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Todays and next weeks lecture based on 

• Lecture notes „Fourier Analysis of Boolean Functions, Witer term 16/17“  
M. Schweighofer
http://www.math.uni-konstanz.de/~schweigh/ 

• Ryan O‘Donnell: Fourier Analyis of Boolean Functions., CUP 2014. 
Free PDF oavailable at 
https://arxiv.org/pdf/2105.10386.pdf

• Talk of Ronald de Wolf: „Fourier analysis of Boolean functions: Some
beautiful examples“ available at
https://nvti.nl/slides/deWolf.pdf
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MOTIVATION
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The main idea of classical Fourier analysis
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A bad adaptation ...
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A bad application …
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Applications

• Many applications in math, physics, engineering, . . . and
in computer science: 
– Signal processing

– Data compression

– Multiplying two polynomials

• These examples use Fourier analysis over cyclic groups

• We will focus on Fourier analysis over the
Boolean cube = −1,1 $
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Applications in CS

• Analysis of error-correcting codes

• Learning theory

• Sensitivity of a function to noise on the inputs

• PCPs, NP-hardness of approximation

• Cryptography

• Lower bounds on communication complexity

• Threshold phenomena in random graphs

• Quantum computing

• Notion of influence of variables on a function
useful in particular for social theory

• ...
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The many faces of Boolean values

• In philosophy: Boolean truth values
𝔹 = 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸

• In CS this is encoded by field 𝔽0 = {1,0}
– 𝑇𝑅𝑈𝐸 ↦ 1
– 𝐹𝐴𝐿𝑆𝐸 ↦ 0

• Sometimes instead work with 0, 1 ⊆ ℝ
• In Fourier analysis usually 1, −1 ⊆ ℝ is used where

– 𝑇𝑅𝑈𝐸 ↦ −1
– 𝐹𝐴𝐿𝑆𝐸 ↦ 1
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The many faces of Boolean values

𝔹 𝔽# 𝟎, 𝟏 ⊆ ℝ −𝟏, 𝟏 ⊆ ℝ
⊥ 0 0 1
⊤ 1 1 −1
¬ 1 + 𝑥 1 − 𝑥 −𝑥
∧ ⋅ ⋅ 1 + 𝑥 + 𝑦 − 𝑥𝑦

2
∨ 𝑥 + 𝑦 + 𝑥𝑦 𝑥 + 𝑦 − 𝑥𝑦 −1 + 𝑥 + 𝑦 + 𝑥𝑦

2
⊕ (XOR) + 𝑥 + 𝑦 − 2𝑥𝑦 ⋅
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FOURIER TRANSFORM
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Fourier analysis over the Boolean cube

• Real-valued boolean function: 𝑓: −1,1 $ → ℝ
• Boolean function: 𝑓: −1,1 $ → −1,1
• 𝑛 ≔ 1,… , 𝑛
• 𝑃𝑜𝑤 𝐴 = power set = {𝑆 ∣ 𝑆 ⊆ 𝐴}
• Parity functions correspond to the cosines and sines

in classical Fourier analysis

• For the 1, −1 -encoding they are monomials
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Definition
ForS ⊆ [𝑛] themonomial function𝜒' 𝑥 isdefinedas

𝜒): 1,−1 . → ℝ; 𝑥 ↦ 𝑥) ≔ ∏5∈)𝑥5



Fourier analysis over the boolean cube

• Symmetric difference: 𝐴 Δ 𝐵 ≔ 𝐴 ∖ 𝐵 ∪ 𝐵 ∖ 𝐴
• Kronecker symbol for x ∈ 1, −1
𝛿J: 1, −1 $ → ℝ; 𝛿J 𝑦 = 1 if 𝑦 = 𝑥 else = 0

• Kronecker symbol for For 𝑆 ⊆ 𝑛
𝛿M: 𝑃𝑜𝑤 𝑛 → ℝ; 𝛿M 𝑇 = 1 if 𝑆 = T else = 0

• We will consider the Boolean cube as probability space
– 𝑥 ∼ 1,−1 . is a uniformly chosen random element

from 1, −1 .

