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Todays and next weeks lecture based on

Lecture notes ,Fourier Analysis of Boolean Functions, Witer term 16/17*
M. Schweighofer
http://www.math.uni-konstanz.de/~schweigh/

Ryan O’Donnell: Fourier Analyis of Boolean Functions., CUP 2014.
Free PDF oavailable at
https://arxiv.org/pdf/2105.10386.pdf

Talk of Ronald de Wolf: ,Fourier analysis of Boolean functions: Some
beautiful examples” available at
https://nvti.nl/slides/deWolf.pdf



http://www.math.uni-konstanz.de/~schweigh/
https://arxiv.org/pdf/2105.10386.pdf
https://nvti.nl/slides/deWolf.pdf
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The main idea of classical Fourier analysis
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A bad adaptation ...

Fourier Transform:
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A bad application ...
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Applications

Many applications in math, physics, engineering, ... and
In computer science:

— Signal processing
— Data compression
— Multiplying two polynomials
- These examples use Fourier analysis over cyclic groups

- We will focus on Fourier analysis over the
Boolean cube ={—1,1}"




Applications in CS

- Analysis of error-correcting codes

.+ Learning theory

. Sensitivity of a function to noise on the inputs
- PCPs, NP-hardness of approximation

- Cryptography

- Lower bounds on communication complexity
- Threshold phenomena in random graphs

- Quantum computing

- Notion of influence of variables on a function
useful in particular for social theory




The many faces of Boolean values

In philosophy: Boolean truth values
B = {TRUE,FALSE}

In CS this is encoded by field F, = {1,0}
- TRUE » 1
- FALSE » O

Sometimes instead work with {0, 1} € R

In Fourier analysis usually {1, —1} € R is used where
- TRUE » —1

- FALSE » 1
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The many faces of Boolean values

1 0 0

T 1 1

= 1+x 1—x
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\ X+y+xy X+y—xy
@ (XOR) + xX+y—2xy

l1+x+y—xy
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—1+x+y+xy
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Fourier analysis over the Boolean cube

. Real-valued boolean function: f: {—1,1}" - R
- Boolean function: f: {—1,1}"* - {—1,1}

e |n]:=1{1,..,n}

e Pow(A) =powerset={S51S <€ A}

- Parity functions correspond to the cosines and sines
in classical Fourier analysis

.+ Forthe {1, —1}-encoding they are monomials

ForS € [n] the monomial function y(x) is defined as
Xs: {1, 13" 5> R;x » x° = [[jeex;
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Fourier analysis over the boolean cube

Symmetric difference:AAB :=(A\ B) U (B \ 4)
Kronecker symbol forx € {1, —1}
0,:{1, -1} > R;8,(y) =1ify=xelse=0
Kronecker symbol for For S € [n]

ds: Pow(|n]) » R;64(T) =1ifS=Telse =0

- We will consider the Boolean cube as probability space

- x ~{1,—1}"" is a uniformly chosen random element
from {1, —1}"

— Expectation value:

1
Ee(f) = Expion(N =55 ) ()

x€{1,—1}"

13
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Fourier analysis over the boolean cube

. Space of functions RIL"1" = {f | f:{1,-1}" - R }is
a vector space.

« Itis even an Euclidean space with a normalized inner

product { f, g)

(£,0) = vy (f D900 = = Y FG)900)

xe{l,—l}"

The induced norm is defined as

If1], = V(f. F) = VE(f?)
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Parity functions form an orthormal basis

Letn € Ny. The parity-functions (xs)scnjform an orthonormal
basis of the euclidean vector space RIL—1",

We call (xs)scn) the Fourier basis of R{L-1"

e Proof

1. Firstwe show ysxr = Xsar:
Xsxt(X) = lies xi lier xi = icsar i iesnr le
= [liesar i = Xsar (%)

2. Second we show E, ¢y _1my(xs) = 6¢(S):
IfS = @,then E, (3 _1my(Xs)= Ex~{1—1(1) = 1. Otherwise
Ex{1,-1my(Lies i) = Ilies Ex;~1,-13(x;) (by independence).
But By, g, —1y(0) =+ 1+5-—1=0)

