Intelligent Agents Knowledge and Seeing

Özgür L. Özçep
Universität zu Lübeck
Institut für Informationssysteme

Todays lecture based on

- The AAMAS 2019 Tutorial „EPISTEMIC REASONING IN MULTI-AGENT SYSTEMS", Part 2: Knowledge and Seeing http://people.irisa.fr/Francois.Schwarzentruber/2019AAMAStutorial/

MOTIVATION

The Main Scenario

- Agents equipped with vision devices, positioned in the plane / space, e.g. robots that cooperate
- Aim: Represent and compute visual-epistemic reasoning of agents

Spatial reasoning

- Kripke models/epistemic models: abstract notion of possible world and of accessibility
- But agents usally act in space (and time)
- Should be accounted for
- The approach discussed here does this within the semantics of specific of form a sees b
- Leads to ability to express (qualitative9 spatial notions
- Spatial Reasoning and spatial logics (temporal logics, se next lecture next to ime) is a huge topic (see (Aiello et al, 2007))

MODELING

Modeling

Each agent has a sector (cone) of vision

Assumptions (common knowledge)

- Agents are transparent points in the plane
- All objects of interest are agents
- Agents see infinite sectors
- Angles of vision are the same
- No obstacles (yet)

Possible Worlds

U is set of unit vetors of \mathbb{R}^{2}

Definition

A geometrical possible world is a tuple $w=(p o s, d i r)$ where:

- pos: Agt $\rightarrow \mathbb{R}^{2}$
- dir: Agt $\rightarrow U$

Remember: Agt = set of agents

- $\operatorname{dir}(a)$ is the bisector of the sector of vision with angle α
- $C_{p, u, \alpha}$: closed sector with vertex at the point p, angle α and bisector in direction u
- The region seen by a is $C_{\operatorname{pos}(a), \operatorname{dir}(a), \alpha}$

An agent sees another

Definition

a sees b in $w=(p o s, d i r)$ iff $\operatorname{pos}(b) \in C_{p o s(a), \operatorname{dir}(a), \alpha}$

- a sees a
- a sees b
- a does not see c

Epistemic model $\mathcal{M}_{\text {flatland }}$

Definition

$\mathcal{M}_{\text {flatland }}=\left(\mathrm{W},\left(\sim_{a}\right)_{a \in A G T}, V\right)$ with

- W is the set of geometrical possible worlds
- $w \sim_{a} u$ iff agent a sees the same agents in both w and u and these agents have the same position and directions in both w and u

Accessibility relation \sim_{a} is an equivalence relation. (logic: S5)

Axiomatization: Disjunctive surprises!

- $\vDash\left(K_{a} a\right.$ sees $\left.b\right) \vee K_{a} a$ sees b
(Note that this is not an instance of a tautology)
- $\vDash K_{a}(b$ sees $c \vee d$ sees $e) \leftrightarrow$

$$
K_{a}(b \text { sees } c) \vee K_{a}(d \text { sees } e)
$$

Example

- $K_{a} K_{B} C K_{c, d, e}(f$ sees $g)$
(Note that we use now $C K$ instead of C to denote common knowledge operator)

In 1D, only qualitative positions matter

Observation

Qualitative positions are expressible in the language

- sameDir $(a, b):=(a$ sees $b \leftrightarrow b$ sees $a)$
- a is between $b, c:=(a$ sees $b \leftrightarrow a$ sees $c)$

Abstraction of the Kripke model in 1D

```
Definition
\(a b s(w)=\left\{b\right.\) sees \(c \mid \mathcal{M}_{\text {robots,1D }}, w \vDash b\) sees \(\left.c\right\}\) with
```


Axiomatization in 1D

- Propositional tautologies;
- (sameDir $(a, b) \leftrightarrow \operatorname{sameDir}(b, c)) \rightarrow \operatorname{sameDir}(a, c)$;
- $\neg(a$ isBetween $b, c) \vee \neg(b$ isBetween $a, c)$;
- $\left(K_{a} a\right.$ sees $\left.b\right) \vee\left(K_{a} a \operatorname{sees} b\right)$
- a sees $b \rightarrow\left(\left(K_{a} b\right.\right.$ sees $\left.c\right) \vee\left(K_{a} b\right.$ sees $\left.\left.c\right)\right)$
- $\chi \rightarrow \widehat{K}_{a} \psi$
where χ, ψ are complete descriptions with $\chi \sim_{a}^{a b s} \psi$
- $K_{a} \phi \rightarrow \phi$

