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Todays lecture based on 

• Slides of talk „Justification Logic“ of Thomas Studer, 2016 
https://home.inf.unibe.ch/~tstuder/papers/Studer_Iran_16_JL.pdf

• Slides of two talks by N. Kotsani on justification logic availabe at 
– http://corelab.ntua.gr/~nkotsani/slides/JL_session01.pdf

– http://corelab.ntua.gr/~nkotsani/slides/JL_session02.pdf

• Parts of course CS154, „Polynomial Time with Oracles“ by Omer Reingold
https://omereingold.files.wordpress.com/2020/10/37p-polynomial-
hierarchy.pptx
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MOTIVATION
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Two Traditions

Modal logic adds a new connective □ to the language of
logic. Two traditions: 

• Epistemic logic:
□𝐴 means „𝐴 is known / believed“ 

• Proof theory:
□𝐴 means „𝐴 is provable in system 𝑆“ 
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Problem with Epistemic Tradition

• We saw: defining „Knowledge is justified true belief“ 
according to Plato is problematic

• ⇒ Gettier Paradoxa

• No explicit treatment of justifications in modal logic
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Recap: Gettiers two counterexamples

Scenario 1

• Smith and Jones apply for a job

• Smith believes (justifiably):  
(p) Jones will get the Job &  

Jones has ten coins in his pocket

• Smith believes also in the entailed
assertion: 
(r) The one who gets the job has ten
coins in his pocket.  

• Coincidence : Smith gets the job
and Smith has ten coins in his
pocket. 

• Smith „knew“ (r) only by chance

Scenario 2

• Smith justifiably believes
(p) Jones owns a Ford

• Smith also believes in entailed
assertion

• (r) = (p or q): Jones owns a Ford, 
or Brown lives in Barcelona 
(Though Smith has no
justification for q)

• Coincidence: Jones does not 
own Ford, but Brown lives in 
Barcelona

• Smith „knew“ (r)  only by
chance
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General idea:   decouple justification and truth conditions of propositional 
content of belief



Recap: General remarks

• What is a justification at all? 

– „Solutions“ to Gettier‘s problem deal with this problem

– A formal treatmant of justification similar to provability logic: 
Justification Logic (Artemov 2008) -> Today

• Gettier‘s problem „formalized“

– Suppose logic of belief and justification such that
(*)  𝜙 → 𝜓 ⊢ ℎ𝑎𝑠𝐽𝑢𝑠𝑡 𝑎, 𝜙 → ℎ𝑎𝑠𝐽𝑢𝑠𝑡 𝑎, 𝜓

– Suppose: 𝑎 wrongly but justifiably believes in 𝑝
¬𝑝 ∧ 𝐵5𝑝 ∧ ℎ𝑎𝑠𝐽𝑢𝑠𝑡(𝑎, 𝑝)

– By M(𝐵5): 𝐵5(𝑝 ∨ 𝑞 ) ∧ 𝐵5(𝑝 ∨ ¬𝑞)
– By (*):   ℎ𝑎𝑠𝐽𝑢𝑠𝑡(𝑎, 𝑝 ∨ 𝑞 ) ∧ hasJust(𝑎, (𝑝 ∨ ¬𝑞))
– Hence: ⊨ 𝐵5𝑝 ∧ ℎ𝑎𝑠𝐽𝑢𝑠𝑡 𝑎, 𝑝 → (𝐾5 𝑝 ∨ 𝑞 ∨ 𝐾5(𝑝 ∨ ¬ 𝑞))
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Problems of proof theoretic tradition

• □ ⊥ → ⊥ is an axiom

• So ¬□ ⊥ is provable

• By necessication:   □¬□ ⊥ is provable

• □ ⊥ means system S proves ⊥
• ¬□ ⊥ means S does not proves⊥, i.e. 
¬□ ⊥ means S is consistent

• □¬□ ⊥ means S proves that S is consistent

• Famous result of Gödel: if S has a certain strength, it
cannot prove its own consistency
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Justification Logic

• Explicitly account for justifications of assertions

• A book-length treatment of justification logic by one of
the founders (Artemov/Fitting 19) 
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𝐴 ist justified with 𝑟 𝑟 ∶ 𝐴
𝐴 → 𝐵 is justified with 𝑠 𝑠 ∶ 𝐴 → 𝐵
𝐵 is justified by 𝑠, 𝑟 𝑠 ⋅ 𝑟 ∶ 𝐵

Example



SYNTAX AND CALCULUS
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Syntax of the logic of proofs

