Intelligent Agents
 Fourier Analysis II: Social Theory and Proof of Arrow's Theorem

Özgür L. Özçep
Universität zu Lübeck
Institut für Informationssysteme

Todays and next weeks lecture based on

- Lecture notes „Fourier Analysis of Boolean Functions, Winter term 16/17" M. Schweighofer
http://www.math.uni-konstanz.de/~schweigh/
- Ryan O’Donnell: Fourier Analyis of Boolean Functions., CUP 2014. Free PDF available at https://arxiv.org/pdf/2105.10386.pdf
- Talk of Ronald de Wolf: „Fourier analysis of Boolean functions: Some beautiful examples" available at https://nvti.nl/slides/deWolf.pdf

SOCIAL CHOICE IN FOURIER ANAYLYIS

Motivation

- Social theory can be elegantly treated with Fourier Analysis
- The main aim of this lecture is:
- sketch the basic ideas on Fouries analysis treatment of social theory
- and as a highlight demonstrate G. Kalai's Fouriertheoretic proof of Arrow's theorem (Kalai 02)
- As a side effect (as before) we will see the power of the probabilistic method. (Nalon/Spencer 04)

Social Choice

$f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ as voting rule with 2 candidates and n voters

Definition

- $\operatorname{maj}_{n}(x)=\operatorname{sgn}\left(x_{1}+\cdots+x_{n}\right)$ (for n even $f(0)$ assigned arbitrarily).
- $f(x)=\operatorname{sgn}\left(a_{1} x_{1}+\cdots+a_{2} x_{n}\right)$ forsome $a \in\{1,-1\}^{n}$
(Majority function)
(weighted majority/ linear threshold)
- $A N D_{n}(x)=+1$ unless all $x_{i}=-1$
- $O R_{n}(x)=-1$ unless all $x_{i}=1$
(AND function)
(ORfunction)
- $\chi_{i}(x)=x_{i}$
(ith dictator function)
- $f(x)=g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$
(k-junta) for some $g:\{1,-1\}^{k} \rightarrow\{1,-1\}$ and $\left\{i_{1}, \ldots, i_{k}\right\} \in[n]$

Social Choice

$f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ as voting rule with 2 candidates and n voters

Definition

- $m a j_{n}^{\otimes d+1}\left(x^{(1)}, \ldots, x^{(n)}\right)$ (depth-d recursive majority)
$=\operatorname{mai}_{n}\left(\operatorname{maj}_{n}^{\otimes d}\left(x^{(1)}\right), \ldots, \operatorname{maj}_{n}^{\otimes d}\left(x^{(n)}\right)\right)$
(for $d \in \mathbb{N}_{0}, n$ odd, and all $x^{(i)} \in\{1,-1\}^{n^{d}}$)
- $\operatorname{Tribes}_{w, s}:\{1,-1\}^{w s} \rightarrow\{1,-1\} \quad$ (tribes function) $\operatorname{Tribes}_{w, s}\left(x^{(1)}, \ldots, x^{(s)}\right)=$

$$
\begin{aligned}
& O R_{s}\left(A N D_{w}\left(x^{(1)}\right), \ldots, A N D_{w}\left(x^{(s)}\right)\right) \\
& \text { (for } w, s \in \mathbb{N}_{0}, x^{(i)} \in\{1,-1\}^{w} \text {) }
\end{aligned}
$$

- Depth-2 recursive majority used in presidental elections in USA

Social Choice

$f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ as voting rule with 2 candidates and n voters

Definition

$f:\{1,-1\}^{n} \rightarrow \mathbb{R}$ is called

- monotone iff $\mathrm{f}(\mathrm{x}) \leq f(y)$ for all $x, y \in\{1,-1\}^{n}$ with $x_{i} \leq y_{i}$ for all

$$
i \in[n]
$$

- odd iff $f(x)=-f(-x)$ forall $x \in\{1,-1\}^{n}$
- unanimous iff $f(1, \ldots, 1)=1$ and $f(-1, \ldots,-1)=-1$
- symmetric iff $f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=f(x)$ for all $x \in\{1,-1\}^{n}$ and all permutations $\sigma \in S_{n}$
- Transitive-symmetric iff forall $\mathrm{i}, \mathrm{j} \in[n]$ there is some $\sigma \in S_{n}$ such that $\sigma(i)=j$ and $f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=f(x)$ for all $x \in\{1,-1\}^{n}$

Properties fulfilled by functions

Example

- For odd $n \operatorname{maj}_{n}$ has all properties and is the only monotone odd symmetric Boolen function on n bits
- maj_{n} (for odd n), $A N D_{n}, O R_{n}$, and $\chi_{i}($ for $i \in[n])$ are Boolean linear threshold functions
- $A N D_{n}, O R_{n}$ satisfy all properties except oddness for $n \neq 1$ and unanimity for $n=0$
- Dictator functions satisfy first three porperties but for $n \geq 2$ they do not satisfy the last two.