– Expectation value: 

𝐸7 𝑓 = 𝐸7∼ 9,:9 ; 𝑓 =
1
2.

Q
7∈ 9,:9 ;

𝑓 𝑥
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Fourier analysis over the boolean cube

• Space of functions ℝ R,SR ; = 𝑓 𝑓: 1, −1 $ → ℝ is
a vector space. 

• It is even an Euclidean space with a normalized inner
product 𝑓,𝑔

• The induced norm is defined as

𝑓 0 = 𝑓, 𝑓 = 𝐸(𝑓0)
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Definition

𝑓,𝑔 = 𝐸7∼ 9,:9 7 𝑓 𝑥 𝑔 𝑥 =
1
2.

A
7∈ 9,:9 7

𝑓 𝑥 𝑔(𝑥)



Parity functions form an orthormal basis
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• Proof 
1. First we show 𝜒)𝜒D = 𝜒)ED :

𝜒)𝜒D(x) = ∏5∈)𝑥5∏5∈D 𝑥5 = ∏5∈)ED𝑥5 ∏5∈)∩D𝑥5G
= ∏5∈)ED𝑥5 = 𝜒)ED 𝑥

2. Second we show 𝐸7∼ 9,:97 𝜒) = 𝛿∅ 𝑆 : 
If 𝑆 = ∅, then 𝐸7∼ 9,:97 𝜒) = 𝐸7∼ 9,:97 1 = 1. Otherwise
𝐸7∼ 9,:97 ∏5∈)𝑥5 = ∏5∈)𝐸78∼{9,:9}(𝑥5) (by independence). 

But 𝐸78∼{9,:9}(𝑥5) =
9
G
⋅ 1+ 9

G
⋅ −1 = 0 )

Theorem
Let 𝑛 ∈ ℕQ. The parity-functions (𝜒)))⊆[.]form an orthonormal

basis of the euclidean vector spaceℝ 9,:9 7
. 

We call (𝜒)))⊆[.] the Fourier basis ofℝ 9,:9 7



Parity functions form an orthormal basis

16

Theorem
Let 𝑛 ∈ ℕQ. The parity-functions (𝜒)))⊆[.]form an orthonormal

basis of the euclidean vector spaceℝ 9,:9 7
. 

We call (𝜒)))⊆[.] the Fourier basis ofℝ 9,:9 7

• Proof (continued) 
– It is sufficient to show

𝜒), 𝜒D = 𝛿)(𝑇)
– But this follows from 1. 2. above.   



Fourier expansion
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Theorem
Each real-valued Boolean function 𝑓 can be uniquely written as

𝑓 = ∑<⊆[>] @𝑓 𝑆 𝜒< (Fourier expansion)

with unique Fourier coefficients @𝑓 𝑆 given by:

@𝑓 𝑆 = 𝑓, 𝜒< =
1
2>

C
D∈ F,GF ;

𝑓 𝑥 𝜒<(𝑥)

In fact the, (boolean) Fourier transfoem
ℱ: ℝ F,GF ; → ℝMNO(>); 𝑓 ↦ @𝑓

is a vector space isomorphism

Definition
The degree of 𝑓 isthelargestcardinalityofa set𝑆 a Fourier coefficient @𝑓 𝑆 ≠ 0: 

degf =max{ 𝑆 ∣ 𝑆 ⊆ 𝑛 , @𝑓 𝑆 ≠ 0} if𝑓 ≠ 0
deg𝑓 = −∞ else



Examples
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1. 𝑓 = 𝑚𝑎𝑥G(); maximum function on 2 bits (= logical AND: ∧)
• 𝑚𝑎𝑥G(𝑥, 𝑦) = 9X7XY:7Y

G
(see table from the beginning)

• Z𝑓 {1} = 𝑓, 𝜒{9} = 9
G!

