Intelligent Agents Dynamic Epistemic Logic - Part 1

Özgür L. Özçep
Universität zu Lübeck
Institut für Informationssysteme

Todays lecture based on

- The AAMAS 2019 Tutorial „EPISTEMIC REASONING IN MULTI-AGENT SYSTEMS", Part 4: Dynamic Epistemic Logic http://people.irisa.fr/Francois.Schwarzentruber/2019AAMAStutorial/

MODELING ACTIONS

In the verification/model checking community

*)
*)

Ma,
Ma,

Program
Program

Action $=$ an edge \rightarrow

Action $=$ an edge \rightarrow Epistemic $=\overline{ }$

In philosophy and AI

Type of mechanism of actions is important

Type of mechanism	Example
Public/private announcement	She knows you hold 5॰
Public action	Play card 5॰
Private action	Secretely remove card 5॰
Belief revision	Revise believes (entailing $\neg p$) after being told p

- There is a dedicated logic for the first type of announcementes: PAL (Public announcement logic)
- What kind of formalism to use to handle all of them?

Dynamic Epistemic Logic (DEL)

	State	Action
Classical planning	\longrightarrow has5。	pre: has5 post: has5 $0:=$ false
Logic DEL ${ }^{11,2)}$ = Kripkean models of classical planning		

1) (Baltag et al., 1998)
2) (van Ditmarsch et al, 2007)

Note:

- Start states filled white
- Implicit self loops for red and blue agent

Computing the next state: product update

Some syntactic specifications/logics

Logic	Example sentence
Game description language (Love et al. 2008), (Thielscher, 2017)	Agent a sees the game position
Flatland (Babiani et al, 2021), (Gasquet et al. 2014), (Gasquet et al, 2016),	Agent a sees agent b
Visibility atoms (Charrier et al, 2016)	Agent a sees truth value of p
Paying attention to public announcements (Bolander et al, 2016)	B_{a} payAtt $\left.b\right) \rightarrow[p!] B_{a} B_{b} p$
Asynchronous announcements (Knight et al, 2019)	$[p!]\left[\right.$ read $\left._{a}\right] K_{a} p$
Epistemic gossip (Ditmarsch et al 2017)	$\left[\right.$ call $\left.l_{a b}\right] K_{a}$ secret t_{b}

From DEL to Epistemic Logics

Syntactic Specification

Models of DEL

Epistemic temporal models

From DEL to Epistemic Logics

From DEL to Epistemic Temporal Logics

From DEL to Epistemic Temporal Logics

Timeline

Timeline

EVENT MODELS

Examples of actions

Example (public announcement of p)

Example (Private announcement of p to a)

Examples of actions

Assume that agent a transfers a marble from a basket to a box - not seen by agent b

Example (Transfer marble from basket to box)

Formal Definition

Definition

- An event model $\mathcal{E}=\left(E,\left(R_{a}^{E}\right)_{a \in A G T}\right.$, pre, post $)$ is a tuple where
- $E=\left\{e, e^{\prime}, \ldots\right\}$ is a non-empty set of possible events
- $R_{a}^{\mathcal{E}} \subseteq E \times E$ is an accessibility relation on E for agent a
- pre: $E \rightarrow \mathcal{L}_{E L}$ is a precondition function
- post: $E \times A P \rightarrow \mathcal{L}_{E L}$ is a postcondition function
- A pair (\mathcal{E}, e) is called an action where e represents the actual event of (\mathcal{E}, e)
- A pair $\left(\mathcal{E}, E_{0}\right)$, for $E_{0} \subseteq E$, is a non-deterministic action. The set E_{0} is the set of triggerable events.

Example (Deterministic action = single-pointed event model)

Example (Non-deterministic action = multi-pointed event model)

Public Actions

Definition

An action is said to be public if the accessibility relations in the underlying event model are self-loops

Example (public)

Non-ontic actions

Definition

An action is said to be non - ontic if the postconditions are trivial: for all $e \in E$, for all propositions $p \in A P$: $\operatorname{post}(e, p)=p$

Example (non-ontic)

Effect of a public announcement

Publicly announcing ϕ leads to keeping only the ϕ worlds.

Can try this out on several examples in Hintikka's world.

Muddy children Puzzle

„Three children (a, b, c) are playing in the mud. Father calls the children to the house, arranging them in a semicircle so that each child can clearly see every other child. "At least one of you has mud on your forehead", says Father. The children look around, each examining every other child's forehead. Of course, no child can examine his or her own. Father continues, "If you know whether your forehead is dirty, then step forward now". No child steps forward. Father repeats himself a second time, "If you know whether your forehead is dirty, then step forward now". Some (a, b) but not all of the children step forward. Father repeats himself a third time, "If you know whether your forehead is dirty, then step forward now". All of the remaining children step forward. Explain why a,b stepped forward after two requests. (In general show: if m children are muddy then after m requests of the father those will step forward"