A complete description is a conjunction that

- contains a sees b or a sees b for all agents a, b
- is satisfiable

In 2D, qualitative representation is open issue

Example

$K_{b}(a$ sees $b \wedge a$ sees $d \rightarrow a$ sees $c)$

(Assuming here that cone of vision is 1-D: $\alpha=0$)

Abstraction of the Kripke model in 2D

Definition
 $a b s(w)=\left\{b\right.$ sees $c \mid \mathcal{M}_{\text {robots,2D }}, w \vDash b$ sees $\left.c\right\}$ with

Model checking

- Input
- A description of a world w (not the whole model)
- A formula ϕ
- Output: yes iff $w \vDash \phi$

Complexity

Lineland	flatland
PSPACE-complete	PSPACE-hard, and in EXPSPACE (the latter shown by reduction to \mathbb{R}-FOL-theory)

\mathbb{R}-FOL-theory = elementary algebra : First-oder logic (FOL) of the reals Language:

- FOL with equality and
- Constants 0,1
- Functions symbols,$+ \times$
- Relation symbols <
- Can define, e.g., reals as solutions of polynomials
- Validity of elemantary algebra is known to be in EXSPACE

Complexity

Definition

Standard translation from modal logic to first-order logic

- Atomic propositions p are rewritten to unary predicates P
- $K_{a} p$ rewritten to $\forall u(R(w, u) \rightarrow P(u))$
(see e.g. Blackburn et al. Modal logic, 2001)

Observation (Adapted translation to \mathbb{R}-FOL-theory

K_{a} (b sees c) rewritten into

$$
\begin{aligned}
& \forall \operatorname{pos}_{a}^{\prime} \forall \operatorname{pos}_{b}^{\prime} \ldots \forall \operatorname{dir}_{a}^{\prime} \forall \operatorname{dir}_{b}^{\prime} \ldots \\
& \left\{\bigwedge _ { b \in A G T } \left[\left(\operatorname{pos}_{b} \in C_{\left.\operatorname{pos}(a), \operatorname{dir}(a), \alpha) \rightarrow\left(\operatorname{pos}_{b}^{\prime}=\operatorname{pos}_{b} \wedge \operatorname{dir}_{b}^{\prime}=\operatorname{dir}_{b}\right)\right] \wedge}^{\left.\left[\left(\operatorname{oos}_{b} \notin C_{\operatorname{pos}(a), \operatorname{dir}(a), \alpha)}\right) \rightarrow\left(\operatorname{pos}_{b}^{\prime} \notin C_{\operatorname{pos}(a), \operatorname{dir}(a), \alpha}\right)\right]\right\}}\right.\right.\right. \\
& \rightarrow\left(\operatorname{pos}_{c}^{\prime} \notin C_{\operatorname{pos}(b), \operatorname{dir}(b), \alpha)}\right.
\end{aligned}
$$

VARIANT WITH CAMERAS

Agents are cameras

- Cameras
- Can turn
- Can NOT move
- Common knowledge
- Of the positions of agents
- Of the abilities of perception

Semantics: restricted set of worlds

Definition
 Given a fixed pos': AGENTS $\rightarrow \mathbb{R}^{2}$, worlds arew $=$ (pos, dir) s.t. $p o s=p o s^{\prime}$

Semantics: $\mathcal{M}_{\text {cameras }}$

Definition

$\mathcal{M}_{\text {cameras }}$ is $\mathcal{M}_{\text {flatland }}$ where we publicly announced the current positions of the agents

Abstraction of the Kripke model in 2D works

```
Definition
abs(w)={b sees c \ \mathcal{M}}\mp@subsup{\mathcal{cameras,},}{}{\prime}w\vDashb\mathrm{ sees c }}\mathrm{ with
```