∑(7,Y)∈ 9,:9 ! 𝑓 𝑥, 𝑦 𝜒 9 (𝑥, 𝑦)

=
1
4

A
𝒙∈ 9,:9 !

𝑓 𝑥, 𝑦 ⋅ 𝑥

=
1
4
(𝑓 1,1 ⋅ 1 + 𝑓 −1,1 ⋅ −1
+𝑓 1,−1 ⋅ 1 + 𝑓 −1,−1 ⋅ −1 )

= 9
^
(1−1+1+1)= 

9
G

2. Majority function 𝑚𝑎𝑗` 𝑥9, 𝑥G, 𝑥` which outputs the more
frequently bit 1, −1 occuring in its input

𝑚𝑎𝑗` 𝑥9, 𝑥G, 𝑥` =
1 + 𝑥9 + xG + x` − 𝑥9𝑥G𝑥`

2

Example



Intuition on Fourier Expansion

• Fourier expansion: Any real-valued Boolean function
can be represented as multilinear polynomial

• Idea: Interpolation with indicator polynomials
– Let 𝑎 = 𝑎9, … , 𝑎. ∈ 1,−1 . fixed and

𝑥 = 𝑥9, … , 𝑥. ∈ 1,−1 .

– 1 b 𝑥 = 9X bc7c
G

⋅ … ⋅ 9X b;7;
G

takes value 1 when 𝑥 = 𝑎 and 0 otherwise

– Hence 𝑓 = ∑b∈ 9,:9 ; 𝑓 𝑎 1 b (𝑥)
– Multiplying out indicator polynomials leads to

presentation with monomials

– As inputs are {1, −1}-bits any 𝑥5G reduces to 𝑥5: linearity

19
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𝑓 = 𝑚𝑎𝑥G(); maximum function on 2 bits (= logical AND: ∧)

• 𝑚𝑎𝑥G 𝑥, 𝑦 =
1 9X d"

G
9X d!
G

+ 1
1 − x9
2

1 + xG
2

+ 1
1 + x9
2

1 − xG
2

+ −1
1 − x9
2

1 − xG
2

=
1 + 𝑥 + 𝑦 − 𝑥𝑦

2

Example



Frequently used insight: Plancherel
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Theorem (Plancherel)
For any real-valued Boolean function 𝑓: 1, −1 . → ℝ: 

𝑓, 𝑔 = A
)⊆[.]

Z𝑓 𝑆 ⋅ e𝑔(𝑆)

Proof idea

• Use the Fourier expansions of 𝑓, 𝑔 , the linearity of
the scalar product and the fact that the parity
functions are orthonormal. 



Special Case: Parseval
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Theorem (Parseval)
For any real-valued Boolean function 𝑓: 1, −1 . → ℝ: 

𝑓 G
G
= 𝑓, 𝑓 = A

)⊆[.]

Z𝑓 𝑆 G

• In particular, if f: 1, −1 $ → {1, −1} then: 𝑓 0
0

= 1. 

• So the squares of fourer coefficients c𝑓 𝑆 0, called the
„Fourier weights“, can be interpreted as a probability
mass function on 𝑃𝑜𝑤([𝑛]). 



Examples

𝔹 𝔽# 𝟎, 𝟏 ⊆ ℝ −𝟏, 𝟏 ⊆ ℝ
⊥ 0 0 1
⊤ 1 1 −1
¬ 1 + 𝑥 1 − 𝑥 −𝑥
∧ ⋅ ⋅ 1 + 𝑥 + 𝑦 − 𝑥𝑦

2
∨ 𝑥 + 𝑦 + 𝑥𝑦 𝑥 + 𝑦 − 𝑥𝑦 −1 + 𝑥 + 𝑦 + 𝑥𝑦

2
⊕ (XOR) + 𝑥 + 𝑦 − 2𝑥𝑦 ⋅
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• ||⊤||# = −1 # = 1

• || ∧ ||# =
F
#

#
+ F

#

#
+ F

#

#
+ − F

#

#
= 1



Hamming distance

• It is easily shown that 𝑑𝑖𝑠𝑡 , is a metric on the set of
boolean functions. 