As promised we reconsider this puzzle in the context of dynamic epistemic logic

Muddy children: solution

- Children: Anne (a), Bill (b), Cath (c)
- Actual world: a, b muddy $\left(m_{a}, m_{b}\right), c$ is not $\left(\neg m_{c}\right)$
- a argues:
- $m_{b}, \neg m_{c}$
- If $\neg m_{a}$ were the case, then b would see noone with mud on forehead and hence infer that m_{b} (due to the announcement of the father that someone has mud).
- But b did not step forward so he does not know whether m_{b}
- Therefore a steps forward next time
- b argues similarly

State 010 abbreviates
$\neg m_{a} \wedge m_{b} \wedge \neg m_{c}$, i.e.:
a has no mud;
b has mud;
c has no mud

Actual state: 110

- Here, everybody knows that there is someone with mud on his face
- But this is not common knowledge: a considers possible 010 where b considers 000 possible

State 010 abbreviates
$\neg m_{a} \wedge m_{b} \wedge \neg m_{c}$, i.e.:
a has no mud;
b has mud;
c has no mud

So world 000 gets eliminated

Father announces: "One of you has mud"

No child steps forward:
$a, b, c:$,I do not know whether I have mud on my face"

For example:

- $100 \vDash K_{a} m_{a}$
- Hence 100 gets
eliminated
$\neg\left(K_{a} m_{a} \vee K_{a} \neg m_{a}\right) \wedge \neg\left(K_{b} m_{b} \vee\right.$
$\left.K_{b} \neg m_{b}\right) \wedge \neg\left(K_{c} m_{c} \vee K_{c} \neg m_{c}\right)$
$011 \longrightarrow{ }^{110}$
b

$\underline{110}$

Computing the next state: product update

Formal Definition of Update Products

Definition

- Given
- $\mathcal{M}=\left(W,\left\{R_{a}\right\}_{a \in A G T}, V\right) \quad$ (epistemic model)
- $\mathcal{E}=\left(E,\left(R_{a}^{E}\right)_{a \in A G T}, p r e, p o s t\right) \quad$ (event model)
- define the update product of M and \mathcal{E} as the epistemic model $\mathcal{M} \otimes \mathcal{E}=\left(W^{\otimes},\left\{R_{a}^{\otimes}\right\}_{a \in A G T^{\prime}} V^{\otimes}\right)$ where
- $W^{\otimes}=\{(w, e) \in W \times E \mid \mathcal{M}, w \vDash \operatorname{pre}(e)\}$
- $R_{a}^{\otimes}=\left\{\left((w, e),\left(w^{\prime}, e^{\prime}\right)\right) \in W^{\otimes} \mid w R_{a} w^{\prime}\right.$ and $\left.e R_{a}^{\varepsilon} e^{\prime}\right\}$
- $\mathrm{V}^{\otimes}((w, e))=\{p \in A P \mid \mathcal{M}, w \vDash \operatorname{post}(e, p)\}$

Pointed Update Products

Definition

The successor state of an epistemic state (\mathcal{M}, w) by action (\mathcal{E}, e) is

$$
(\mathcal{M}, w) \otimes(\mathcal{E}, e)=(\mathcal{M} \otimes \mathcal{E},(w, e))
$$

if $(\mathcal{M}, w) \vDash \operatorname{pre}(e)$, otherwise it is undefined.

Notation

- Write e for (\mathcal{E}, e)
- Write `we' for (w, e)
- Write $\mathcal{M} \otimes \mathcal{E}^{n}$ for $\mathcal{M} \otimes \mathcal{E} \otimes \mathcal{E} \ldots \otimes \mathcal{E}$ (n-times)
- Write $w e_{1} \ldots e_{n} \vDash \phi$ for $\mathcal{M} \otimes \mathcal{E}^{n}, w e_{1} \ldots e_{n} \vDash \phi$,

Agent a gets private message about its mud

Example (Update Product)

$$
\mathrm{a}, \mathrm{~b}(\text { (0) } \mathrm{a}
$$

Dynamic epistemic logic $\mathcal{L}_{\text {DELCK }}$

Definition

The language $\mathcal{L}_{D E L C K}$ extends $\mathcal{L}_{E L C K}$ with dynamic (possibility) modalities $<\mathcal{E}, E_{0}>$ according to the following BNF:

$$
\phi::=\mathrm{T}|p| \neg \phi|(\phi \vee \phi)| K_{a} \phi\left|C_{G} \phi\right|<\mathcal{E}, E_{0}>\phi
$$

Definition

The modelling relation \vDash for $\mathcal{L}_{E L C K}$ is extended with the following clause:
$\mathcal{M}, w \vDash<\mathcal{E}, E_{0}>\phi$ iff there exists $e \in E_{0}$ such that
$\mathcal{M}, w \vDash \operatorname{pre}(e)$ and $\mathcal{M} \otimes \mathcal{E},(w, e) \vDash \phi$

