Intelligent Agents Knowledge and Time

Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Todays lecture based on

- The AAMAS 2019 Tutorial "EPISTEMIC REASONING IN MULTI-AGENT SYSTEMS", Part 3: Knowledge and Time <u>http://people.irisa.fr/Francois.Schwarzentruber/2019AAMAStutorial/</u>
- Parts of "Formal Methods Lecture III: Linear Temporal Logic" 2010/11 by Allessandro Artale <u>https://web.iitd.ac.in/~sumeet/slide3.pdf</u>

"What then is time? If no one asks me, I know what it is. If I wish to explain it to him who asks, I do not know."

(Augustine of Hippo- Confessiones)

TEMPORAL LOGIC

Temporal logic

- Temporal logic was originally developed in order to represent tense in natural language.
- Within CS, it has achieved a significant role in the formal specification and verification of concurrent reactive systems.
 - Reason: a number of useful concepts can be formally, and concisely, specified using temporal logics, e.g.
 - safety properties
 - liveness properties
 - fairness properties
 - When Vardi (Vardi 09) speaks of "industrial logics" he thinks mainly about temporal logics

Flow of Time

- Flow of time (T, \leq_T) is a structure with a time domain T and a binary before relation \leq_T over it.
 - Flow metaphor hints on directionality and dynamic aspect of time
 - Induced strictly before: $x <_T y$ iff $x \leq_T y$ and not $y \leq_T x$
 - But still different forms of flow are possible
- Either consider concrete structures of flow of (time) (as done in LTL (or CTL))
- Or investigate them additionally axiomatically
 - An early model-theoretic and axiomatic treatise:
 Lit: J. van Benthem. The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse. Reidel, 2. edition, 1991.

Family of Flows of Time

- Domain *T*
 - points (atomic time instances)
 - pairs of points (application time, transaction time)
 - intervals etc.
- Properties of the before relation \leq_T
 - Non-branching (linear) vs. branching Linearity:
 - reflexive: $\forall t \in T : t \leq_T t$
 - antisymmetric: $\forall t1, t2 \in T: (t_1 \leq t_2 \land t_2 \leq_T t_1) \Rightarrow t_1 = t_2$
 - transitive: $\forall t_1, t_2, t_3 \in T : (t_1 \leq_T t_2 \land t_2 \leq t_3) \Rightarrow t_1 \leq t_3.$
 - total: $\forall t_1, t_2 \in T: t_1 \le t_2 \lor t_2 \le t_1 \lor t_1 = t_2$.

Family of Flows of Time (continued)

- Further possible properties of the before relation \leq_T
 - Existence of first or last element
 - discreteness (Example: $T = \mathbb{N}$)
 - density (Example: $T = \mathbb{Q}$)
 - (Dedekind) continuity (Example: $T = \mathbb{R}$)

Family of Flows of Time (continued)

 One of the early expressivity results considers flows of time which are similar to (ℝ, <_ℝ)

Theorem (Kamp 1968)

- The Logic L_{SU} based on binary modalities S(ince) and U(ntil) cannot be captured by modal logic based on F(uture) and G(lobally)
- Over Dedekind continuous strict total orders (such as $<_{\mathbb{R}}$) L_{SU} provides expressiveness of first order logic.

(see Chapter 7 in (Blackburn et al, 02)

LINEAR TEMPORAL LOGIC

IM FOCUS DAS LEBEN 9

Models

Definition

A linear temporal model is a structure $(\mathbb{N}, <, V)$ such that:

- $V: N \rightarrow 2^{AP}$
- < is the natural order on \mathbb{N}

We sometimes do not mention the linear order <

Syntax and semantics

IM FOCUS DAS LEBEN 12

Syntax and semantics

- $(\mathbb{N}, V), t \models p$ if $p \in V(t)$
- $(\mathbb{N}, V), t \models \neg \phi$ if not $(\mathbb{N}, V), t \models \phi$
- $(\mathbb{N}, V), t \models \phi \lor \psi$ if $(\mathbb{N}, V), t \models \phi$ or $(\mathbb{N}, V), t \models \psi$
- $(\mathbb{N}, V), t \models X \phi$ if $(\mathbb{N}, V), t + 1 \models \phi$
- $(\mathbb{N}, V), t \models F \phi$ if there is $t' \ge t$ such that $(\mathbb{N}, V), t' \models \phi$
- $(\mathbb{N}, V), t \models G \phi$ if for all $t' \ge t$: $(\mathbb{N}, V), t' \models \phi$
- $(\mathbb{N}, V), t \models \phi U \psi$ if there is $t' \ge t$ such that $(\mathbb{N}, V), t' \models \psi$ and $(\mathbb{N}, V), t'' \models \phi$ for all $t'' \in [t, t' - 1]$