• The logic of proofs 𝐿𝑃HI is the justification counterpart
of the modal logic S4 
(this statement will be made precise in the following)

• LP was suggested by Gödel (Gödel 1995) and
formalized by Artemov
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Definition (Syntax 𝐿𝑃HI)
• Justification terms 𝑇𝑚
𝑡 ∷= 𝑥 ∣ 𝑐 ∣ 𝑡 ⋅ 𝑡 ∣ 𝑡 + 𝑡 ∣ ! 𝑡

• Formulas ℒT
𝐴 ∷= 𝑝 ∣ ¬A ∣ 𝐴 → 𝐴 ∣ 𝑡: 𝐴



Axioms for LP
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Definition (Axioms for LP) 
• (CL)    All propositional tautologies
• (J)       𝑡: 𝐴 → 𝐵 → 𝑠: 𝐴 → 𝑡 ⋅ 𝑠 : 𝐵 („application“)          

• (+)     𝑡: 𝐴 → 𝑡 + 𝑠 : 𝐴, 𝑠: 𝐴 → 𝑡 + 𝑠 : 𝐴
(„sum/monotonicity“) 

• (jt)     𝑡: 𝐴 → 𝐴 („factivity“)

• (j4)     𝑡: 𝐴 → ! 𝑡: 𝑡: 𝐴 („proof checker“)
Notes:
• Application rule as in (typed) lambda calculus
• Can think of 𝑡 + 𝑠 as the whole containing parts 𝑡, 𝑠
• „!“ is an operator for positive introspection (knowing that one knows)

justification ! 𝑡 for 𝑡: 𝐴 can be thought of meta-evidence such as the evidence
of a proof checker

• Different relevant (weaker) systems follow by deleting one or other axiom
• Eg.: Factivity may be dropped when focus is rather on beliefs (not 

knowledge) 



Wake-Up Question

• Q: Consider the logic J0 given as
(J), (+), propositional axioms + modus ponens. Sometimes this is

characterized as the logic of a skeptical agent. In which sense is
this true?

• A: (according to SEP entry (Artemov/Fitting 21))

– „𝖩0 is the logic of general (not necessarily factive) justifications
for an absolutely skeptical agent for whom no formula is
provably justified, i.e., 𝖩0 does not derive t:F for any t and F. 
Such an agent is, however, capable of drawing relative 
justification conclusions of the form

– If x:A,y:B,…,z:C hold, then t:F.

– With this capacity 𝖩0 is able to adequately emulate many other
Justification Logic systems in its language.
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Calculus für 𝐿𝑃HI
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Definition (Constant specification)
A constant specifiction CS is any subset

𝐶𝑆 ⊆ 𝑐, 𝐴 ∣ 𝑐 is a constant and 𝐴 is an axiom

Definition (Calculus für 𝐿𝑃HI(
• Axioms for LP (mentioned before)
• Ruleofmodusponens:         From𝐴andA→ 𝐵 infer 𝐵
• Ruleofnecessitation:              From 𝑐,𝐴 ∈ 𝐶𝑆 infer𝑐:𝐴



The role of constant specifications

• Principle of Logical Awareness
„all (logical) axioms are justified“

• This applies only for ideal agents

• Constants specifications weaken this principle:  
„all axioms occuring CS are justified“ 
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Extended example
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Example (Justified version of A ∨B → □(𝐴 ∨𝐵))
• Assume 𝐿𝑃HI with

𝑎, 𝐴 → 𝐴 ∨ 𝐵 ∈ 𝐶𝑆 and 𝑏, 𝐵 → 𝐴 ∨ 𝐵 ∈ 𝐶𝑆
• With necessitation
LPfg ⊢ 𝑎: 𝐴 → 𝐴 ∨ 𝐵 and LPfg ⊢ 𝑏: 𝐵 → 𝐴 ∨ 𝐵

• With (J) and (MP) we obtain
LPfg ⊢ 𝑥: 𝐴 → (𝑎 ⋅ 𝑥) 𝐴 ∨ 𝐵 and LPfg⊢ 𝑦: 𝐵 → (𝑏 ⋅ 𝑦) 𝐴 ∨ 𝐵

• With (+) we have
LPfg ⊢ 𝑎 ⋅ 𝑥 ∶ 𝐴 ∨ 𝐵 → 𝑎 ⋅ 𝑥 + 𝑏 ⋅ 𝑦 ∶ (𝐴 ∨ 𝐵) and
LPfg ⊢ 𝑏 ⋅ 𝑦 ∶ 𝐴 ∨ 𝐵 → 𝑎 ⋅ 𝑥 + 𝑏 ⋅ 𝑦 ∶ 𝐴 ∨ 𝐵

