳ,𝑤 satisfies𝜙 ; 𝜙 is true in ℳ,𝑤; 
𝜙 holds in world𝑤 inℳ



Semantics of dual operators

• ℳ,𝑤 ⊨ 𝐾6𝜙 if  for all 𝑢 s.t.  𝑤𝑅6𝑢: ℳ,𝑢 ⊨ 𝜙
• ℳ,𝑤 ⊨ h𝐾6𝜙 if  there is𝑢 s.t.  𝑤𝑅6𝑢: ℳ,𝑢 ⊨ 𝜙
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The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Models
Syntax

Dual operators

M, w |= KaÏ if for all u s.t. wRau, M, u |= Ï

M, w |= K̂aÏ if there exists u s.t. wRau and M, u |= Ï.

M, w |= Kamb M, w |= K̂ama
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Common knowledge
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Definition
The semantics ofℒLMkl is thatofℒLM extendedby: 
ℳ,𝑤 ⊨ 𝐶9𝜙 iff forall 𝑢 ∈𝑊:𝑤𝑅9𝑢entails ℳ,𝑢 ⊨ 𝜙

Here𝑅9 denotesthetransitive closureof⋃6∈9𝑅6

Definition
The syntax of ℒLMkl isgivenbythefollowing grammar: 

𝜙 ∷= 𝑝 ∣ ¬𝜙 ∣ 𝜙 ∨𝜙 ∣ 𝐾6𝜙 ∣ 𝐶9𝜙
where p ∈ 𝐴𝑃,𝑎 ∈ 𝐴𝐺𝑇,𝐺 ∈ 289:



MODEL CHECKING

24



Model checking problem

• Input: 
– An epistemic state ℳ,𝑤
– A formula 𝜙

• Output: yes ifℳ,𝑤 ⊨𝜙, no otherwise
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Theorem
Model checking (both: with and without common knowledge
operators) is P-complete



(Vanilla) Model checking algorithm

• Input: a Kripke modelℳ, a formula 𝜙
• Output: set of worlds of ℳ in which 𝜙 holds

• function 𝑚𝑐 ℳ,𝜙
match 𝜙 do

case 𝑝: return 𝑤 ℳ,𝑤 ⊨ 𝑝}
case ¬𝜓: return W ∖𝑚𝑐 ℳ,𝜓
case (𝜓) ∨ 𝜓*): return 𝑚𝑐 ℳ,𝜓) ∪ 𝑚𝑐 ℳ,𝜓*
case 𝐾6𝜓: return 𝑤 𝑅6 𝑤 ⊆ 𝑚𝑐 ℳ,𝜓 }
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State explosion problem

27

Example

Minesweeper
– 8 × 8 with 10 bombs: 
> 10)* possible worlds

– 10 × 12 with 20 bombs: 
> 10*wpossible worlds

The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Model checking problem
State explosion problem

State explosion problem

Example
Minesweeper 10 ◊ 12 with 20 bombs: > 1025 possible worlds.
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The Hintikka’s World project
Epistemic logic
Model checking

Theorem proving
Language properties

Model checking problem
State explosion problem

State explosion problem

Example
Minesweeper easy 8 ◊ 8 with 10 bombs: > 1012 possible worlds.
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State explosion problem

• See (Benthem et al. 2015), (Benthem et al. 2018)

• Also see: (Charrier/S. 2017), (Charrier/S. 2018)

– Succinct representations of epistemic states; and
actions (⟹ Dynamic Epistemic Logic); 

– Easy to specify by means of accessibility programs; 

– Succinct model checking Pspace-complete (and so 
stays in Pspace as for non-succinct case). 
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CALCULI
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Satisfiability and validity
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Definition
• A formula 𝜙 is satisfiable iff there is an epistemic state 
ℳ,𝑤 s.t. ℳ,𝑤 ⊨ 𝜙

• A formula𝜙 isvalid iff forall epistemicstatesℳ,𝑤 : ℳ,𝑤 ⊨ 𝜙

Clearly  𝜙 is valid iff¬𝜙 is not satisfiable

• 𝐾6𝑝 is satisfiable but not valid 

• 𝐾6𝑝 ∧ 𝐾6 𝑝 → 𝑞 → 𝐾6𝑞 is valid

Example



Axiomatization

• Checking validity directly not trivial 

• Solution: Calculus (with axioms and rules)
– Axiom (should be valid); rule = „small“  correct inference