Example (traffic light)

- Once red, the light cannot become green immediately $G (red \rightarrow \neg X green)$ (not fulfilled in model above)
- The light becomes green eventually *F green*

(fulfilled)

- Once red, the light becomes green eventually $G (red \rightarrow F green)$ (fulfilled in shown prefix)
- Once red, the light always becomes green eventually after being yellow for some time inbetween

$$G \left[red \to X \left(red \ U \left(yellow \land X \left(yellow \ U \ green \right) \right) \right) \right]$$
(not fulfilled)

Typical Properties for Verification

Example (safety)

"Something bad will not happen"

- $G \neg (reactor_{temp} > 1000)$
- $G \neg ((x = 0) \land X X X (y = \frac{z}{x}))$

Example (liveness)

"Something good will happen"

- Frich
- F(x > 5)
- G (start \rightarrow F terminate)
- $G(trying \rightarrow F critical)$

Examples

Example (fairness)

", if something is attempted/requested infinitely often, then it will be successful/allocated infinitely often"

• $G F ready \rightarrow G F run$

(Early) Wake-Up Exercise

- Q: Show that the following expansion properties hold
 - $\phi U \psi \equiv \psi \lor (\phi \land X(\phi U \psi))$
 - $F\phi \equiv \phi \lor X F\phi$
 - $\ G\phi \equiv \phi \wedge X \ G\phi$
- A: We show this for $F\phi \equiv \phi \lor X F\phi$
 - $(\mathbb{N}, V), t \models F \phi$
 - iff there is $t' \ge t$ such that $(\mathbb{N}, V), t' \models \phi$
 - iff there is t' with t' = t or $t' \ge t + 1$ s.t. $(\mathbb{N}, V), t' \models \phi$
 - iff (\mathbb{N}, V) , $t \models \phi$ or there is t' with $t' \ge t + 1$ s.t. (\mathbb{N}, V) , $t' \models \phi$
 - iff (\mathbb{N}, V) , $t \models \phi$ or there is t' s.t. (\mathbb{N}, V) , $t' \models X F \phi$
 - $-\inf_{\text{UNIVERSITAT ZU LÜBECK}} (\mathbb{N}, V), t \vDash \phi \lor X F \phi$

Satisfiability problem (reminder)

Definition

The satisfiability problem is:

- Input: a formula ϕ
- Output: yes if there is V such that $(\mathbb{N}, V), t \models \phi$

Theorem

The satisfiability problem is PSPACE-complete

Model checking (reminder)

Definition

The model checking problem is:

- Input: a transition system S; an LTL formula ϕ
- Output: yes if all paths of S starting from an initial state of S satisfy ϕ

Theorem

The model checking problem of LTL is PSPACE-complete

Example

- Safety fulfilled? $S \vDash G \neg (C_1 \land C_2)$?
- Yes! There is no reachable state in which $\neg(C_1 \land C_2)$ holds

- (unconditioned) Liveness fulfilled? $S \models F C_1$?
- No! Blue cyclic path is counterexample

- Conditioned liveness fulfilled? $S \models G (T_1 \rightarrow F C_1)$?
- Yes! In every path: if T_1 holds, then eventually C_1 holds

- Fairness fulfilled? $S \models G F C_1$
- No! Blue cyclic path is a counterexample.