• 𝑑𝑖𝑠𝑡(, ) gives a nice interpretation of the scalar product
as a measure of similarity.

24

Definition
For twoBoolean functions𝑓,𝑔 the relative Hamming distance
is defined as the fraction of inputs they disagree:

𝑑𝑖𝑠𝑡 𝑓,𝑔 ≔ 𝑃𝑟7∼ 9,:9 7(𝑓 𝑥 ≠ 𝑔(𝑥))

Theorem
For two Boolean functions 𝑓, 𝑔: 
𝑓, 𝑔 = Pr

7
𝑓 𝑥 = 𝑔 𝑥 − Pr

7
𝑓 𝑥 ≠ 𝑔 𝑥 = 1 − 2𝑑𝑖𝑠𝑡(𝑓, 𝑔)



Wake-Up Exercise

Prove the theorem above on the representation of the
scalar product with the Hamming distance.
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Theorem
For two Boolean functions 𝑓, 𝑔: 
𝑓, 𝑔 = Pr

7
𝑓 𝑥 = 𝑔 𝑥 − Pr

7
𝑓 𝑥 ≠ 𝑔 𝑥 = 1 − 2𝑑𝑖𝑠𝑡(𝑓, 𝑔)



Answer to wake up exercise
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Proof
𝑓, 𝑔 = 𝐸J∼ R,SR ;(j J k(J))
= Pr

J
(𝑓 𝑥 = 𝑔(𝑥)) − Pr

J
𝑓 𝑥 ≠ 𝑔 𝑥

= 1 − Pr
J
𝑓 𝑥 ≠ 𝑔 𝑥 − Pr

J
𝑓 𝑥 ≠ 𝑔 𝑥

= 1 − 2𝑑𝑖𝑠𝑡(𝑓, 𝑔)

Theorem
For two Boolean functions 𝑓, 𝑔: 
𝑓, 𝑔 = Pr

7
𝑓 𝑥 = 𝑔 𝑥 − Pr

7
𝑓 𝑥 ≠ 𝑔 𝑥 = 1 − 2𝑑𝑖𝑠𝑡(𝑓, 𝑔)



Moments of (real-valued) boolean functions f

• The mean of 𝑓: 𝐸(𝑓)
– If 𝐸 𝑓 = 0, then 𝑓 is called unbiased

– In particular, if 𝑓: 1, −1 . → {1, −1}, then 𝐸 𝑓 = 0means: 𝑓
attains each truth value on exactly half of the input bit vectors.

• c𝑓(∅) exemplifies general idea in Boolean Fourier analysis: 
Each Fourier coefficient c𝑓(𝑆) gives global beahiour of 𝑓
– Z𝑓(𝑆) for small 𝑆 describe rough global behaviour of 𝑓
– Z𝑓(𝑆) for large 𝑆 describe fine-tuned global behaviour of 𝑓
Hence: Study 𝑓 by considering Fourier coefficients for small 𝑆

27

Theorem
For Boolean function 𝑓 its mean is given by the Fourier coeefficient
for the empty set: 𝐸 𝑓 = Z𝑓(∅)



Wake-Up Exercise

Prove the theorem above on the mean of a function. 