Properties fulfilled by functions

Example

- There are exactly $2 n+21$-juntas on n bits (namely the n dictators, the n negated dictators and the two constant functions)
- For all $d \in \mathbb{N}_{0}$ and for odd $n, m a j_{n}^{\otimes d}$ satisfies all properties except, in case of $n \geq 3$ and $d \geq 2$, symmetry
- For $w, s \in \mathbb{N}_{\geq 2}$, Tribes $_{w, s}$ is monotone, not odd, unanimous, not symmetric but transitive symmetric.

INFLUENCES AND DERIVATIVES

i-th Influence

Definition

- For $x \in\{1,-1\}^{n}, i \in[n]$ and $b \in\{1,-1\}$ let
- $x^{\oplus i}=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots x_{n}\right)$
- $x^{i \mapsto b}=\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots x_{n}\right)$
- i is called pivotal for $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ on input x iff $f(x) \neq f\left(x^{\oplus i}\right)$
- Influence of coordinate $i \in[n]$ on $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ is the probability that i is pivotal on a random input

$$
\operatorname{In} f_{i}(f)=\operatorname{Pr}_{x \sim\{1,-1\}^{n}}\left(f(x) \neq f\left(x^{\oplus i}\right)\right)
$$

Example

- $\operatorname{In} f_{i}\left(O R_{n}\right)=\operatorname{In} f_{i}\left(A N D_{n}\right)=2^{1-n}$
- $\operatorname{Inf} f_{i}\left(\operatorname{maj}_{n}\right)=\binom{n-1}{\frac{n-1}{2}} 2^{1-n}($ for odd $n)$

Definition

- The i-th derivative operator is defined by

$$
D_{i}: \mathbb{R}^{\{1,-1\}^{n}} \rightarrow \mathbb{R}^{\{1,-1\}^{n}}, f \mapsto\left(x \mapsto \frac{f\left(x^{i \mapsto 1}\right)-f\left(x^{i \mapsto-1}\right)}{2}\right)
$$

- Influence of coordinate $i \in[n]$ on $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$ is defined by

$$
\operatorname{Inf}_{i}(f)=\underset{x \sim\{1,-1\}^{n}}{\mathrm{E}}\left(D_{i} f(x)^{2}\right)=\left\|D_{i} f\right\|_{2}^{2}
$$

- i is called relevant for $f:\{1,-1\}^{n} \rightarrow \mathbb{R} \operatorname{iff} \operatorname{In} f_{i}(f)>0$ i.e., $f\left(x^{i \mapsto 1}\right) \neq f\left(x^{i \mapsto-1}\right)$ for at least one $x \in\{1,-1\}^{n}$

Remark

- For Boolean $f, x \mapsto D_{i} f(x)^{2}$ is an indicator function for whether i is pivotal for f on x. So $\operatorname{In} f_{i}(f)=\underset{x \sim\{1,-1\}^{n}}{\mathrm{E}}\left(D_{i} f(x)^{2}\right)$
- This justifies the generalization above.

Derivative and Influence

Remark

Let $i \in[n]$ and $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$. Then

1. $D_{i} f=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S \backslash\{i\}}$
2. $\operatorname{Inf}_{i}(f)=\sum_{\substack{ \\i \in[n]}}^{i \in S} \hat{f}(S)^{2}$

Wake-Up-Question: Prove the remark

Derivative and Influence

Remark

Let $i \in[n]$ and $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$. Then

1. $D_{i} f=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S \backslash\{i\}}$
2. $\operatorname{Inf}_{i}(f)=\sum_{\substack{ \\i \in[n]}}^{i \in S} \hat{f}(S)^{2}$

Wake-Up-Question: Prove the remark
Proof

1. Fourier-expand f in the definition of $D_{i} f$
2. Follows from 1.

Derivative and Influence

Proposition

Let $i \in[n]$ and $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$. Then

1. If f is monotone, then $\operatorname{Inf}_{i}(f)=\hat{f}(\{i\})$
2. If additionally f is transitive-symmetric, then $\operatorname{In} f_{i}(f) \leq \frac{1}{\sqrt{n}}$

Proof

1. $\operatorname{In} f_{i}(f)$

- $=\operatorname{Pr}_{x \sim\{1,-1\}^{n}}\left(f(x) \neq f\left(x^{\oplus i}\right)\right)$
- $=\operatorname{Pr}_{x \sim\{1,-1\}^{n}}\left(f\left(x^{i \mapsto 1}\right) \neq f\left(x^{i \mapsto-1}\right)\right)$
- $={ }_{x \sim\{1,-1\}^{n}}\left(\frac{f\left(x^{i \rightarrow 1}\right)-f\left(x^{i \rightarrow-1}\right)}{2}\right)$
(due to monotony)
- $=E\left(D_{i} f\right)$
- $=\widehat{D_{i}} f(\emptyset)=\hat{f}(\{i\})$