Spectrum of vision

Example (Family of vision sets of agent a)

$$
S_{a}=\{\{b\}, \emptyset,\{c\},\{d\},\{d, f\},\{d, f, e\},\{f, e\},\{e\}\}
$$

A possible world (dir) can be described as $\left\{S_{a}\right\}_{a \in A G T}$
(configurations on next slides by a moving counterclockwise)

Spectrum of vision

Example (Family of vision sets of agent a)

$$
S_{a}=\{\{b\}, \emptyset,\{c\},\{d\},\{d, f\},\{d, f, e\},\{f, e\},\{e\}\}
$$

Spectrum of vision

Example (Family of vision sets of agent a)

$$
S_{a}=\{\{b\}, \emptyset,\{c\},\{d\},\{d, f\},\{d, f, e\},\{f, e\},\{e\}\}
$$

Spectrum of vision

Example (Family of vision sets of agent a)

$$
S_{a}=\{\{b\}, \emptyset,\{c\},\{d\},\{d, f\},\{d, f, e\},\{f, e\},\{e\}\}
$$

NB:

- each S_{a} is computed in $O(k \log k)$ steps, where $k=\#(A g t)$.

PDL (Propositional Dynamic Logic)

Definition (PDL Syntax)

$$
\phi::=a \operatorname{sees} b|\neg \phi| \phi \vee \psi \mid[\pi] \phi
$$

- Intended semantics for $[\pi] \phi$: after all executions of program π, it holds that ϕ

PDL Language

Definition (Syntax of programs)

$$
\pi . . .::=a^{\sim}|\phi ?| \pi ; \pi^{\prime}\left|\pi \cup \pi^{\prime}\right| \pi^{*}
$$

- Intended semantics for
- a^{\sim} : a turns;
- ϕ ? : the program succeeds when ϕ is true
- $\pi ; \pi^{\prime}: \pi$ followed by π^{\prime}
- $\pi \cup \pi^{\prime}$: non-deterministically execute π or π^{\prime}
- π^{*} : repeat π a finite, but non-deterministically, number of times

Translating epistemic operators in programs

- K_{a} is simulated by
$\left[\left(a\right.\right.$ sees $\left.b_{1} ?\right) \cup\left(a\right.$ sees $\left.\left.b_{1} ? ; b_{1}^{\sim}\right)\right) ; \ldots ;\left(a\right.$ sees $\left.b_{n} ?\right) \cup\left(a\right.$ sees $\left.\left.\left.b_{n} ? ; b_{n}^{\sim}\right)\right)\right]$
πa
$\left(b_{i}=\right.$ all agents except for $\left.a\right)$
- Each component program $\left[\left(a\right.\right.$ sees $\left.\left.b_{i} ?\right) \cup\left(a \operatorname{sees} b_{i} ? ; b_{i}^{\sim}\right)\right)$ says: can turn view of b_{i} iff a does not see b_{i}
- Thus the program may change arbitrarily all agents, other than a, that a cannot see
- And this is exactly the semantics of K_{a}

Model checking

Obsenvation

Model checking of PDL for cameras is PSPACE-complete
(Gasquet et al. 2014)

Summary:Visual-epistemic reasoning of agents

- Epistemic language involving atomic propositions 'a sees b'.
- Semantics in geometric and Kripke models.
- 1D case and 2D case with cameras (spectrum of vision):
- Finite abstraction in the 1D case and in the 2D case with cameras (spectrum of vision).
- Optimal PSPACE model checking.
- Open problem for the full 2D case: finite abstraction?

Future work

- Obstacles (occlusion)
- Moving agents/cameras in the plane: mathematically more complex; finite abstractions may not work
- Agents/cameras in the 3D space

APPENDIX

References

- M. Aiello, I. Pratt-Hartmann, and J. Benthem, editors. Handbook of Spatial Logics. Springer, 2007.
- P. Balbiani, O. Gasquet, and F. Schwarzentruber. Agents that look at one another. Logic Journal fo the IGPL, 21(3):438-467, 122012.
- P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2. edition, 2002.
- O. Gasquet, V. Goranko, and F. Schwarzentruber. Big brother logic: logical modeling and reasoning about agents equipped with surveillance cameras in the plane. In Proceedings of AAMAS '14, 2014.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