• Using propositional axioms one obtains
LPfg ⊢ 𝑥: 𝐴 ∨ 𝑦: 𝐵 → 𝑎 ⋅ 𝑥 + 𝑏 ⋅ 𝑦 ∶ (𝐴 ∨ 𝐵)

Recap
• Necessitation:    From 𝑐,𝐴 ∈ 𝐶𝑆 infer𝑐:𝐴
• (J)       𝑡: 𝐴 → 𝐵 → 𝑠: 𝐴 → 𝑡 ⋅ 𝑠 : 𝐵
• (+)     𝑡: 𝐴 → 𝑡 + 𝑠 : 𝐴, 𝑠: 𝐴 → 𝑡 + 𝑠 : 𝐴



Internalization
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Definition (axiomatical appropriate) 
A constant specification 𝐶𝑆 for LP is called axiomatically appropriate
if for each for each axiom of LP there is a constant 𝑐 such that 𝑐, 𝐹
∈ 𝐶𝑆

Lemma  (Internalization) 
Let 𝐶𝑆 be an axiomatically appropriate constant specification.

For arbitrary formulas 𝐴, 𝐵j, … , 𝐵l:
If 𝐵j, … , 𝐵l ⊢mnop 𝐴 , then there is a term 𝑡 such that

𝑥j: 𝐵j, … , 𝑥l: 𝐵l ⊢mnop 𝑡: 𝐴

for fresh variables 𝑥j, . . . , 𝑥l.



Forgetful Projection
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Definition (forgetful projection) 
The mapping ∘ of forgetful projection from justified formulas to modal 
formulas is defined as follows: 
• 𝑃∘ = 𝑃 for 𝑃 atomic
• (¬ 𝐴)∘= ¬𝐴∘
• ( 𝐴 → 𝐵 )∘= 𝐴∘ → 𝐵∘
• 𝑡: 𝐴 ∘ = □𝐴∘

Lemma  (forgetful projection) 
For any constant specification 𝐶𝑆 and any formula 𝐹 we have that
𝐿𝑃HI ⊢ 𝐹 entails 𝑆4 ⊢ 𝐹∘



Realization
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Definition (justifications‘ realization) 
We say a justification logic 𝐿𝑃HI realizes S4 if there is a 
realization 𝑟 such that for any formula A we have
𝑆4 ⊢ 𝐴 implies 𝐿𝑃HI ⊢ 𝑟(𝐴)

Definition (justifications‘ realization) 
A realization is a mapping 𝑟 from modal to justified formulas
such that 𝑟 𝐴

∘
= 𝐴



Realization Theorem
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Definition (Schematic CS) 
We say that a constant specification 𝐶𝑆 is schematic if it satisfies the
following: 
for each constant 𝑐, the set of axioms 𝐴 𝑐, 𝐴 ∈ 𝐶𝑆} consists of all 
instances of one or several (possibly zero) axiom schemes of LP. 

Theorem (realization) 
Let 𝐶𝑆 be an axiomatically appropriate and schematic constant
specification. Then the logic 𝐿𝑃HI realizes S4 , i.e., there exists a 
realization 𝑟 such that for all formulas 𝐴

𝑆4 ⊢ 𝐴 entails 𝐿𝑃HI ⊢ 𝑟(𝐴)



SEMANTICS
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Arithmetical Semantics

• Originally, 𝐿𝑃HI was developed to provide classical
provability semantics for intuitionistic logic

• Arithmetical Semantics for 𝐿𝑃HI
– Justification terms interpreted as proofs in Peano

arithmetic

– Operations on terms correspond to computable
operations on proofs in Peano Arithmetics (PA)
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Intuitionistic Logic S4 JL CL + proofs
Gödel realization Arithm. semantics



Intuitionism

• Intuitionistic logic is an offshoot of mathematical
intuitionism

• In classical mathematics: Showing existence of an 
object does not mean finding a verifier

• Interesting debate in philosophy of mathematics
whether non-constructive proofs are acceptable

• Mathematical Intuitionism: field allowing only
constructive proofs
– truth = provable = constructively provable

– Deviates in many aspects from classical logic
• Double Negation elimination ¬¬ 𝐴 ⊢ 𝐴 does not hold