28

Theorem
For Boolean function 𝑓 its mean is given by the Fourier coeefficient
for the empty set: 𝐸 𝑓 = Z𝑓(∅)



Answer to wake up exercise
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Proof
𝐸 𝑓 = 𝐸 𝑓 ⋅ 1 = 𝑓, 1 = 𝑓, 𝜒∅ = c𝑓(∅)

Theorem
For Boolean function 𝑓 its mean is given by the Fourier coeefficient
for the empty set: 𝐸 𝑓 = Z𝑓(∅)



Moments of (real-valued) boolean functions f

• The variance of 𝑓: Var f = 𝐸( (𝑓 − 𝐸 𝑓 )0 )

30

Theorem
1. For real-valued boolean function 𝑓 ist variance is the sum of all 

squared Fourier coefficients except that for ∅:

𝑉𝑎𝑟 𝑓 = 𝐸 𝑓G − 𝐸 𝑓 G = 𝑓 − 𝐸 𝑓 G
G
= ∑∅q)⊆[.] Z𝑓 𝑆 G

2. For boolean function 𝑓 one even has:
𝑉𝑎𝑟 𝑓 = 1 − 𝐸 𝑓 G = 4Pr

7
𝑓 𝑥 = 1 Pr

7
𝑓 𝑥 = −1 ∈ [0,1]

Theorem
For a Boolean function 𝑓 then following bounds hold:

2 𝜖 ≤ 𝑉𝑎𝑟 𝑓 ≤ 4 𝜖
where 𝜖 = min{𝑑𝑖𝑠𝑡(𝑓, 1), 𝑑𝑖𝑠𝑡(𝑓, −1))}



Proof of first theorem

Proof
1. 𝑉𝑎𝑟 𝑓

= 𝐸 𝑓 − 𝐸 𝑓 G

= 𝐸 𝑓G − 2𝑓𝐸 𝑓 + 𝐸 𝑓 G

= 𝐸 𝑓G − 2𝐸 𝑓 G + 𝐸 𝑓 G

= 𝐸 𝑓G − 𝐸 𝑓 G

On the other hand 𝐸 𝑓 − 𝐸 𝑓 G = 𝑓 − 𝐸 𝑓 G
G

by definition. 

But 𝑓 − 𝐸 𝑓 = ∑∅q)⊆[.] Z𝑓(𝑆)𝜒). Now can apply Parseval. 

2. Using 1. we have 𝑉𝑎𝑟 𝑓 = 𝐸 𝑓G − 𝐸 𝑓 G. But 𝐸 𝑓G = 𝐸 1 =
1.

But 1 − 𝐸 𝑓 G = (Pr
7
𝑓 𝑥 = 1 + Pr

7
(𝑓 𝑥 = −1))G

− (Pr
7
𝑓 𝑥 = 1 − Pr

7
(𝑓 𝑥 = −1))G

= 4Pr
7
𝑓 𝑥 = 1 Pr

7
𝑓 𝑥 = −1
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Moments of (real-valued) Boolean functions f,g

• The covariance of 𝑓, 𝑔: 
Cov f = 𝐸( 𝑓 − 𝐸 𝑓 ⋅ 𝑔 − 𝐸 𝑔 )

32

Theorem
For real-valued Boolean function 𝑓, 𝑔 the covariance is the sum of
all  componentwise products of Fourier coefficients except those
for ∅:

𝐶𝑜𝑣 𝑓, 𝑔 = ∑∅q)⊆[.] Z𝑓(𝑆) e𝑔(𝑆)



PROBABILITY DENSITIES AND
CONVOLUTION

33



Mass / density function

• We follow the probabilistic perspective on 1, −1 $ and
on the Fourier coefficients

• The operation of convolution has a special role in this
setting

34

Definition
Let 𝐷 ≠ ∅be a finite set. 𝑓:𝐷 → ℝ{Q isa probabilitymassfunction
[ densityfunctionon  𝐷 ]  iff ∑7∈|𝑓 𝑥 = 1 [  iff ∑7∈|𝑓 𝑥 = |𝐷| ]

• 𝑥 ∼ 𝑓 means that 𝑥 is drawn w.r.t. probability distribution
associated with 𝑓 defined as: 

• Pr
7∼~

(𝑥 = 𝑦) = 𝑓(𝑦)

• [  Pr
7∼~

(𝑥 = 𝑦) = ~(Y)
|||

]



Fourier weights
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Definition
Let 𝑓be n-aryreal-valuedfunction and 0 ≤ 𝑘 ≤ 𝑛
• 𝑓�� ≔ ∑)⊆ . , ) ��

