Intelligent Agents Knowledge and Seeing

Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Todays lecture based on

 The AAMAS 2019 Tutorial "EPISTEMIC REASONING IN MULTI-AGENT SYSTEMS", Part 2: Knowledge and Seeing http://people.irisa.fr/Francois.Schwarzentruber/2019AAMAStutorial/

MOTIVATION

IM FOCUS DAS LEBEN 3

The Main Scenario

- Agents equipped with vision devices, positioned in the plane / space, e.g. robots that cooperate
- Aim: Represent and compute visual-epistemic reasoning of agents

Spatial reasoning

- Kripke models/epistemic models: abstract notion of possible world and of accessibility
- But agents usally act in space (and time)
 - Should be accounted for
 - The approach discussed here does this within the semantics of specific of form *a sees b*
 - Leads to ability to express (qualitative9 spatial notions
- Spatial Reasoning and spatial logics (temporal logics, se next lecture next to ime) is a huge topic (see (Aiello et al, 2007))

MODELING

IM FOCUS DAS LEBEN 6

Modeling

Each agent has a sector (cone) of vision

Assumptions (common knowledge)

- Agents are transparent points in the plane
- All objects of interest
 are agents
- Agents see infinite sectors
- Angles of vision are the same
- No obstacles (yet)

Possible Worlds

U is set of unit vetors of \mathbb{R}^2

Definition

A geometrical possible world is a tuple w = (pos, dir) where:

- $pos: Agt \to \mathbb{R}^2$
- $dir: Agt \to U$

Remember: Agt = set of agents

- dir(a) is the bisector of the sector of vision with angle α
- $C_{p,u,\alpha}$: closed sector with vertex at the point p, angle α and bisector in direction u
- The region seen by *a* is $C_{pos(a),dir(a),\alpha}$

An agent sees another

Definition

a sees b in w = (pos, dir) iff $pos(b) \in C_{pos(a), dir(a), \alpha}$

- *a* sees a
- *a* sees *b*
- *a* does not see *c*

Epistemic model $\mathcal{M}_{flatland}$

Definition

$$\mathcal{M}_{flatland} = (W, (\sim_a)_{a \in AGT}, V)$$
 with

- *W* is the set of geometrical possible worlds
- w ~_a u iff agent a sees the same agents in both w and u and these agents have the same position and directions in both w and u

Accessibility relation \sim_a is an equivalence relation. (logic: S5)

Axiomatization: Disjunctive surprises!

- \models (*K_aa sees b*) \lor *K_aa* *sees b* (Note that this is not an instance of a tautology)
- $\models K_a(b \text{ sees } c \lor d \text{ sees } e) \leftrightarrow$ $K_a(b \text{ sees } c) \lor K_a(d \text{ sees } e)$

Example

 K_aK_BCK_{c,d,e}(f sees g) (Note that we use now CK instead of C to denote common knowledge operator)

In 1D, only qualitative positions matter

Observation

Qualitative positions are expressible in the language

- $sameDir(a, b) \coloneqq (a \text{ sees } b \leftrightarrow b \text{ sees } a)$
- *a is between b, c* := (*a sees b* \leftrightarrow *a* sees *c*)

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Abstraction of the Kripke model in 1D

Definition

$$abs(w) = \{b \text{ sees } c \mid \mathcal{M}_{robots,1D} \text{ , } w \vDash b \text{ sees } c\}$$
 with

Axiomatization in 1D

- Propositional tautologies;
- $(sameDir(a, b) \leftrightarrow sameDir(b, c)) \rightarrow sameDir(a, c);$
- \neg (*a isBetween b, c*) $\lor \neg$ (*b isBetween a, c*);
- $(K_a a \text{ sees } b) \lor (K_a a \text{ sees } b)$
- a sees $b \rightarrow ((K_a b \text{ sees } c) \lor (K_a b \text{ sees } c))$
- $\chi \to \hat{K}_a \psi$ where χ, ψ are complete descriptions with $\chi \sim_a^{abs} \psi$
- $K_a \phi \rightarrow \phi$

A complete description is a conjunction that

- contains *a* sees *b* or *a* sees *b* for all agents *a*, *b*
- is satisfiable

NIVERSITÄT ZU LÜBECK

In 2D, qualitative representation is open issue

Example

 $K_b(a \text{ sees } b \land a \text{ sees } d \rightarrow a \text{ sees } c)$

(Assuming here that cone of vision is 1-D: $\alpha = 0$)

Abstraction of the Kripke model in 2D

Definition

$$abs(w) = \{b \text{ sees } c \mid \mathcal{M}_{robots, 2D} \text{ , } w \vDash b \text{ sees } c\}$$
 with

Model checking

- Input
 - A description of a world w (not the whole model)
 - A formula ϕ
- Output: yes iff $w \vDash \phi$

Complexity

Lineland	flatland
PSPACE-complete	PSPACE-hard, and in EXPSPACE (the latter shown by reduction to \mathbb{R} -FOL-theory)

 \mathbb{R} -FOL-theory = elementary algebra : First-oder logic (FOL) of the reals Language:

- FOL with equality and
- Constants 0, 1
- Functions symbols +,×
- Relation symbols <
- Can define, e.g., reals as solutions of polynomials
- Validity of elemantary algebra is known to be in EXSPACE