- Strong fairness fulfilled? $S \models G F T_1 \rightarrow G F C_1$
- Yes! Every path which visits T_1 infinitely often also visits C_1 infinitely often

EPISTEMIC LINEAR TEMPORAL LOGIC

A combined logic

- Epistemic linear temporal logic (ELTL):
 - Epistemic logic (with epistemic operators K_a) combined with
 - Linear temporal logic (with temporal operators X, F, G, U)
- Example of combining systems/logics
 - Conference series "Frontiers of combining systems" (Frocos)
 - Interesting (ancient Dialogue-style) paper on combining systems : P. Blackburn and M. De Rijke., 1997
 - Overview in Stanford Encyclopedia of Philosophy: Carnielli and Coniglio: Combining Logics, 2020

Models

Definition

An ELTL model is a structure $\mathcal{M} = (TL \times \mathbb{N}, (\sim_a)_{a \in AGT}, V)$ such that

- TL is a non-empty set of timelines (runs)
- For all agents a, \sim_a is an equivalence relation on $TL \times \mathbb{N}$
- $V:TL \times \mathbb{N} \to 2^{AP}$

Case of one agent a; regions denote equivalence classes of \sim_a

Think of run as a function from ticks of global clock to a global state, which is a variable assignment

INTERACTION BETWEEN KNOWLEDGE AND TIME

Axiomatisation in case of no interaction: Fusion

• All classical tautologies (and their uniform substitutions)

- $K_a(\phi \to \psi) \to (K_a \phi \to K_a \psi)$
- $K_a \phi \rightarrow \phi$
- $\widehat{K}_a \top$
- $K_a \phi \rightarrow K_a K_a \phi$
- $\neg K_a \phi \rightarrow K_a \neg K_a \phi$

FI

- $G(\phi \rightarrow \psi) \rightarrow (G\phi \rightarrow G\psi)$
- $X(\phi \to \psi) \to (X\phi \to X\psi)$
- $X \neg \phi \leftrightarrow \neg X \phi$
- $G\phi \rightarrow (\phi \wedge XG\phi)$
- $G(\phi \to X\phi) \to (\phi \land G\phi)$
- $(\phi U\psi) \rightarrow F\psi$
- $(\phi U \psi) \leftrightarrow (\psi \lor X(\phi U \psi))$

LTL

Adding interaction

For additional criteria (resulting in 96 different epistemic temporal logics) see (Halpern/Vardi, 1989)

Properties

Perfect recall/not forgetting: set of timelines agent a considers possible stays the same or decreases with time

(Here we say agent *a* considers timeline t' possible at point (t, n) if for some *n*': $(t, n) \sim_a (t', n')$)

• Formally: for all timelines t, t' and times n, n', k: if $(t, n) \sim_a (t', n')$ and $k \leq n$, then there exists $k' \leq n'$ such that $(t, k) \sim_a (t', k')$.

Counterexample Perfect recall

Properties

- No learning: set of timelines an agent *a* considers possible stays the same or increases over time.
- Formally: for all timelines t, t' and times n, n', k: if $(t, n) \sim_a (t', n')$ and $k \ge n$, then there exists $k' \ge n'$ such that $(t, k) \sim_a (t', k')$.

Corresponding properties/axioms

Synchronous	Agents know the time t (not an axiom)
Perfect recall, Synchronous	$K_a X \phi \rightarrow X K_a \phi$
Perfect recall	$K_a\phi \wedge X(K_a\psi \wedge \neg K_a\chi) \rightarrow \neg K_a \neg (K_a\phi U(K_a\psi U \neg \chi))$
No learning	$(K_a \phi \ U \ K_a \psi) \to K_a (K_a \phi \ U K_a \psi)$
No learning, Synchronous	$XK_a\phi \rightarrow K_aX\phi$

Combinations from a semantical point of view

- Input: classes of models M_1, M_2 of logics L_1, L_2
- Output: class of models *M* of combined logic
- Fusion: $M = \{ (W, R_1, R_2, V) \mid (W, R_i, V) \in M_i \}$
- Product:

 $M = \{ (W_1 \times W_2, S_1, S_2, V_1 \times V_2) \mid (W_i, R_i, V_i) \in M_i \}$ where