Dual operator

Definition (Dual operator)

$$
\left[\varepsilon, E_{0}\right] \phi:=\neg<\varepsilon, E_{0}>\neg \phi
$$

The induced semantics is
$\mathcal{M}, w \vDash\left[\mathcal{E}, E_{0}\right] \phi$ iff forall e $\in E_{0}$ we have: If $\mathcal{M}, w \vDash \operatorname{pre}(e)$ then $\mathcal{M} \otimes \mathcal{E},(w, e) \vDash \phi$

Wake-up: Group announcements

- Q: Consider the following secure group-announcements
- Agents: $A G T=\{a, b, c\}$
- ϕ announced publicly within group $\{a, b\}$;
c does not even know about this announcement

1. How to model this kind of announcement?
2. Once can show that the anouncement creates common knowledge for $\{a, b\}$ w.r.t. ϕ if ϕ is atomic. Give a counterexample for non-atomic ϕ
3. Model the fact that c does not know or even suspect that the announcement happened
4. How would you change the model of 1 . to model that C is suspicious?

Answers

1. This is the model $(\mathcal{E},\{e\})$ of the secure announcement

2. Creation of common knowledge means: $(\mathcal{M}, w) \vDash<\mathcal{E},\{e\}>C_{\{a, b\}} \phi$. This does not hold if, e.g., $\phi=\widehat{K_{a}} p$. Take the simplest case of one agent a.

After public announcement: $\widehat{K_{a}} p$

$$
{\stackrel{D}{\tau p, \overparen{\mathbb{K}_{a}} p} p}
$$

Answers

3. c does not know or even suspect that the announcement happened: $\vDash K_{c} \phi \leftrightarrow<\mathcal{E},\{e\}>K_{C} \phi$
4.

Expressivity and Succinctness

Theorem (Baltag 98)

DEL and EL have the same expressivity
Proof idea: Remove dynamic operators $[\mathcal{E}, E]$ as demonstrated here for public announcements:

- Rembember
[$\phi!] \psi$: if ϕ holds then after having anounced ϕ publicly, ψ holds.
- [$\phi!] p$:
- $[\phi!](\psi \wedge \chi)$:
- [$\phi!] \neg \psi$:
- [$\phi!] K_{a} \psi$:
- $[\phi!][\psi!] \chi:$
says the same as ($\phi \rightarrow p$) says the same as $([\phi!] \psi \wedge[\phi!] \chi)$
says the same as ($\phi \rightarrow \neg[\phi!] \psi)$
says the same as ($\phi \rightarrow K_{a}[\phi!] \psi$)
says the same as ($[\phi \wedge[\phi!] \psi!] \chi)$

Theorem (Lutz 2006)

APPENDIX

References

- A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements, common knowledge, and private suspicions. In Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge, TARK '98, pages 43-56, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.
- H. P. van Ditmarsch, W. van der Hoek, and B. P. Kooi. Dynamic epistemic logic and knowledge puzzles. In U. Priss, S. Polovina, and R. Hill, editors, Conceptual Structures: Knowledge Architectures for Smart Applications, 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22-27, 2007, Proceedings, volume 4604 of Lecture Notes in Computer Science, pages 45-58. Springer, 2007
- N. Love, T. Hinrich, D. Haley, E. Schkufza, and M. Genesereth. General game playing: Game descrip- tion language specification. report LG-2006-01, Stanford Logic Group, Computer Science Department, Stanford University, March 2008.
- M. Thielscher. Gdl-iii: A description language for epistemic general game playing. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 1276-1282, 2017.
- P. Balbiani, O. Gasquet, and F. Schwarzentruber. Agents that look at one another. Logic Journal fo the IGPL, 21(3):438-467, 122012.

References

- O. Gasquet, V. Goranko, and F. Schwarzentruber. Big brother logic: logical modeling and reasoning about agents equipped with surveillance cameras in the plane. In Proceedings of AAMAS '14, 2014.
- O. Gasquet, V. Goranko, and F. Schwarzentruber. Big brother logic: visual-epistemic reasoning in stationary multi-agent systems. Autonomous Agents and Multi-Agent Systems, 30(5):793-825, 2016.
- T. Charrier, A. Herzig, E. Lorini, F. Maffre, and F. Schwarzentruber. Building epistemic logic from observations and public announcements. In C. Baral, J. P. Delgrande, and F. Wolter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016, pages 268-277. AAAI Press, 2016.
- T. Bolander, H. van Ditmarsch, A. Herzig, E. Lorini, P. Pardo, and F. Schwarzentruber. Announcements to attentive agents. J. Log. Lang. Inf., 25(1):1-35, 2016.
- S. Knight, B. Maubert, and F. Schwarzentruber. Reasoning about knowledge and messages in asyn- chronous multi-agent systems. Mathematical Structures in Computer Science, 29:127-168, 2019.
- H. van Ditmarsch, J. van Eijck, P. Pardo, R. Ramezanian, and F. Schwarzentruber. Epistemic protocols for dynamic gossip. Journal of Applied Logic, 20:1-31, 2017.
- C. Lutz. Complexity and succinctness of public announcement logic. In Proceedings of the Fifth Inter- national Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS '06, pages 137-143, New York, NY, USA, 2006. Association for Computing Machinery.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