15



Parity functions form an orthormal basis

Letn € Ny. The parity-functions (xs)scnjform an orthonormal
basis of the euclidean vector space RIL—1",

We call (xs)scn) the Fourier basis of R{L-1"

e Proof (continued)

— It is sufficient to show

(XSJXT) — 6S(T)
— But this follows from 1. 2. above.
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Fourier expansion

Each real-valued Boolean function f can be uniquely written as

f = ng[n]f(S))(S (Fourier expansion)
with unique Fourier coefficients £ (S) given by:

R 1
FO =(fasd =2 Y FOXs0)
xe{1,—1}"
In fact the, (boolean) Fourier transfoem

F- R{l,—l}n N RPOW(n);f - f
is a vector space isomorphism

The degree of f isthe largest cardinality of a set S a Fourier coefficient £ (S) # 0:

degf = max{|S| | S<[n],f(S) # 0}iff #0
degf = —0 else

IM FOCUS DAS LEBEN 17
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Examples

1. f = max?(); maximum function on 2 bits (= logical AND: A)
1+x+y—xy

«  max?(x,y) = (see table from the beginning)

© fAD = (fm) = 5 Zapen 2 f @I EY)

=% z fOoy)-x

x€{1,—1}2

1

1 1
—-2(1—1+1+1%—E

2. Majority function maj; (x4, x5, x3) which outputs the more
frequently bit 1, —1 occuring in its input
1 + Xl + XZ + X3 - X1X2x3

2

majsz(xq, Xz, X3) =

18



Intuition on Fourier Expansion

- Fourier expansion: Any real-valued Boolean function
can be represented as multilinear polynomial
- ldea: Interpolation with indicator polynomials

- Leta = (a4, ...,a,) € {1, —1}" fixed and
x = (xq,..,x,) €E{1,—1}"

1+ a1x 1+ anxn
- 1{a}(x)=( 21 1)( 2 )
takes value 1 when x = a and 0 otherwise

- Hence f = Zae{l’_l}nf(a)l{a}(x)

— Multiplying out indicator polynomials leads to
presentation with monomials

- Asinputs are {1, —1}-bits any x? reduces to x;: linearity

UUUUUUUUUUUUUUUUUUUUUUU
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f = max?(); maximum function on 2 bits (= logical AND: A)

« max?*(x,y) =

x1)1 XZ) l1+x+y—xy
2 2
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Frequently used insight: Plancherel

Theorem (Plancherel)
For any real-valued Boolean function f: {1, —1}" - R:

(f.9)=) F(S)- ()

SCn]

Proof idea

« Use the Fourier expansions of f, g, the linearity of
the scalar product and the fact that the parity
functions are orthonormal.

S ¢ -

BB | -

= TN, = N .
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Special Case: Parseval

Theorem (Parseval)
For any real-valued Boolean function f: {1, —1}" - R:

IFIl; =1 = ), F(S)?

Scn]

. In particular, if f: {1, —1}"* - {1, —1} then: ||f|‘z: 1.

. So the squares of fourer coefficients £ (S)?, called the
,Fourier weights”, can be interpreted as a probability

mass function on Pow([n]).

IM FOCUS DAS LEBEN 22




Examples

1 0 0 1

T 1 1 —1

— 1+x 1—x —X

A - - 1+x+y—xy
2

% x+y+xy X+y—xy —1+x+y+xy
2

@ (XOR) + x+y—2xy

© 1Tl = VD2 =1
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Hamming distance

For two Boolean functions f, g the relative Hamming distance
is defined as the fraction of inputs they disagree:

dist(f,g) = Pry-q1-1n(f(x) # g(x))

It is easily shown that dist(, ) is a metric on the set of
boolean functions.

e dist(,) gives a nice interpretation of the scalar product
as a measure of similarity.

