Intelligent Agents Knowledge and Time

Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Todays lecture based on

 The AAMAS 2019 Tutorial "EPISTEMIC REASONING IN MULTI-AGENT SYSTEMS", Part 3: Knowledge and Time http://people.irisa.fr/Francois.Schwarzentruber/2019AAMAStutorial/

LINEAR TEMPORAL LOGIC

IM FOCUS DAS LEBEN 3

Models

Definition

A linear temporal model is a structure $(\mathbb{N}, <, V)$ such that:

- $V: N \rightarrow 2^{AP}$
- < is the natural order on \mathbb{N}

We sometimes do not mention the linear order <

Syntax and semantics

IM FOCUS DAS LEBEN 6

Syntax and semantics

- $(\mathbb{N}, V), t \models p$ if $p \in V(t)$
- $(\mathbb{N}, V), t \models \neg \phi$ if not $(\mathbb{N}, V), t \models \phi$
- $(\mathbb{N}, V), t \models \phi \lor \psi$ if $(\mathbb{N}, V), t \models \phi$ or $(\mathbb{N}, V), t \models \psi$
- $(\mathbb{N}, V), t \models X \phi$ if $(\mathbb{N}, V), t + 1 \models \phi$
- $(\mathbb{N}, V), t \models F \phi$ if there is $t' \ge t$ such that $(\mathbb{N}, V), t' \models \phi$
- $(\mathbb{N}, V), t \models G \phi$ if for all $t' \ge t$: $(\mathbb{N}, V), t' \models \phi$
- $(\mathbb{N}, V), t \models \phi U \psi$ if there is $t' \ge t$ such that $(\mathbb{N}, V), t' \models \psi$ and $(\mathbb{N}, V), t'' \models \phi$ for all $t'' \in [t, t' - 1]$

Satisfiability problem (reminder)

Definition

The satisfiability problem is:

- Input: a formula ϕ
- Output: yes if there is V such that $(\mathbb{N}, V), t \models \phi$

Theorem

The satisfiability problem is PSPACE-complete

Model checking (reminder)

Definition

The model checking problem is:

- Input: a transition system S; an LTL formula ϕ
- Output: yes if all paths of S starting from an initial state of S satisfy ϕ

Theorem

The model checking problem of LTL is PSPACE-complete

Example

EPISTEMIC LINEAR TEMPORAL LOGIC

A combined logic

- Epistemic linear temporal logic (ELTL)
 - Epistemic logic (with epistemic operators K_a) combined with
 - Linear temporal logic (with temporal operators X, F, G, U)
- Example of combining systems/logics
 - Conference series "Frontiers of combining systems" (Frocos)
 - Interesting (ancient Dialogue-style) paper on combining systems : P. Blackburn and M. De Rijke., 1997
 - Overview in Stanford Encyclopedia of Philosophy:
 Carnielli and Coniglio: Combining Logics, 2020

Models

Definition

An ELTL model is a structure $\mathcal{M} = (TL \times \mathbb{N}, (\sim_a)_{a \in AGT}, V)$ such that

- TL is a non-empty set of timelines (runs)
- For all agents a, \sim_a is an equivalence relation on $TL \times \mathbb{N}$
- $V:TL \times \mathbb{N} \to 2^{AP}$

Case of one agent a; regions denote equivalence classes of \sim_a

INTERACTION BETWEEN KNOWLEDGE AND TIME

Axiomation in case: no interaction -> Fusion

• All classical tautologies (and their uniform substitutions)

- $K_a(\phi \to \psi) \to (K_a \phi \to K_a \psi)$
- $K_a \phi \rightarrow \phi$
- $\widehat{K}_a \top$
- $K_a \phi \rightarrow K_a K_a \phi$
- $\neg K_a \phi \rightarrow K_a \neg K_a \phi$

FI

- $G(\phi \rightarrow \psi) \rightarrow (G\phi \rightarrow G\psi)$
- $X(\phi \to \psi) \to (X\phi \to X\psi)$
- $X \neg \phi \leftrightarrow \neg X \phi$
- $G\phi \rightarrow (\phi \wedge XG\phi)$
- $G(\phi \to X\phi) \to (\phi \land G\phi)$
- $(\phi U\psi) \rightarrow F\psi$
- $(\phi U\psi) \leftrightarrow (\psi \lor X(\phi U\psi))$

