Intelligent Agents
 Doxastic logic and dynamics of beliefs

Özgür L. Özçep
Universität zu Lübeck
Institut für Informationssysteme

Todays lecture based on

- Parts of Lecture notes „EPISTEMIC LOGICS" by Andreas Herzig, 2017 https://www.irit.fr/~Andreas.Herzig/Cours/epiLogics.pdf

DOXASTIC LOGIC

Relevance of Knowledge

- When is knowledge the appropriate informational attitude?
- Remember: "knowledge entails truth" principle in epistemic logic: $\vDash_{S 5 n} K_{a} \phi \rightarrow \phi$
- Relevant for:
- formal epistemology
- What is knowledge?
- Is knowledge possible at all?
- Are all truths knowable?
- Distributed processes (Fagin et al 03)

Truth

- Relation to truth less in focus in:
- philosophy of mind: focus on agent's mental state
- philosophy of language: effects of speech acts on the participants' mental states: lies, bullshitting
- implementation of artificial agents
- informational mental attitude not entailing truth: belief
- "he knows that ϕ, but he is wrong": inconsistent
- "he believes that ϕ, but he is wrong": consistent
- however: 'belief aims at truth' (Engel 1998), (Hakli 2006)
- Doxastic logic (Hintikka 2005) (Lenzen 1978, Lenzen 1995)
- doxa $=\delta o \xi a=$ 'belief' (Greek)

Definition (Syntax of Doxastic Logic: KD45n)

- Well-formed formula of doxastic logic are given by BNF:

$$
\phi::=p|\perp| \neg \phi|(\phi \wedge \phi)| B_{a} \phi
$$

where $p \in A P$ and $a \in A G T$.

- Intended reading: $B_{a} \phi$ "agent a believes $\phi^{\prime \prime}$
- Dual operator: \widehat{B}_{a} abbreviates $\neg B_{a} \neg \phi$ "it is possible for a that ϕ "

Example

- $p \wedge B_{a} \neg p$
- $\mathrm{B}_{\mathrm{a}} \neg p \wedge B_{b} B_{a} p$
- $B_{a}\left(B_{b} p \vee B_{b} \neg p\right)$

Doxastic attitudes and situations

- Three possible doxastic attitudes w.r.t. a formula ϕ

$$
B_{a} \phi \quad \hat{B}_{a} \phi \wedge \hat{B}_{a} \neg \phi \quad B_{a} \neg \phi
$$

for ϕ contingent (not tautology and not contradiction) and non-doxastic

- Six possible doxastic situations w.r.t. a formula ϕ

$$
\begin{aligned}
& \phi \wedge B_{a} \phi \quad \phi \wedge \hat{B}_{a} \phi \wedge \hat{B}_{a} \neg \phi \quad \phi \wedge B_{a} \neg \phi \\
& \neg \phi \wedge B_{a} \phi \quad \neg \phi \wedge \hat{B}_{a} \phi \wedge \hat{B}_{a} \neg \phi \quad \neg \phi \wedge B_{a} \neg \phi \\
& \text { for } \phi \text { contingent (not tautology and not contradiction) } \\
& \text { and non-doxastic }
\end{aligned}
$$

Semantics

Belief explained (as for knowledge) with possible worlds $B_{a} \phi=$ „agent a believes that $\phi^{\prime \prime}$
$={ }_{\neq} \phi$ true in every world that is compatible with $a^{\prime} s$ beliefs"

Definition (Models of KD45n)

A $K D 45_{n}$-model is a structure $\mathcal{M}=(W, B, V)$ where

- W nonempty set (of possible worlds)
- $V: A P \rightarrow 2^{W} \quad$ (valuation)
- $\mathcal{R}: A G T \rightarrow 2^{W \times W}$ such that for every $a \in A G T$:
- For every w there is some w^{\prime} such that $\left(w, w^{\prime}\right) \in \mathcal{R}_{a}$ (serial)
- If $\left(w, w^{\prime}\right) \in \mathcal{R}_{a}$ and $\left(w^{\prime}, w^{\prime \prime}\right) \in \mathcal{R}_{a}$, then $\left(w, w^{\prime \prime}\right) \in \mathcal{R}_{a}$ (transitive)
- If $\left(w, w^{\prime}\right) \in \mathcal{R}_{a}$ and $\left(w, w^{\prime \prime}\right) \in \mathcal{R}_{a}$, then $\left(w^{\prime}, w^{\prime \prime}\right) \in \mathcal{R}_{a}$