– Derivation/inference: Finite sequence of formulae where
• each formula is an axiom (instance)  or

• results from applying rule to formulae appearing before. 
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Definition
The basiccalculusK isgivenbythefollowing:
• All classicaltautologies(andtheiruniform substitutions)

• Axiom K:                                     𝐾6 𝜙 → 𝜓 → (𝐾6𝜙 → 𝐾6𝜓)
• Rulemodusponens:         From𝜙and𝜙 → 𝜓 infer𝜓
• Ruleofnecessitation:         From𝜙 infer𝐾6𝜙



Axiomatization
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Theorem
A formula is valid (in the class of all epistemic states) iff it is
provable in calculus K 
(Other wording: K is correct and complete for the class of all 
epistemic states)

To show: 𝐾6 𝜙 ∧ 𝜓 → 𝐾6𝜙 is valid (by derivation in K)
1. 𝜙 ∧ 𝜓 → 𝜙 (classical tautology)

2. 𝐾6 𝜙 ∧ 𝜓 → 𝜙 (necessitation to 1.)

3. 𝐾6 𝜙 ∧ 𝜓 → 𝜙 → (𝐾6 𝜙 ∧ 𝜓 → 𝐾6𝜙) (Axiom K)

4. 𝐾6 𝜙 ∧ 𝜓 → 𝐾6𝜙 (modus ponens to 2,3)

Example



Why axiomatization

• the computation of knowledge is modeled; 

• enables to explain why an agent knows sth;
(link with justification logic) 

• axiomatization helps to understand the principle of the
logics

• we do not have to design a specific epistemic state, as
in model checking („open world“)
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Classes of epistemic states

Properties Related axioms

K any accesibility relation

T Reflexive 𝐾6𝜙 → 𝜙

D Serial P𝐾6⊤

4 Transitive 𝐾6𝜙 → 𝐾6𝐾6𝜙

5 Euclidean ¬𝐾6𝜙 → 𝐾6¬𝐾6𝜙
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Definition
A formula𝜙 isKD45-valid iff it is truein all epistemicstatesℳ,𝑤 in 
whichaccessibilityrelationsareserial, transitive, andEuclidean

Theorem
A formula 𝜙is KD45-valid iff it is provable inthe axiomatization K 
extended with the axioms D, 4, 5.

Each row in the table is a completeness and correctness
statement of calculi w.r.t. the given class of epistemic states



Complexity of checking validity

• Without common knowledge:

• With common knowledge (and several agents): 
EXPTIME-complete

• In general and here: Model checking is more practical
than theorem proving

36

Singe agent Several agents

K PSPACE-complete PSPACE-complete

KD45, S5 NP-complete PSPACE-complete



LANGUAGE PROPERTIES  
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Expressivity

38

Definition
Two formuals 𝜙,𝜓 are equivalent iff for all pointed
models:  ℳ,𝑤 ⊨ 𝜙 iff ℳ,𝑤 ⊨ 𝜓

Theorem
ℒLMkl isstrictlymoreexpressive thanℒLM : noformulain ℒLM isequivalentto𝐶{6,G}𝑝

Proof sketch:
• By contradiction, suppose 𝜙 ∈ ℒLM
equivalent to 𝐶{6,G}𝑝.
• Let d be the modal depth of 𝜙, e.g., 𝑑 = 3
• Consider two models (from Hinntikka‘s world)
• 𝜙 has same value in both models but 𝐶{6,G}𝑝 can

distinguish them



Expressivity

• Some operators are mere syntactic sugar such as
operator 𝐸9𝜙,  read as ``all agents in G know 𝜙′′

• Define
– ℳ,𝑤 ⊨ 𝐸9𝜙 iff for all agents in 𝑎 ∈ G:ℳ,𝑤 ⊨ 𝐾6𝜙

• 𝐸9 gives intuitive reading for common knowledge: 
𝐶9𝜙 means 𝐸9�𝜙 for all 𝑛 ∈ ℕ
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Theorem
ℒLMaugmented with𝐸9 isequallyexpressive asℒLM