• Tertium non datur ⊢ ¬𝐴 ∨ 𝐴 does not hold 
23



Intuitionism

L.E.J. Brouwer (1881 to 1966) Fun facts 

• Guru of intuitionism

• Irony of history: Proved
many interesting results
in classical (non-
constructive) mathematics
(Brouwer's fixed point
theorem)
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Self-referentiality

• Gödel‘s famous incompletess result for PA uses self-
references: „I am not provable“
– See also (Halbach/Visser 14a,b) for an overview of self

reference in arithmetics

• In modal logic (reading □ as „is provable“) such self-
referentiality is not easy to define

• Justification logic helps

25



Self-referentiality
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Definition (Self-referential CS) 
A constant specification 𝐶𝑆 is called self-referential if 𝑐, 𝐴 ∈ 𝐶𝑆 for
some axiom 𝐴 that contains at least one occurrence of the constant 𝑐. 

Lemma
Consider the S4-theorem 𝐺 ∶= ¬□((𝑃 → □𝑃 ) → ⊥)
and let 𝐹 be any realization of 𝐺.
If 𝐿𝑃HI ⊢ 𝐹 , then 𝐶𝑆 must be self-referential. 

• S4 and 𝐿𝑃HI describe self-referential knowledge. 
• That means if 𝐿𝑃HI realizes S4 for some constant specification 𝐶𝑆, 
then that constant specification must be self-referential. 



Towards a semantics I
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Definition (Basic Evaluation) 
A basic evaluation ∗ for 𝐿𝑃HI is a function defined on propositions and
terms ∗∶ 𝑃𝑟𝑜𝑝 → {0,1} and    ∗: 𝑇𝑚 → 𝑃𝑜𝑤(ℒT) such that
• 𝐹 ∈ 𝑠 · 𝑡 ∗ if  (𝐺 → 𝐹) ∈ 𝑠∗ and 𝐺 ∈ 𝑡∗ for some 𝐺
• 𝐹 ∈ 𝑠 + 𝑡 ∗ if 𝐹 ∈ 𝑠∗ or 𝐹 ∈ 𝑡∗
• 𝐹 ∈ 𝑡∗ if (𝑡, 𝐹 ) ∈ 𝐶𝑆
• 𝑠: 𝐹 ∈ ! 𝑠 ∗ if 𝐹 ∈ 𝑠∗



Towards a semantics II
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Definition (Truth in quasimodel) 
• ℳ,𝑤 ⊨ 𝑝 iff 𝑝~∗ = 1 for 𝑝 ∈ 𝑃𝑟𝑜𝑝;
• ℳ,𝑤 ⊨ 𝐹 → 𝐺 iff not ℳ,𝑤 ⊨ 𝐹 or ℳ,𝑤 ⊨ 𝐺
• ℳ,𝑤 ⊨ ¬𝐹 iff not ℳ,𝑤 ⊨ 𝐹
• ℳ,𝑤 ⊨ 𝑡: 𝐹 iff 𝐹 ∈ 𝑡~∗

Definition (quasimodel) 
A quasimodel is a tupleℳ = (𝑊,𝑅,∗)with
• a domain of possible worlds 𝑊 ≠ ∅,
• an accessibility relation 𝑅 ⊆ 𝑊 ×𝑊
• And an evaluation functions ∗ mapping each world 𝑤 ∈ 𝑊 to a 

basic evaluation ∗�



Towards a semantics III: Model
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Definition (Modular Model) 
A modular model ℳ = (𝑊,𝑅,∗) is a quasimodel with
1. t~∗ ⊆ □~ for all terms 𝑡 ∈ 𝑇𝑚 and𝑤 ∈ 𝑊
2. 𝑅 is reflexive
3. 𝑅 is transitive 

Theorem (Soundness and Completeness)
For all formulas F ∈ ℒT and let 𝐹 be any realization of 𝐺.
𝐿𝑃HI ⊢ 𝐹 iff ℳ ⊨ 𝐹 for all modular models ℳ

Given ℳ = (𝑊,𝑅,∗) and𝑤 ∈ 𝑊,we de�ine
□~ ≔ {𝐹 ∈ ℒT ∣ ℳ, 𝑣 ⊨ 𝐹 whenever 𝑅(𝑤, 𝑣)}

= formulae true at all successors of𝑤



ALGORITHMIC PROBLEMS
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• In modal logic, decidability is a consequence of the
finite model property.

• For 𝐿𝑃HI the situation is more complicated since CS 
usually is infinite. 
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• A decidable CS is not sufficient:

Theorem
There exists a decidable constant specification 𝐶𝑆 such that 𝐿𝑃HI is undecidable. 