Some derived notions and observations

- $\mathcal{R}_{a}(w)=\left\{w^{\prime} \mid\left(w, w^{\prime}\right) \in \mathcal{R}_{a}\right\}$
- = a^{\prime} s alternatives to w
- = worlds a cannot distinguish from w on basis of beliefs
- = set of worlds compatible with a^{\prime} s beliefs
- = belief state of agent a at w
- \mathcal{R}_{a} serial iff $\mathcal{R}_{a}(w) \neq \emptyset$
- \mathcal{R}_{a} transitive and Euclidean iff: if $w^{\prime} \in \mathcal{R}_{a}(w)$ then $\mathcal{R}_{a}(w)=\mathcal{R}_{a}\left(w^{\prime}\right)$

Definition (modellig relation in KD45n)

```
\mathcal{M},w\vDash\mp@subsup{B}{a}{}\phi\mathrm{ iff }\mathcal{M},\mp@subsup{w}{}{\prime}\vDash\phi\mathrm{ for every w}\mp@subsup{w}{}{\prime}\in\mathcal{R}
```


Example (Variant of muddy children (a, b) with beliefs)

Child a wrongly believes it is not muddy

$$
\begin{aligned}
& R_{a}(v)=\{s\} \\
& M, v \vDash m_{a} \wedge B_{a} \neg m_{a}
\end{aligned}
$$

Axiomatics

Definition (A calculus for multimodal KD45n)

- Axioms for multimodal K
- Axioms for propositional logic
- Axiom $\mathrm{B}_{a} \phi \wedge B_{a} \psi \rightarrow B_{a}(\phi \wedge \psi)$

Axiom $\mathrm{M}\left(B_{a}\right)$

- Rule: $\phi \rightarrow \psi \quad \vdash_{K D 45_{n}} \quad B_{a} \phi \rightarrow B_{a} \psi$
- Consistency of Belief: $\neg\left(B_{a} \phi \wedge B_{a} \neg \phi\right)$
- Positive Introspection: $B_{a} \phi \rightarrow B_{a} B_{a} \phi$
- Negative Introspection: $\neg B_{a} \phi \rightarrow B_{a} \neg B_{a} \phi$

Axiom $\mathrm{D}\left(B_{a}\right)$
Axiom $4\left(B_{a}\right)$
Axiom $5\left(B_{a}\right)$

Axiomatics

Theorem (Properties of calculus)

- Sound and complete: $\vdash_{K D 45_{n}}$ iff $\vDash_{K D 45_{n}}$
- Decidable
- Complexity of $K D 45_{n}$-satisfiability
- NP-complete if $n=1$
- PSPACE-complete if $n>1$
- For $n=1$ there exists a normal form: modal depth \leq 1

Discussion: Omniscience problem

- Closure of B_{a} under inference (see only rule in calculus)
- This is not realistic - in particular for ressource bounded agents.
- (Negative) Introspection also criticised (Lenzen 78)

Discussion: belief and probability

- KD45n's notion of belief is strong („conviction")
- Weaker version:
- $\mathrm{B}_{a} \phi=\operatorname{Prob}_{a}(\phi)>\operatorname{Prob}_{a}(\neg \phi)$
- For classical semantics this amounts to $\operatorname{Prob}_{a}(\phi)>\frac{1}{2}$
- Semantics: $\mathcal{M}=(W, \mathcal{R}, V)$ where

$$
\mathcal{R}: A G T \rightarrow(W \times W)
$$

- $\mathcal{M}, w \vDash B_{a} \phi$ iff among the a-accessible worlds there are more ϕ than $\neg \phi$ worlds
- $\left(B_{a} \phi \wedge B_{a} \psi\right) \rightarrow B_{a}(\phi \wedge \psi)$ not valid!
- Weakening of Kripke semantics: neighbourhood semantics (Burgess 1969), (Lenzen 1978)