Proof: 𝐸9𝜙 ≡ ⋀6∈9 𝐾6𝜙



Bisimulation

• Modal logics and epistemic logics cannot distinguish
between structures with same „transition“ behaviour

• Captured by notion of bisimulation
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Definition
For two models𝑀 = (𝑊, 𝑅6 6∈89: ,𝑉)and 𝑀′ = (𝑊′, 𝑅�6 6∈89: ,𝑉′)
a setℛ ⊆𝑊×𝑊� is a bisimulation iff for all 𝑤 ∈ 𝑊,𝑤� ∈ 𝑊′with
𝑤,𝑤� ∈ ℛ
• 𝑉 𝑤 = 𝑉′(𝑤′)
• For all 𝑎 ∈ 𝐴𝐺𝑇, for all 𝑣 ∈ 𝑊: If R6(𝑤,𝑣) then there is 𝑣� ∈ 𝑊′

with 𝑅6� (𝑤�, 𝑣′) and 𝑣,𝑣� ∈ ℛ
• For all 𝑎 ∈ 𝐴𝐺𝑇, for all 𝑣� ∈ 𝑊: If 𝑅�6(𝑤′,𝑣′) then there is 𝑣 ∈ 𝑊

with 𝑅6(𝑤, 𝑣) and 𝑣,𝑣� ∈ ℛ
• 𝑀,𝑤 ⇆ 𝑀′, 𝑤′ iff there is a bisimulation linking𝑤 and𝑤



Bisimilarity preserves formulae

41

Theorem
Suppose that 𝑀,𝑤 ⇆ 𝑀′, 𝑤′ .  Then, for all formulas 𝜙 ∈ ℒLMkl it holds
that: 𝑀,𝑤 ⊨ 𝜙 iff 𝑀′, 𝑤′ ⊨ 𝜙

One big meta result regarding bisimulation in the so-called area of
correspondence theory (but not directly relevant here) 

Theorem
Modal logics are exactly those fragment of FOL whose formulae are
invariant under bisimilar

So: Though the common knowledge operator can see arbitrarily far
(transitive closure of accesibility relations !; see example on two models before), 
it can only do in a accesibility guarded way
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Definition
Given a class 𝑋 of models,  𝐿) is exponentially more succinct than 𝐿* on 𝑋 if the
following conditions hold: 
• for every formula 𝛽 ∈ 𝐿*there is a formula 𝛼 ∈ 𝐿) such that 𝛼 ≡� 𝛽

and 𝛼 ≤ |𝛽|.
• there exist 𝑘), 𝑘* > 0, a sequence of formulas 𝛼), 𝛼*, … ∈ 𝐿) and a sequence of

formulas 𝛽), 𝛽*, … ∈ 𝐿* such that, for all 𝑛, we have: 
• 𝛼� ≤ 𝑘)𝑛
• |𝛽�| ≥ 2���

• 𝛽� is the shortest formula in 𝐿* that is equivalent to 𝛼� on 𝑋



Succinctness

• 𝐸 6,G 𝐸{6,G}𝐸{6,G}𝜙 ≡ 𝐾6𝐾6𝐾6𝜙 ∧ 𝐾6𝐾6𝐾G𝜙 ∧ 𝐾6𝐾G𝐾6𝜙
𝐾6𝐾G𝐾G𝜙 ∧ 𝐾G𝐾6𝐾6𝜙 ∧ 𝐾G𝐾G𝐾6𝜙 ∧ 𝐾G𝐾G𝐾G𝜙

• 𝐸{6,G} … 𝐸 6,G ≡ …

• Proof is involved
(French, van der Hoek, Illiev, Kooi 2013)
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Theorem
ℒLMaugmented with𝐸9‘s is exponentially more succinctthanℒLM



APPENDIX
Uhhh, a lecture with a hoepfully useful
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Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as 
emphasizing some aspects 

• Examples are given with standard orange with possibly light 
orange frame 

• Comments and notes

• Algorithms

47