Theorem 

𝐿𝑃HI is decidable for decidable schematic constant specifications 𝐶𝑆. 



Complexity
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Definition
A constant specification is called schematically injective if it is schematic and each

constant justifies no more that one axiom scheme. 

Theorem
Let 𝐶𝑆 be a schematic constant specification.
The problem whether 𝐿𝑃HI ⊢ 𝑡: 𝐵 is in NP 

Theorem
Let 𝐶𝑆 be a schematically injective and axiomatically appropriate
constant specification. The derivability problem for 𝐿𝑃HI is Π�

�

− 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒



Reminder: Polynomical Hierarchy

• Two possible definitions, either based on oracle
machines (considered here)  or quantified boolean
formula

• How to think about oracles?
– Think in terms of Turing Machine pseudocode or a subroutine

– An oracle Turing machine M with oracle 𝐵 � Γ∗ lets you include the 
following kind of branching instructions:

“if 𝑧 ∈ 𝐵 then <do something> 
else <do something else>”

where 𝑧 is some string defined earlier in pseudocode. 

– By definition, the oracle TM can always check the condition (𝑧 ∈ 𝐵) in one 
step
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Some Complexity Classes With Oracles

• 𝑃𝐵 = { 𝐿 | 𝐿 can be decided by some polynomial-
time TM with an oracle for 𝐵 }

• 𝑃𝑆𝐴𝑇= the class of languages decidable in 
polynomial time with an oracle for SAT

• 𝑃𝑁𝑃 = the class of languages decidable by some
polynomial-time oracle TM with an oracle for some 
𝐵 in NP



Wake-Up Exercise

• Q: Is 𝑃𝑆𝐴𝑇 Í 𝑃�n?
• A: Yes. By definition…

• Q: Is PNP Í PSAT?

• A: Yes! Every NP language can be reduced to SAT!

– For every poly-time TM M with oracle 𝐵 ∈ 𝑁𝑃, we 
can simulate every query z to oracle 𝐵 by reducing 𝑧
to a formula 𝜙 in poly-time, then asking an oracle for 
SAT instead
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Polynomial Hierarchy (PH)
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Definition
• Δ�n ≔ Σ�n ≔ Π�n ≔ 𝑃

• Δ��jn ≔ 𝑃 ¡
¢

• Σ��jn ≔ 𝑁𝑃 ¡
¢

• Π��jn ≔ 𝑐𝑜𝑁𝑃 ¡
¢

Relations within the heirarchy

Example: Π�
� = 𝑐𝑜𝑁𝑃 £¢ = 𝑐𝑜𝑁𝑃�n¢

Theorem

𝑃𝐻 ≔ ⋃ Σ�
� ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸

Open:  PH = PSPACE



RECONSIDERING GETTIER
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Recap: Gettiers two counterexamples

Scenario 1

• Smith and Jones apply for a job

• Smith believes (justifiably):  
(p) Jones will get the Job &  

Jones has ten coins in his pocket

• Smith believes also in the entailed
assertion: 
(r) The one who gets the job has ten
coins in his pocket.  

• Coincidence : Smith gets the job
and Smith has ten coins in his
pocket. 

• Smith „knew“ (r) only by chance

Scenario 2

• Smith justifiably believes
(p) Jones owns a Ford

• Smith also believes in entailed
assertion

• (r) = (p or q): Jones owns a Ford, 
or Brown lives in Barcelona 
(Though Smith has no
justification for q)

• Coincidence: Jones does not 
own Ford, but Brown lives in 
Barcelona

• Smith „knew“ (r)  only by
chance
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General idea:   decouple justification and truth conditions of propositional 
content of belief



Gettier Examples in Justification Logic

Main intention with justification logic (according to
Artemov 08) w.r.t. Gettier paradoxa

• Show that Gettier reasoning is formally correct

• Thereby identify (logical) principles in the reasoning
– These have lead to the axioms in LP  

• Gettier examples inconsistent within Justification Logic
systems of factive justifications (factivity axiom)

• Can be used also for analyzing approaches that try to
resolve the paradox: 
Justified True Belief + 4th Condition

(”no-Gettier-problem condition”) 
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Principles Involved in Gettier Examples

• Gettier uses a version of the epistemic closure principle, 
closure of justification under logical consequence: 