Discussion: Graded Belief

- Language: $B_{a}^{\geq d} \phi={ }_{„} a$ believes ϕ with degree at least d (where $d \in[0,1]$)
- Semantics: $\mathcal{M}=(W, \mathcal{R}, V)$ where
$-\mathcal{R}: A G T \times[0,1] \rightarrow(W \times W)$ such that $B_{a}^{\geq d} \phi \subseteq B_{a}^{\geq d+d^{\prime}} \phi$ Linear chain of accesibility relations (-> „system of spheres")
- $w B_{a}^{\geq d} v={ }_{\text {„for }} a$ at w world v has degree of possibility at least d
- Axiomatics:
- KD45($\left.B_{a}^{\geq d}\right)$ for every a and d
- $B_{a}^{\geq d} \phi \rightarrow B_{a}^{\geq d^{\prime}} \phi$ if $d \geq d^{\prime}$

KNOWLEDGE VS BELIEF

Can knowledge be defined from belief?

- The antique definition according to Platon (Theaetetus)
- $K_{a} \phi=B_{a} \phi \wedge \phi$...

Problem: knowledge by accident

- $K_{a} \phi=B_{a} \phi \wedge \phi \wedge \operatorname{hasJust}(a, \phi)$ „Knowledge is justified true belief"
- Held to be true for more than 2000 years
- And then comes Gettier
- Fun fact: idea written on napkin
- leading to a highly influential 2 page paper (in analytical philosophy) (Gettier 1963)

Gettiers two counterexamples

Scenario 1

- Smith and Jones apply for a job
- Smith believes (justifiably):
(p) Jones will get the Job \& John has ten coins in his pocket
- Smith believes also in the entailed assertion:
(r) The one who gets the job has ten coins in his pocket.
- Coincidence : Smith gets the job and Smith has ten coins in his pocket.
- Smith „knew" (r) only by chance

Scenario 2

- Smith justifiably believes (p) Jones owns a Ford
- Smith also believes in entailed assertion
- $\quad(r)=(p$ or $q)$: Jones owns a Ford, or Brown lives in Barcelona (Though Smith has no justification for q)
- Coincidence: Jones does not own Ford, but Brown lives in Barcelon
- Smith „knew" (r) only by chance

General idea: decouple justification and truth conditions of propositional content of belief

General remarks

- What is a justification at all?
- „Solutions" to Gettier's problem deal with this problem
- A formal treatmant of justification similar to provability logic: (Artemov 2008)
- Gettier's problem formalized
- Suppose logic of belief and justification such that (*) $^{*} \phi \rightarrow \psi \vdash \operatorname{hasJust}(a, \phi) \rightarrow \operatorname{hasJust}(a, \psi)$
- Suppose: a wrongly but justifiably believes in p

$$
\neg p \wedge B_{a} p \wedge \operatorname{hasJust}(a, p)
$$

- By $\mathrm{M}\left(B_{a}\right): B_{a}(p \vee q) \wedge B_{a}(p \vee \neg q)$
- By (*): hasJust $(a,(p \vee q)) \wedge$ hasJust $(a,(p \vee \neg q))$
- Hence: $\vDash B_{a} p \wedge \operatorname{hasJust}(a, p) \rightarrow\left(K_{a}(p \vee q) \vee K_{a}(p \vee \neg q)\right)$

Relation of knowledge and belief not obvious

- Suppose logic of knowledge and belief defined as
- KD45(Ba)
- $S 5\left(K_{a}\right)$
- $K_{a} \phi \rightarrow B_{a} \phi$
- $B_{a} \phi \rightarrow B_{a} K_{a} \phi$
- Would entail that $B_{a} \phi \leftrightarrow K_{a} \phi$
(intermediate step: $\neg B_{a} \neg K_{a} \phi \rightarrow \neg K_{a} \neg B_{a} \phi$)
- Culprit: negative introspection for knowledge (Lenzen 1978, Lenzen 1995)