LTL

Adding interaction

For additional criteria (resulting in 96 different epistemic temporal logics see: Halpern/Vardi, 1989)

Synchronous	Agents know the time t (not an axiom)
Perfect recall, Synchronous	$K_a X \phi \rightarrow X K_a \phi$
Perfect recall	$K_a\phi \wedge X(K_a\psi \wedge \neg K_a\chi) \rightarrow \neg K_a \neg (K_a\phi U(K_a\psi U \neg \chi))$
No learning	$(K_a \phi U K_a \phi) \to K_a (K_a \phi U K_a \psi)$
No learning, Synchronous	$XK_a\phi \rightarrow K_aX\phi$

Complexity of the satisfiability problem

((Reminder:

Complexity Class ELEMANTARY= $\bigcup_{k \in \mathbb{N}} k - EXP = DTIME(2^n) \cup DTIME(2^{2^n}) \cup \cdots)$

MODEL CHECKING

IM FOCUS DAS LEBEN 19

Model checking

Definition

The model checking problem is:

• Input:

FÜR INFORMATIONSSYSTEME

- an epistemic transition system S, i.e. a transition system augmented with epistemic relations $(R_a)_{a \in AGT}$ with a set of initial states;
- an LTL formula ϕ
- Output: yes if \mathcal{M}_{S} , $(\rho, 0) \models \phi^{"}$ for all paths ρ of S starting
- from an initial state of S

Possible Definition of \mathcal{M}_S

Definition

Given a transition system *S*, define $\mathcal{M}_S = (\mathrm{TL} \times \mathbb{N}, (\sim_a)_{a \in AGT}, V)$ such tat

- *TL* is the set of paths of *S* starting in an initial state of *S*;
- For all agents $a: (\rho, t) \sim_a (\rho', t')$ if
 - t = t'
 - $\rho[i]R_a\rho'[i]$ for all $i \in \{0, \dots, t\}$

(synchrony)

- (perfect recall)
- $V: TL \times \mathbb{N} \to 2^{AP}$ is defined by $V(\rho, t) = \text{set of propositions true at } \rho[t]$

Example

Another Possible Definition of \mathcal{M}_S

Definition

Given a transition system *S*, define $\mathcal{M}_S = (\mathrm{TL} \times \mathbb{N}, (\sim_a)_{a \in AGT}, V)$ such tat

- *TL* is the set of paths of *S* starting in an initial state of *S*;
- For all agents $a: (\rho, t) \sim_a (\rho', t')$ if
 - t = t' (synchrony)
 - $\rho[t]R_a\rho'[t]$

(synchrony) (memoryless)

• $V: TL \times \mathbb{N} \to 2^{AP}$ is defined by $V(\rho, t) = \text{set of propositions true at } \rho[t]$

Example

Theorem (Engelhardt et al. 2007)

The model checking problem for memoryless and synchronuos systems is PSPACEcomplete

Theorem (van der Meyden and Shilov, 1999)

The model checking problem under perfect recall and synchrony is

- Undecidable if CK (common knowledge operator) and until (U)
- NON ELEM-c if until but not CK
- PSPACE-c if CK but not until

See also (Bozzelli et al 2019) for recent results.

Uhhh, a lecture with a hoepfully useful

APPENDIX

IM FOCUS DAS LEBEN 26

References

- P. Blackburn and M. De Rijke. Zooming in, zooming out. Journal of Logic, Language and Information, 6(1):5–31, 1997.
- W. Carnielli and M. E. Coniglio. Combining logics. The Stanford Encyclopedia of Philosophy (Win- ter 2008 Edition), Edward N. Zalta (ed.), <u>http://plato.stanford.edu/archives/win2008/entries/logic- combining/</u>.
- J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and time i. lower bounds. Journal of Computer and System Sciences, 38(1):195–237, 1989.
- K. Engelhardt, P. Gammie, and R. Meyden. Model checking knowledge and linear time: Pspace cases. In Proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS '07, pages 195—211, Berlin, Heidelberg, 2007. Springer-Verlag.
- L. Bozzelli, B. Maubert, and A. Murano. The complexity of model checking knowledge and time. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI'19, pages 1595–1601. AAAI Press, 2019.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