Complexity

Definition

Standard translation from modal logic to first-order logic

- Atomic propositions *p* are rewritten to unary predicates *P*
- $K_a p$ rewritten to $\forall u(R(w, u) \rightarrow P(u))$

(see e.g. Blackburn et al. Modal logic, 2001)

Observation (Adapted translation to \mathbb{R} -FOL-theory

 K_a (*b* sees *c*) rewritten into

$$\forall pos'_{a} \forall pos'_{b} \dots \forall dir'_{a} \forall dir'_{b} \dots$$

$$\{ \bigwedge_{b \in AGT} \left[\left(pos_{b} \in C_{pos(a),dir(a),\alpha} \right) \rightarrow \left(pos'_{b} = pos_{b} \land dir'_{b} = dir_{b} \right) \right] \land$$

$$[\left(pos_{b} \notin C_{pos(a),dir(a),\alpha} \right) \rightarrow \left(pos'_{b} \notin C_{pos(a),dir(a),\alpha} \right)] \}$$

$$\rightarrow \left(pos'_{c} \notin C_{pos(b),dir(b),\alpha} \right)$$

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

VARIANT WITH CAMERAS

IM FOCUS DAS LEBEN 21

Agents are cameras

- Cameras
 - Can turn
 - Can NOT move
- Common knowledge
 - Of the positions of agents
 - Of the abilities of perception

Semantics: restricted set of worlds

Definition

Given a fixed $pos': AGENTS \rightarrow \mathbb{R}^2$, worlds are w = (pos, dir) s.t. pos = pos'

Semantics: $\mathcal{M}_{cameras}$

Definition

 $\mathcal{M}_{cameras}$ is $\mathcal{M}_{flatland}$ where we publicly announced the current positions of the agents

Abstraction of the Kripke model in 2D works

Definition

$$abs(w) = \{b \text{ sees } c \mid \mathcal{M}_{cameras,}, w \vDash b \text{ sees } c\}$$
 with

Example (Family of vision sets of agent a)

$S_a = \{ \{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\} \}$

A possible world (*dir*) can be described as $\{S_a\}_{a \in AGT}$

(configurations on next slides by *a* moving counterclockwise)

Example (Family of vision sets of agent a)

$S_a = \{\{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\}\}$

Example (Family of vision sets of agent a)

$S_a = \{\{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\}\}$

Example (Family of vision sets of agent a)

$S_a = \{\{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\}\}\}$

NB:

• each S_a is computed in $O(k \log k)$ steps, where k = #(Agt).

PDL (Propositional Dynamic Logic)

Definition (PDL Syntax)

$$\phi ::= a \ sees \ b \mid \neg \phi \mid \phi \lor \psi \mid [\pi] \phi$$

• Intended semantics for $[\pi]\phi$: after all executions of program π , it holds that ϕ

Definition (Syntax of programs)

 $\pi_{\ldots} ::= a^{\sim} \mid \phi ? \mid \pi; \pi' \mid \pi \cup \pi' \mid \pi^*$

• Intended semantics for

- a^{\sim} : *a* turns;
- ϕ ? : the program succeeds when ϕ is true
- π ; π' : π followed by π'
- $\pi \cup \pi'$: non-deterministically execute π or π'
- π^* : repeat π a finite, but non-deterministically, number of times

Translating epistemic operators in programs

• *K_a* is simulated by

 $[(a \ sees \ b_1?) \cup (a \ sees \ b_1?; b_1^{\alpha})]; ...; (a \ sees \ b_n?) \cup (a \ sees \ b_n?; b_n^{\alpha}))]$

 π_a

 $(b_i = all agents except for a)$

- Each component program $\left[(a \text{ sees } b_i?) \cup (a \text{ sees } b_i?; b_i^{\sim}) \right]$ says: can turn view of b_i iff a does not see b_i
- Thus the program may change arbitrarily all agents, other than *a*, that *a* cannot see
- And this is exactly the semantics of K_a

Model checking

Observation

Model checking of PDL for cameras is PSPACE-complete

(Gasquet et al. 2014)

Summary: Visual-epistemic reasoning of agents

- Epistemic language involving atomic propositions 'a sees b'.
- Semantics in geometric and Kripke models.
- 1D case and 2D case with cameras (spectrum of vision):
 - Finite abstraction in the 1D case and in the 2D case with cameras (spectrum of vision).
 - Optimal PSPACE model checking.
- Open problem for the full 2D case: finite abstraction?

Future work

- Obstacles (occlusion)
- Moving agents/cameras in the plane: mathematically more complex; finite abstractions may not work
- Agents/cameras in the 3D space

Uhhh, a lecture with a hoepfully useful

APPENDIX

IM FOCUS DAS LEBEN 36

References

- M. Aiello, I. Pratt-Hartmann, and J. Benthem, editors. Handbook of Spatial Logics. Springer, 2007.
- P. Balbiani, O. Gasquet, and F. Schwarzentruber. Agents that look at one another. Logic Journal fo the IGPL, 21(3):438–467, 12 2012.
- P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2. edition, 2002.
- O. Gasquet, V. Goranko, and F. Schwarzentruber. Big brother logic: logical modeling and reasoning about agents equipped with surveillance cameras in the plane. In Proceedings of AAMAS '14, 2014.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