DYNAMICS OF BELIEF

Getting dynamic with beliefs

- How do a 's beliefs evolve when a learns that ϕ is true?
- Extend $K D 45_{n}$ by public announcement operator [ϕ !]
- What if agent a wrongly believes that p, but $\neg p$ is announced?
- This is NOT possible in epistemic logic:
- $\vdash_{S 5_{n}} K_{a} p \rightarrow p$
- $\vdash_{S 5_{n} P A L} p \leftrightarrow[\neg p!] \perp \quad$ (reduction axiom)
- $\vdash_{S 5_{n} P A L} K_{a} p \rightarrow[\neg p!] \perp$
- In doxastic logic:
- $B_{a} p \wedge \neg p \quad$ is satisfiable
- $\vdash_{K D 45_{n} P A L} p \leftrightarrow[\neg p!] \perp \quad$ (reduction axiom)
- $B_{a} p \wedge \neg[\neg p!] \perp$ should be $K D 45_{n}-P A L$ satisfiable

But in doxastic logic dynamics not trivial

- One can show: inconsistent beliefs possible

$$
\vdash_{K D 45_{n} P A L}\left(\neg p \wedge B_{a} p\right) \rightarrow<\neg p!>B_{a} \perp
$$

- Ways out:

1. Drop seriality
2. Modify truth condition for announcements

$$
M, w \vDash[\phi!] \psi \text { iff }\left(\begin{array}{c}
M, w \not \vDash \phi \text { or } \\
M, w \vDash \hat{B}_{a} \phi \text { and } M^{\phi!}, w \vDash \psi \text { or } \\
M, w \vDash B_{a} \neg \phi \text { and } M, w \vDash \psi
\end{array}\right)
$$

- Reduction axiom

$$
[\phi!] B_{a} \psi \leftrightarrow \neg \phi \vee\left(\hat{B}_{a} \phi \wedge B_{a}[\phi!] \psi\right) \vee\left(B_{a} \neg \phi \wedge B_{a} \psi\right)
$$

- Believe-contravening input is rejected

3. Integrate belief revision mechanism

Classical theory of Belief Revision

- We partly follow the presentation of Herzig
- For a more comprehensive treatment see also master course „Information Systems CS4130" at IFIS
- Landmarking „yellow" paper of Alchourron, Gärdenfors and Makinson (Alchourron et al 1985)
- Beliefs of an ideal agent = set of Boolean formulas $S \subseteq L$ closed under some consequence operator
- $S \in B S_{L}$ is called a belief set

AGM takes an internal perspective

- $\phi \in S$ means: ϕ is believed by the agent
- Internal perspective (S is in agent's head)
- Contrast with external perspective:
- $\phi=$ " ϕ " is objectively true
- Taken in doxastic logic
- But can „internalize"doxastic logic too (Aucher 2008)
- Distinguished agent Y (for you)
- $\phi={ }_{„} Y$ believes that $\phi^{\prime \prime}$
- Wanted: $\vdash \phi \leftrightarrow B_{Y} \phi$
- Abandond inference rule of necessitation:

$$
\vDash B_{Y} \phi \rightarrow \phi \text { but } \not \vDash B_{a}\left(B_{Y} \phi \rightarrow \phi\right)
$$

Coherentism vs foundationalism

- Two general approaches in epistemology
- Foundationalism:
- All beliefs rest on some basic beliefs (which do not rest by themselves on others, but are assume to be true
- Some tribute to foundationalism in post AGM-work: Belief bases are (arbitrary not necessarily closed) usually finite sets of sentences
- Coherentism:
- Beliefs are justified by their relations (consequence, justification..) to other beliefs in a network
- Usually there is no notion of truth
- AGM considers closed sets of beliefs based on a consequence operator (logic not based on a semantics)