Z𝑓 𝑆 𝜒) is the degree 𝑘 part o 𝑓

• 𝑓�� G
G

= ∑)⊆ . , ) �� Z𝑓 𝑆 G is the Fourier weight of 𝑓 at 

degree 𝑘
• 𝑓�� ≔ ∑)⊆ . , ) � � Z𝑓 𝑆 𝜒)

• 𝑓�� G
G

= ∑)⊆ . , ) ��
Z𝑓 𝑆 G weight of 𝑓 in degree≤ 𝑘

Fact
If 𝜙 is a density function on 1, −1 . and 𝑔: 1, −1 . → ℝ , then

𝐸Y∼� 𝑔 𝑦 = 𝜙, 𝑔 = 𝐸7∼ 9,:9 7(𝜙 𝑥 𝑔(𝑥))



Density for uniform distribution

36

Definition
Fo r∅ ≠ 𝐴 ⊆ 1,−1 . , function 𝜙� is thedensityfunctionassociated
withtheuniform distributionon 𝐴, i.e.: 

𝜙� 𝑎 = G7

|�|
if 𝑥 ∈ 𝐴 else 𝜙� 𝑎 = 0 

We write 𝑦 ∼ 𝐴 instead of 𝑦 ∼ 𝜙�

Every Fourier coefficient of 𝜙 9,9,…,9 is 1	as for any 𝑥 ∈ 1, −1 .:	

• �𝛿7 𝑆 = 𝜒), 𝛿7 = 𝐸Y∼ 9,:9 7 𝑦), 𝛿7 𝑦 = 7`

G7

• So	2.𝛿7 = ∑)⊆ . 𝑥)𝜒)
• in	particular for x = (1,1, … , 1)

𝜙{ 9,9,…,9 } = 2.𝛿(9,9,…,9) = A
)⊆ .

1 ⋅ 𝜒)

Example



Convolution

37

Definition
Let 𝑓,𝑔: 1,−1 . → ℝben-aryreal-valued
functions. 

Theirconvolution 𝑓 ∗ 𝑔: 1,−1 . → ℝ is
𝑓 ∗ 𝑔 𝑥 = 𝐸Y∼ 9,:9 7 𝑓 𝑦 𝑔 𝑥 ∘ 𝑦

= 𝐸Y∼ 9,:9 7 𝑓 𝑥 ∘ 𝑦 𝑔 𝑥

where∘ is bitwise multiplication

Proposition
The convolution operator is associative and
commutative: 
𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ;   𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

Convolution in
classical Furier analysis



Convolution and densities

38

Proposition
If 𝜙 is a density function on 1, −1 . and𝑔: 1,−1 . → ℝ then
1. 𝜙 ∗ 𝑔 𝑥 = 𝐸Y∼� 𝑔 𝑥 ∘ 𝑦

In particular 𝐸Y∼� 𝑔 𝑦 = 𝜙 ∗ 𝑔((1,1, … , 1))
2. If 𝑔 = 𝜓 is itself a probability density then so is 𝜙 ∗ 𝜓

It represents the distribution on 𝑥 ∈ 1, −1 . by
• choosing 𝑦 ∼ 𝜙 and 𝑧 ∼ 𝜓 independently and
• setting 𝑥 = 𝑦 ∘ 𝑧.