- $(u_1, u_2) S_1 (w_1, w_2)$ iff $u_1 R_1 w_1$ and $u_2 = w_2$;
- $(u_1, u_2) S_2 (w_1, w_2)$ iff $u_2 R_2 w_2$ and $u_1 = w_1$;

$$- (V_1 \times V_2)(p) = V_1(p) \times V_2(p)$$

 Fibring: More flexible combination based on on bitransfer-mappings h_i between worlds

Complexity of the satisfiability problem

((Reminder:

Complexity Class ELEMENTARY= $\bigcup_{k \in \mathbb{N}} k - EXP = DTIME(2^n) \cup DTIME(2^{2^n}) \cup \cdots)$

MODEL CHECKING

IM FOCUS DAS LEBEN 39

Model checking

Definition

The model checking problem is:

• Input:

FÜR INFORMATIONSSYSTEME

- an epistemic transition system S, i.e. a transition system augmented with epistemic relations $(R_a)_{a \in AGT}$ with a set of initial states;
- an LTL formula ϕ
- Output: yes if \mathcal{M}_{S} , $(\rho, 0) \models \phi^{"}$ for all paths ρ of S starting
- from an initial state of S

Possible Definition of \mathcal{M}_S

Definition

Given a transition system *S*, define $\mathcal{M}_S = (\mathrm{TL} \times \mathbb{N}, (\sim_a)_{a \in AGT}, V)$ such tat

- *TL* is the set of paths of *S* starting in an initial state of *S*;
- For all agents $a: (\rho, t) \sim_a (\rho', t')$ if
 - t = t'
 - $\rho[i]R_a\rho'[i]$ for all $i \in \{0, \dots, t\}$

(synchrony)

(perfect recall)

• $V: TL \times \mathbb{N} \to 2^{AP}$ is defined by $V(\rho, t) = \text{set of propositions true at } \rho[t]$

Notes

- Here instead of timelines we talk of runs (hence notation ρ)
- Note the difference: R_a defined on states; \sim_a defined on pairs (ρ , i)

Example

Another Possible Definition of \mathcal{M}_S

Definition

Given a transition system *S*, define $\mathcal{M}_S = (\mathrm{TL} \times \mathbb{N}, (\sim_a)_{a \in AGT}, V)$ such tat

- *TL* is the set of paths of *S* starting in an initial state of *S*;
- For all agents $a: (\rho, t) \sim_a (\rho', t')$ if
 - t = t' (synchrony)
 - $\rho[t]R_a\rho'[t]$

(synchrony) (memoryless)

• $V: TL \times \mathbb{N} \to 2^{AP}$ is defined by $V(\rho, t) = \text{set of propositions true at } \rho[t]$

Example

Theorem (Engelhardt et al. 2007)

The model checking problem for memoryless and synchronuos systems is PSPACEcomplete

Theorem (van der Meyden and Shilov, 1999)

The model checking problem under perfect recall and synchrony is

- Undecidable if CK (common knowledge operator) and U (until)
- NON ELEM-c if *U* but not CK
- PSPACE-c if CK but not U

See also (Bozzelli et al 2019) for recent results.

Uhhh, a lecture with a hopefully useful

APPENDIX

IM FOCUS DAS LEBEN 46

References

- M. Y. Vardi. From philosophical to industrial logics. In Proceedings of the 3rd Indian Conference on Logic and Its Applications, ICLA '09, pages 89–115, Berlin, Heidelberg, 2009. Springer-Verlag.
- P. Blackburn and M. De Rijke. Zooming in, zooming out. Journal of Logic, Language and Information, 6(1):5–31, 1997.
- W. Carnielli and M. E. Coniglio. Combining logics. The Stanford Encyclopedia of Philosophy (Win- ter 2008 Edition), Edward N. Zalta (ed.), <u>http://plato.stanford.edu/archives/win2008/entries/logic- combining/</u>.
- J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and time I. Lower bounds. Journal of Computer and System Sciences, 38(1):195–237, 1989.
- K. Engelhardt, P. Gammie, and R. Meyden. Model checking knowledge and linear time: Pspace cases. In Proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS '07, pages 195—211, Berlin, Heidelberg, 2007. Springer-Verlag.
- L. Bozzelli, B. Maubert, and A. Murano. The complexity of model checking knowledge and time. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI'19, pages 1595–1601. AAAI Press, 2019.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