Types of Belief Change

- L: Set of well-formed formulas (with at least Boolean operators)
- Cn: $2^{L} \rightarrow 2^{L}$ consequence operator (monotonic, idempotent and conclusive)
- B_{L} : Sets of belief sets $=C n-$ closed sets in 2^{L}
- Single inconsistent belief-set $=L$
- AGM considers three types of operators op all of signature op: $B_{L} \times L \rightarrow B_{L}$
- Expansion: $X+\psi$
- Contraction: $X-\psi$
- Revision: $X * \phi$

Types of Belief Change

- $X+\psi=$ expanding X by ψ
- Result of adding ψ to X without considering inconsistencies
- Desideratum: $\psi \in X+\psi$ or even $\operatorname{Cn}(X \cup\{\psi\})=X+\psi$
- $X-\psi=$ contracting X by ψ
- Result of deleting ψ and other sentences such that ψ no longer follows (is contained in the resulting belief set)
- Desiderata: $\psi \notin X-\psi ; X-\psi \subseteq X ; \ldots$
- $X * \psi=$ revising X by ψ
- Result of adding consistently ψ
- Desiderata: $\psi \in X * \psi ; X * \psi \neq L$ if $\operatorname{Cn}(\psi) \neq L$

Desiderata captured by AGM postulates

(here for revision)

- (R1) $X * \psi \in B S_{L}$
- (R2) $\psi \in X * \psi$
(closure)
- (R3) $X * \psi \subseteq C n(X \cup\{\psi\})$ (success)
(inclusion)
- (R4) If $\neg \psi \notin \operatorname{Cn}(X)$ then $\operatorname{Cn}(X \cup\{\psi\}) \subseteq X * \psi$ (vacuity)
- (R5) If $C n(X * \psi)=L$ then $\neg \psi \in \operatorname{Cn}(\emptyset) \quad$ (consistency)
- (R6) If $\phi \leftrightarrow \psi \in \operatorname{Cn}(\varnothing)$, then $X * \phi=X * \psi$ (extensionlity)
- (R7) $X *(\phi \wedge \psi) \subseteq \operatorname{Cn}((X * \phi) \cup\{\psi\}) \quad$ (conjunction 1)
- (R8) If $\neg \beta \notin C n$, then
(conjunction 2)
$C n((X * \phi) \cup\{\psi\}) \subseteq X *(\phi \wedge \psi)$
(Note: Postulate is not axiom: talks about Cn)

Semantics for AGM

- Postulates generally specify whole classes of operators (exception: expansion)
- How to construct concrete change operators?
- Different design principles
- Partial meet based on remainder sets (considered here)
- Orders (epistremic entrenchment)
- Systems of spheres
- ...

Remainder Sets: „Maximal Scenarios"

Definition (remainder set)

The remainder set $X \perp \alpha$ of X by α consists of all inclusion-maximal subsets of X not entailing α. The sets in $X \perp \alpha$ are called remainders.

Example

- $\{p, q\} \perp(p \wedge q)=\{\{p\},\{q\}\}$
- $\{p \vee r, p \vee \neg r, q \wedge s, q \wedge \neg s\} \perp(p \wedge q)=$

$$
\{\{p \vee r, p \vee \neg r\},\{p \vee r, q \wedge s\},
$$

$$
\{p \vee r, q \wedge \neg s\},\{p \vee \neg r, q \wedge s\},\{p \vee r, q \wedge \neg s\}
$$

Selection function

Definition (selection function)

An AGM selection function $\gamma: 2^{B_{L}} \rightarrow 2^{B_{L}}$ for X fulfills:

1. If $X \perp \psi \neq \emptyset$, then $\emptyset \neq \gamma(X \perp \alpha) \subseteq X \perp \alpha$
2. $\gamma(\varnothing)=\{X\}$

- As there are many remainders (maximal scenarios) we need to select some of them as possible
- Chooses some remainders (if not empty).