Note: 
• if we use the encoding 𝔽G then ∘ bcomes addition.  𝑥 = 𝑦 + 𝑧.
• So convolution gives a means to calculate the probability of a 

sum 𝑥 = 𝑦 + 𝑧 of two random variables 𝑦, 𝑧



Main theorem on convolution

Proof

• �𝑓 ∗ 𝑔 𝑆
= 𝐸7∼ 9,:9 # 𝑓 ∗𝑔 𝑥 𝜒)(𝑥) (Fourier formula)
=  𝐸7∼ 9,:9 # 𝐸Y∼ 9,:9 # 𝑓 𝑦 𝑔 𝑦 ∘ 𝑥 𝜒) 𝑥 (by definition)
= 𝐸 7,�∼ 9,:9 #

5.� ¡ .� .¢£Y
𝑓 𝑦 𝑔 𝑧 𝜒) 𝑦 ∘ 𝑧 (as 𝑥 ∘ 𝑦 is uniform on

1, −1 . for all 𝑥)
= 𝐸7,�∼ 9,:9 # 𝑓 𝑦 𝜒) 𝑦 𝑔 𝑧 𝜒)(𝑧) (because𝜒) 𝑥 ∘ 𝑦 =

𝜒) 𝑥 𝜒)(𝑦))
= Z𝑓(𝑆)�̂�(𝑆) (Fourier formula and independence)
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Theorem
Let𝑓,𝑔: 1,−1 . → ℝben-aryreal-valuedfunctions.. Thenforall 𝑆 ⊆ [𝑛]: 

�𝑓∗𝑔 𝑆 = Z𝑓(𝑆)�̂�(𝑆)



HIGHLIGHT APPLICATION:
BLR TEST
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Almost linear functions and the BLR test
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Definition
A Boolean function𝑓: 1,−1 . → 1,−1 is calledlinear ifeitherofthe
followingequivalentconditionshold: 

1. ∀𝑥,𝑦 ∈ 1,−1 . :   𝑓 𝑥 ∘ 𝑦 = 𝑓 𝑥 𝑓(𝑦)
2. There is a set 𝑆 ⊆ [𝑛] such that: 𝑓 = 𝜒)

Proof of equivalence
• 2. à 1.: 𝑓 𝑥)𝑓(𝑦 = x)𝑦) = 𝑥 ∘ 𝑦 ) = 𝑓(𝑥 ∘ 𝑦)
• 1. à 2.: 𝑒5 ∈ 1, −1 . defined by: 𝑒§

5 = −1 if 𝑖 = 𝑗 else 𝑒§
5 = 1.

𝑆 ≔ {𝑖 ∣ 𝑓 𝑒5 = −1}. Then for all 𝑥 ∈ 1, −1 .: 

𝑓 𝑥 = 𝑓 ©
5�9
78�:9

.

𝑒5 = ©
5�9
78�:9

.

𝑓(𝑒5) = ©
5�9
78�:9

.

−1 = 𝑥)

(Note: ∏ stands for bitwise multiplication)



Linearity

• If we use the encoding wih 𝔽0 then the two conditions
become

1. f 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓(𝑦)
(and this already entails 𝑓 0 = 0 and 𝑓 𝜆𝑥 = 𝜆𝑓 𝑥
for all 𝑥 ∈ 𝔽0)

2. 𝑓 𝑥 = ∑w∈M 𝑥w , i.e., there is 𝑎 ∈ 𝔽0 such that
𝑓 𝑥 = 𝑎 ⋅ 𝑥

• So the equivalence amounts to the fact (known from
linear algebra) that linear functions are representable as
matrix multiplication. 
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Robust linearity

Does the equivalence hold in a robust version?

(1) f 𝑥 ∘ 𝑦 = 𝑓 𝑥 𝑓(𝑦) for almost all 𝑥 ∈ 1, −1 $

(2) There is a set 𝑆 ⊆ [𝑛] such that: 𝑓(𝑥) = 𝜒M(𝑥)
for almost all 𝑥 ∈ 1, −1 $

• The proof for 2 -> 1 is robust: translates directly
to proof (2)-> (1). 