• Holds for all justification logic systems due to
– Internalization: If ⊢ 𝐹, then there is a t such that ⊢ 𝑡 ∶ 𝐹
– Application axiom: 𝑡: 𝐴 → 𝐵 → 𝑠: 𝐴 → 𝑡 ⋅ 𝑠 : 𝐵
– Modus ponens

40

If Smith is justified in believing Q For some 𝑡, 𝑡: 𝑃
and Smith deduces Q from P 𝑃 → 𝑄
Then Smith is justified in believing Q For some 𝑡, 𝑡: 𝑄



Goldman‘s reliabilism→ Factivity

• Goldman (1967) offered the fourth condition to be
added to the Justified True Belief definition of
knowledge, according to which: 

• ”A subjects belief is justified only if the truth of a belief 
has caused the subject to have that belief, and for a 
justified true belief to count as knowledge, the subject
must also be able to correctly reconstruct (mentally) 
that causal chain.” 

• A situation t justifies F for some t only if F is true, which
provides the Factivity Axiom for knowledge-producing
justifications: 

• Factivity axiom: 𝑡: 𝐴 → 𝐴
41



Lehrer/Paxson’s indefeasibility→monotonicity

• Lehrer and Paxson (1969) offered the following
’indefeasibility condition’: 
”There is no further truth which, had the subject known
it, would have defeated [subjects] present justification
for the belief.”

• Criticism of this condition: a defeater fact cannot be
made precise enough to rule out the Gettier cases
without also ruling out a priori cases of knowledge
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Lehrer/Paxson’s indefeasibility→monotonicity

• „there is no justification“ 

• => „for any further evidence, it is not the case“

• 𝑠: 𝐹:  „present justification for the belief“
given 𝑠: 𝐹, for any evidence 𝑡, it is not the case that 𝑡
would have defeated 𝑠: 𝐹

• 𝑠 + 𝑡: the joint evidence of 𝑠 and 𝑡: 
• if 𝑠: 𝐹 holds, then 𝑠 + 𝑡, is also an evidence for 𝐹
• 𝑠: 𝐹 → (𝑠 + 𝑡): 𝐹
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Gettier‘s implicit assumptions

• In the first Gettier example we have the following
assumptions which cannot hold: 

• 𝐽(𝑆𝑚𝑖𝑡ℎ), 𝐶(𝑆𝑚𝑖𝑡ℎ), 𝐶(𝐽𝑜𝑛𝑒𝑠), ¬𝐽(𝐽𝑜𝑛𝑒𝑠), (*)
𝑢: [ 𝐽𝑜𝑛𝑒𝑠 = 𝜄𝑥 𝐽 𝑥 ∧ 𝐶(𝐽𝑜𝑛𝑒𝑠)].

• Notation
– 𝐽 𝑥 = 𝑥 gets the job; 

– 𝐶 𝑥 = 𝑥 has coins in his pocket

– 𝜄𝑥 𝑆 𝑥 = the 𝑥 that has the property S 𝑥
(a so-called definite description)
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Gettier‘s implicit assumptions

• In the firt Gettier example we have the following
assumptions which cannot hold: 

• 𝐽(𝑆𝑚𝑖𝑡ℎ), 𝐶(𝑆𝑚𝑖𝑡ℎ), 𝐶(𝐽𝑜𝑛𝑒𝑠), ¬𝐽(𝐽𝑜𝑛𝑒𝑠), (*)
𝑢: [(𝐽𝑜𝑛𝑒𝑠 = 𝜄𝑥 𝐽(𝑥)) + 𝐶(𝐽𝑜𝑛𝑒𝑠)].

• With factivity we get a contradiction: 

– 𝑢: [ 𝐽𝑜𝑛𝑒𝑠 = 𝜄𝑥 𝐽 𝑥 ∧ 𝐶(𝐽𝑜𝑛𝑒𝑠)] from (*)

– 𝐽𝑜𝑛𝑒𝑠 = 𝜄𝑥 𝐽(𝑥), Factivity and some
propositional logic; 

– 𝐽𝑜𝑛𝑒𝑠 = 𝜄𝑥 𝐽 𝑥 → 𝐽(𝐽𝑜𝑛𝑒𝑠), natural property of
definite descrs; 

– 𝐽 (𝐽𝑜𝑛𝑒𝑠) by Modus Ponens. 
This contradicts the condition ¬ 𝐽 (𝐽𝑜𝑛𝑒𝑠) from (*). 
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APPENDIX
Uhhh, a lecture with a hopefully useful
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Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as 
emphasizing some aspects 

• Examples are given with standard orange with possibly light 
orange frame 

• Comments and notes

• Algorithms
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