Partial-Meet contraction and revision

Definition

- $X-_{\gamma} \psi=\cap \gamma(X \perp \psi)$
- $X{ }_{\gamma} \psi=\operatorname{Cn}\left(\left(X-{ }_{\gamma} \neg \psi\right) \cup\{\psi\}\right)$
(partial meet contraction) (partial meet revision)

Revision operator defined here by so-called Levi-identity from contraction

Theorem (Representation)

An operator $*$ fulfills postulates (R1)-(R6) iff there is a selection function γ sucht that $X * \psi=X *{ }_{\gamma} \psi$

Notes

- Similar representation result for contraction
- Partial meet revision does not necessarily fulfill (R7) and R(8); need to constrain γ further

AGM: integratio with doxastic logic

- Work of Segerberg (Segerberg 1995, 1996)
- Modal operators $B_{a},[+\psi],[-\psi],[* \psi]$
- $[* \psi] \phi={ }_{„} \phi$ is true after revision by ψ^{\prime}
- Internal version of doxastic logic (Aucher 2008)
- Straightforward transfer of AGM representation theorems to multiagent case
- Distinguish several versions of belief (Baltag/Smets 2007, 2009)09
- Soft beliefs: can be revised
- Hard beliefs: cannot be revised

GROUP BELIEFS

Group beliefs

- Theory of group beliefs developed in the same way as for group knowledge ...
- $E B_{J} \phi:=\wedge_{a \in J} B_{a} \phi$
- $\mathrm{C} B_{J} \phi:=E B_{J} \phi \wedge E B_{J} E B_{J} \phi \wedge \ldots$
- $\mathcal{R}_{C B_{J}}:=\left(\mathrm{U}_{a \in J} \mathcal{R}_{B_{a}}\right)^{+}$
- Axiomatization of $K D 45\left(B_{a}\right)$ with common belief
- Axiomatics of $K D 45\left(B_{a}\right)$
- Fixed point axiom: $C B_{J} \phi \leftrightarrow\left(E B_{J} \wedge E B_{J} C B_{J} \phi\right)$
- Least fixed point inference rule (induction rule)

$$
\phi \rightarrow E B_{J} \phi \vdash E B_{J} \phi \rightarrow C B_{J} \phi
$$

f. Sound, complete decidable in EXPTIME-c.

APPENDIX

References

- R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press, 2003.
- P. Engel. Believing, holding true, and accepting. Philosophical Explorations, 1(2):140-151, 1998.
- R. Hakli. Group beliefs and the distinction between belief and acceptance. Cognitive Systems Research, 7:286-297, 2006. J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions. Texts in philosophy. King's College London Publications, 2005.
- W. Lenzen. Recent work in epistemic logic. Acta Philosophica Fennica, 30:1-219, 1978.
- W. Lenzen. On the semantics and pragmatics of epistemic attitudes. Knowledge and belief in philosophy and AI, pages 181-197, 1995.
- J. P. Burgess. Probability logic. Journal of Symbolic Logic, 34(2):264-274, 1969.
- E. L. Gettier. Is Justified True Belief Knowledge? Analysis, 23(6):121-123, 061963.
- S. Artemov. The logic of justification. The Review of Symbolic Logic, 1(4):477-513, 2008.
- C. E. Alchourron, P. Gärdenfors, and D. Makinson. On the logic of theory change: partial meet contrac- tion and revision functions. Journal of Symbolic Logic, 50:510-530, 1985.
- G. Aucher. Perspectives on belief and change. PhD thesis, Universite de Toulouse, 2008.
- K. Segerberg. Belief revision from the point of view of doxastic logic. Logic Journal of the IGPL, 3(4):535-553, 1995.
- K. Segerberg. Two traditions in the logic of belief: Bringing them together. In H. J. Ohlbach and U. Reyle, editors, Logic, Language and Reasoning: essays in honour of Dov Gabbay, volume 5 of Trends in Logic, pages pages 135-147. 1999.
- A. Baltag and S. Smets. From conditional probability to the logic of doxastic actions. In Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge, TARK '07, pages 52-61, New York, NY, USA, 2007. Association for Computing Machinery.
- A. Baltag and S. Smets. Probabilistic dynamic belief revision. Synth., 165(2):179-202, 2008.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