For two Boolean functions f, g:

(f.9) = Pr(f(x) = g(@)) — Pr(f (x) # g(x)) = 1 - 2dist(f, 9)

24



Wake-Up Exercise

For two Boolean functions f, g:

(f.9) = Pr(f(x) = g(x)) = Pr(f (x) # g(x)) = 1 - 2dist(f, g)

Prove the theorem above on the representation of the
scalar product with the Hamming distance.

IM FOCUS DAS LEBEN 25



Answer to wake up exercise

For two Boolean functions f, g:

(f.9) = Pr(f(x) = g(x)) = Pr(f (x) # g(x)) = 1 - 2dist(f, g)

Proof
(f,9) = Exef1,-1*(r(x)g(x))
= Ijcl‘(f(X) = g(x)) — f;r(f(X) = g(x))

= (1 — I;r(f(x) a g(x))) — I;r(f(x) # g(x))
=1 — 2dist(f,g)
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Moments of (real-valued) boolean functions f

- Themeanof f: E(f)
- IfE(f) = 0, then f is called unbiased

— In particular, if f: {1, —1}" - {1, —1},then E(f) = 0 means: f
attains each truth value on exactly half of the input bit vectors.

For Boolean function f its mean is given by the Fourier coeefficient
for the empty set: E(f) = (@)

e f(0) exemplifies general idea in Boolean Fourier analysis:
Each Fourier coefficient f (S) gives global beahiour of f

- f(S) for small S describe rough global behaviour of f

- f(S) for large S describe fine-tuned global behaviour of f
Hence: Study f by considering Fourier coefficients for small S

3 ‘\?, BT & UNIVERSITAT ZU LUBECK
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Wake-Up Exercise

For Boolean function f its mean is given by the Fourier coeefficient
for the empty set: E(f) = f(0)

Prove the theorem above on the mean of a function.

IM FOCUS DAS LEBEN 28




Answer to wake up exercise

For Boolean function f its mean is given by the Fourier coeefficient
for the empty set: E(f) = f(0)

Proof

E(f)=E(f 1= (f,1) ={f, xo) = f(®)

IM FOCUS DAS LEBEN 29



Moments of (real-valued) boolean functions f

. Thevariance of f: Var(f) = E((f — E(f))?)

1. For real-valued boolean function f ist variance is the sum of all
squared Fourier coefficients except that for @:

Var(f) = E(f?) = E(f)? = |If = E(DI|, = Sowsein f(S)?
2. For boolean function f one even has:

Var(f) =1 - E(f)* = 4Pr(f(x) = DPr(f(x) = -1) € [0,1]

For a Boolean function f then following bounds hold:
2e <Var(f) <4e
where € = min{dist(f, 1),dist(f,—1))}

IM FOCUS DAS LEBEN 30



Proof of first theorem

Proof
1. Var(f)
=E((f —E(N)?)
= E(f? = 2fE(f) + E()?)
= E(f2) — 2E(f)? + E(f)?
= E(f?) — E(f)?
On the other hand E((f — E(f)?))=|If — E(f)||§ by definition.
But f — E(f) = ZQiSQ[n]f(S))(S. Now can apply Parseval.

2. Using 1.we have Var(f) = E(f%) — E(f)*.But E(f%) = E(1) =
1

But 1 - E(f)? = (Pr(f(x) = 1) + Pr(f(x) = ~1))’
= (Pr(f(x) = 1) = Pr(f(x) = 1))’

= 4Pr(f(x) = D Pr(f(x) = —1)

31



Moments of (real-valued) Boolean functions f,g

- The covarianceof f, g:

Cov(f) = E((f—E(f))‘(g—E(g)))

For real-valued Boolean function f, g the covariance is the sum of

all componentwise products of Fourier coefficients except those
for @:

Cov(f,9) = Ypescin f ($)G(S)