• The part (1)-> (2)  is not. Needs a theorem
⟹ BLR Test (Blum, Luby, Rubinfeld 93)
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Property testing

• For large data want to test properties approximately
⟹ Field of Property testing. (Oded Goldreich 17) 
– 𝑓 is black box 

• Can query on any input bit vector of your choosing

• Want to verify some property with few queries accurately
(error less than 𝜖)

• In particualr: 𝑓 is 𝜖-close to being linear if
for some truly linear 𝑔 𝑥 = 𝜒M
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Property testing

• For large data want to test properties aproximately
⟹ Field of Property testing. (Oded Goldreich 17) 
– 𝑓 is black box 

– Can query on any input bit vector of your choosing

– Want to verify some property with few queries accurately
(error less than 𝜖)

• In particular: 𝑓 is 𝜖-close to being linear if
for some truly linear 𝑔 𝑥 = 𝜒M
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Definition
g,𝑓: 1,−1 . → 1,−1 are𝜖-closeiff𝑑𝑖𝑠𝑡 𝑓,𝑔 ≤ 𝜖.  
Fora property𝑃 (i.e.  a subset) ofBoolean functions let 
𝑑𝑖𝑠𝑡 𝑓,𝑃 = min

«∈¬
(𝑑𝑖𝑠𝑡(𝑓,𝑔)) .  𝑓 is 𝜖-close to 𝑃 iff 𝑑𝑖𝑠𝑡 𝑓, 𝑃 ≤ 𝜖. 



BLR Test

• BLR Test shows that indeed (1)-> (2) holds. 
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Algorithm (BLR Test)
Givenqueryaccessto𝑓: 1,−1 . → 1,−1 : 
• Choose𝑥 ∼ 1,−1 . and  y ∼ 1,−1 . independently

• Query 𝑓at 𝑥,𝑦and𝑥 ∘ 𝑦
• Acceptif 𝑓 𝑥 𝑓 𝑦 = 𝑓 𝑥 ∘ 𝑦

Theorem
Suppose the BLR Test accepts 𝑓: 1, −1 → {1, −1}
with probability 1 − 𝜖.  Then 𝑓 is 𝜖- close to being linear 



BLR Test

Proof

• We define a characteristic: 
9
G
+ 9

G
f x f y f(x ∘ 𝑦) = 1 if 𝑓 𝑥 𝑓 𝑦 = 𝑓 𝑥 ∘ 𝑦

= 0 if 𝑓 𝑥 𝑓 𝑦 ≠ 𝑓 𝑥 ∘ 𝑦

• 1 − 𝜖 = Pr BLR 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑓 = 𝐸7,Y
9
G
+ 9

G
f x f y f x ∘ 𝑦

– = F
#
+ F

#
𝐸D 𝑓 𝑥 ⋅ 𝐸c 𝑓 𝑦 𝑓(𝑥 ∘ 𝑦)

– = F
#
+ F

#
𝐸D 𝑓 𝑥 ⋅ (𝑓 ∗ 𝑓)(𝑥) (by definition) 

– =   
F
#
+ F

#
∑f⊆[>] @𝑓 𝑆 g𝑓 ∗ 𝑓(𝑆) (Plancherel)

– = 
F
#
+ F

#
∑f⊆[>] @𝑓 𝑆 h (main theorem on convolution)
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BLR Test

Proof (continued)

• Rearranging the equality gives

– 1 − 2𝜖 = ∑f⊆ >
@𝑓 𝑆 h

– ≤ max
<⊆ >

{ @𝑓(𝑆) } ⋅ ∑f⊆ >
@𝑓 𝑆 #

– = max
<⊆ >

{ @𝑓(𝑆) } (by Parseval)

• But Z𝑓 𝑆 = 𝑓, 𝜒) = 1 − 2𝑑𝑖𝑠𝑡(𝑓, 𝜒))
• Hence there exists some 𝑆∗ ⊆ [𝑛] such that 1 − 2 𝜖 ≤ 1 − 2 𝑑𝑖𝑠𝑡(𝑓, 𝜒)∗)
• That is, 𝑓 is 𝜖 −close to the linear function 𝜒)∗
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APPENDIX
Uhhh, a lecture with a hopefully useful
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Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as 
emphasizing some aspects 

• Examples are given with standard orange with possibly light 
orange frame 

• Comments and notes

• Algorithms
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