IM FOCUS DAS LEBEN 32



PROBABILITY DENSITIES AND
CONVOLUTION
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Mass / density function

- We follow the probabilistic perspective on {1, —1}" and
on the Fourier coefficients

- The operation of convolution has a special role in this
setting

LetD + @beafiniteset. f:D — R, isa probability mass function

[density functionon D1iff },ep f(x) =1 [ iff Y,epf(x) =|D|]

* x ~ f means that x is drawn w.r.t. probability distribution
associated with f defined as:

© =y =/50)
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Fourier weights

Definition
Let f be n-aryrealvaluedfunctionand 0 < k <n

* fok = ZSC i sl=k f (S)xs is the degree k part o f
ZSC 115]=k f (§)? is the Fourier weight of f at

degree k

* fek = ch [n],|S]< kf(S)XS
ch 11S|<k f(S)2 weight of f in degree < k

Fact
If ¢ is a density functionon {1,—1 }"*and g: {1, —1}" - R, then

Eys(90) = (¢, 9) = Exepg—1yn(@(0) g (x))

2 F -

b |
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Density for uniform distribution

For@ + A € {1,—1}",function ¢, is the density function associated
with the uniform distributionon 4, i.e..

Pala) = % ifx e Aelsep,(a) =0
We write y ~ A instead of y ~ ¢4

-----

— S
* 6x(5) — (XS' 6x ) — Ey~{1,—1}n(yS' 6x(y)) — ch_n
* S02™8y = Vg X Xs

* in particular forx = (1,1, ...,1)

¢{(1,1,...,1)} = 2n5(1,1 ..... 1) = Z 1-xs
SC[n]

EEEEEEEEEEEEEEEEEEEEEE
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Convolution

f

Letf, g:{1,—1}"* — R be n-ary real-valued N

functions.

Their convolution f * g:{1,—1}" — Riis fx g

(f *9) () = Eyg-n(f () g(x 0 y)) 1 ru

= Ly~{1-1}" (f (xoy)g (x)) _Ji]_n_l]j_

g *f

where o is bitwise multiplication e

» 1N N
i
The convolution operator is associative and Convolution in

classical Furier analysis

commutative:

IM FOCUS DAS LEBEN 37




Convolution and densities

Proposition

If ¢ is a density function on {1, —1}" and g: {1, —1}" — R then
1. ¢+ g(x) =E, 4(g(xoy))

In particular E, . (g(¥)) = ¢ * g((1,1, ..., 1))
2. If g = yisitself a probability density then sois ¢ * Y

It represents the distribution on x € {1, —1}" by
 choosingy ~ ¢ and z ~ Y independently and

* settingx = yoz.

Note:

« if we use the encoding F, then o bcomes addition. x = y + z.

* So convolution gives a means to calculate the probability of a
sum x = y + z of two random variables y, z

38



Main theorem on convolution

Let f,g:{1,—1}" — R be n-ary real-valued functions.. Thenforall S < [n]:
f*g9(S) =f(S)g(S)

Proof
¢« frg(®)
= x~{1,—1}"((f *g)(x))(s(x)) (Fourier formula)
= x~{1,—1}”( Ey~{1,—1}"(f()’)g(y o x) ) xs(x) ) (by definition)
= E yopi-yn (J9(@D) ) xs(ye2) (as x oy is uniform on
independently
{1, —1}" for all x)
= Ex i~ (F W Xs (1) 9(2) x5(2)) (because ys(x o y) =
X Xs(X) xs ()
= f(5)g(S) (Fourier formula and independence)

- 6Nz, -
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HIGHLIGHT APPLICATION:
BLR TEST
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Almost linear functions and the BLR test

A Boolean function f: {1, —1}" — {1, —1} is called linear if either of the
following equivalent conditions hold:

1 Vx,y €{1,-1}": f(xoy) = f()f(y)

2. ThereisasetS C [n]suchthat: f = yg

Proof of equivalence
* 2.2 L f(x)f(y) =x°y> = (x0y)° = f(x°y)
* 1.2 2:e' €{1,—1}" defined by:e; = —1|f1—]elsee]—1

S={i| f(e!) = —1}.Thenforallx € {1,—1}™

fix)=f ﬁei =ﬁf(ei)= ﬁ_lzxs
= i=1 i=1
xi=-1 xi=—1 x;=—1

@g@ UNIVERSITAT U L0BECK (Note: [] stands for bitwise multiplication) 41
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Linearity

. If we use the encoding wih IF, then the two conditions
become
1 fx+y)=fx)+ ()
(and this already entails f(0) = 0 and f(1x) = Af (x)
forall x € IF,)

2. f(x) = Yesxi ie,thereisa € F, such that

f(x)=a- x

- So the equivalence amounts to the fact (known from
linear algebra) that linear functions are representable as
matrix multiplication.
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Robust linearity

Does the equivalence hold in a robust version?

(1) f(xeoy) = f(x)f(y) foralmostall x € {1, —1}"

(2) ThereisasetS € [n]suchthat: f(x) = ys(x)
foralmostall x € {1, —1}"

- The proof for 2 -> 1 is robust: translates directly
to proof (2)-> (1).

« The part(1)->(2) is not. Needs a theorem
— BLR Test (Blum, Luby, Rubinfeld 93)

: g, . "
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Property testing

- For large data want to test properties approximately
= Field of Property testing. (Oded Goldreich 17)

— f is black box

- Can query on any input bit vector of your choosing
- Want to verify some property with few queries accurately
(error less than €)
. In particualr: f is e-close to being linear if
for some truly linear g(x) = yg

UUUUUUUUUUUUUUUUUUUUU
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Property testing

- For large data want to test properties aproximately
= Field of Property testing. (Oded Goldreich 17)

— f is black box
— Can query on any input bit vector of your choosing

— Want to verify some property with few queries accurately
(error less than ¢€)

g f:{1,—1}" - {1,—1} aree-closeiffdist(f,g) < e.
For a property P (i.e. a subset) of Boolean functions let

dist(f,P) = meilrjl(dist(f,g)). f is e-close to P iff dist(f,P) < e.
g

In particular: f is e-close to being linear if

... forsome truly linear g(x) = xs

) % »

= N, &
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BLR Test

« BLR Test shows thatindeed (1)-> (2) holds.

Given queryaccessto f:{1,—1}" - {1,—1}:

e Choosex ~ {1,—1}"*and y ~ {1,—1}" independently
 Queryfatx,yandxoy

* Acceptif f(x)f(y) = f(xeoy)

Suppose the BLR Test accepts f:{1,—1} - {1, —1}
with probability 1 — €. Then f is e- close to being linear

IM FOCUS DAS LEBEN 46



BLR Test

Proof
We define a characteristic:

S+ fOOfWf(xoy) = 1if fF(Df ) = flx o)
= 0if f()f(Y) # fxoy)

e 1—¢e=Pr(BLRaccepts f) =E,, (% +%f(X)f(Y)f(X © 3’)>

- =1 (P - B (PO e )

- = cHSE(@ - (f ) (by definition)
_ = % n %ng[n] F(S) F=f(S) (Plancherel)

- :% + %ng[n] £(S)3 (main theorem on convolution)

5 R \ S UNIVERSITAT ZU LUBECK
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BLR Test

Proof (continued)

Rearranging the equality gives

- 1—-2e= ng[n]f(S)g

- < max{f(S)} Toepu f(S)?

R gcl?x]{f(s) } (by Parseval)
But £(S) = (f, xs) = 1 — 2dist(f, xs)

Hence there exists some S* € [n] suchthatl —2 ¢ <1 — 2 dist(f, xs*)
That is, f is € —close to the linear function y -

48
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Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly light
orange frame

« Comments and notes
. Algorithms
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