2. $1=\sum_{S \subseteq[n]} \hat{f}(S)^{2}$

- $\geq \sum_{i}^{n} \hat{f}(\{i\})^{2}$
- $=n \hat{f}(\{i\})^{2}$
- $=n \operatorname{Inf} f_{i}(f)^{2}$
(due to transitive symmetry)
(due to 1.)

ith Expectation and ith Laplacian

Definition

Let $i \in\{-1,1\}$. The ith Expectation E_{i} and Laplacian L_{i} on $\mathbb{R}^{\{1,-1\}^{n}}$ are defined by

- $E_{i} f(x)=E_{y \sim\{1,-1\}}\left(f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)\right)$
- $L_{i} f=f-E_{i} f$

Remark

Let $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$ and $x \in\{1,-1\}^{n}$

- $E_{i} f(x)=\frac{f(x)+f\left(x^{\oplus i}\right)}{2}$
- $f(x)=E_{i} f(x)+x_{i} D_{i} f(x)=E_{i} f(x)+L_{i} f(x)$
- $E_{i} f(x)=\sum_{s \subseteq[n]} \hat{f}(S) x^{s}$
- $L_{i} f(x)=\sum_{S \subseteq[n]}^{i \notin S} \hat{f}(S) x^{S}$
- $\left\langle L_{i} f, f\right\rangle=\left\langle L_{i} f, L_{i} f\right\rangle=\operatorname{Inf} f_{i}(f)$

Sensitivity

Definition

- The total influence of $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$ is $\operatorname{Inf}(f)=\sum_{i=}^{n} \operatorname{In} f_{i}(f)$
- The sensitivity $\operatorname{sens}_{f}(x)$ of $\mathrm{f}:\{1,-1\}^{n} \rightarrow\{1,-1\}$ at x is defined to be the number of pivotal coordinates for f on x

Theorem

Fix $n \in \mathbb{N}_{0}$. For $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$

- $E_{x}\left(\left\lvert\,\left\{i \in[n] \mid x_{i}=f(x)\right)=\frac{n}{2}+\frac{1}{2} \sum_{1 \leq i \leq n} \hat{f}(\{i\})\right.\right.$
- and for odd n this maximized iff $f=$ maj $_{n}$, hence among all monotone $f:\{1,-1\}^{n} \rightarrow\{1,-1\} \mathrm{maj}_{n}$ is the one with maximal total influence.

Proof:

- $\mathrm{lhs}=\sum_{1 \leq i \leq n} \frac{1+E_{x}\left(f(x) x_{i}\right)}{2}=\frac{n}{2}+\frac{1}{2} \sum_{1 \leq i \leq n}\left\langle f, \chi_{\{i\}}\right\rangle=\mathrm{rhs}$
- $\frac{1}{2} \sum_{1 \leq i \leq n} \hat{f}(\{i\})=E_{x}\left(f(x)\left(x_{1}+\cdots+x_{n}\right)\right) \leq E_{x}\left(\left|x_{1}+\cdots+x_{n}\right|\right)$ where equality holds iff $f(x)=\operatorname{sgn}\left(x_{1}+\cdots x_{n}\right)$ for all $x \in\{1,-1\}^{n}$ with $\left(x_{1}+\cdots x_{n}\right) \neq 0$. But if n is odd, then $\left(x_{1}+\cdots x_{n}\right) \neq 0$ for all $x \in\{1,-1\}^{n}$

Getting famous with Fourier analysis research...

- A complexity measure related to sensitivity plays a prominent role in a recent breakthrough result described in a short paper (Huang 19)
- Concerns the sensitivity conjecture (Nisan/Szegedy 92)
- Roughly: Most complexity measures on boolean functions could be shown to be polynomially reducible to each other
- For a sensitivity based complexity this could not be proved - until Huang's insight
- There are many nice explanations on various theoryrelated blogs (see here for the links) and even a short twitter explanation by O‘Donnell.

Discrete gradient and Laplacian

Definition

- The discrete gradient operator is defined by

$$
\nabla: \mathbb{R}^{\{1,-1\}^{n}} \rightarrow\left(\mathbb{R}^{n}\right)^{\{1,-1\}^{n}}, f \mapsto\left(x \mapsto\left(\begin{array}{c}
D_{1} f(x) \\
\ldots \\
D_{2} f(x)
\end{array}\right)\right)
$$

- The Laplacian is $L=\sum_{i}^{n} L_{i}$

Remark

Let $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$

- $L f=\sum_{S \subseteq[n]}|S| \hat{f}(S) \chi_{S}$
- $\langle L f, f\rangle=I(f)$
- $I(f)=\sum_{S \subseteq[n]}|S| \hat{f}(S)^{2}=\sum_{k=0}^{n} k| | f_{=k}| |_{2}^{2}$

Discrete gradient and Laplacian

Remark

If $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ and $x \in\{1,-1\}^{n}$

- $\left|\mid \nabla f(x) \|_{2}^{2}=\operatorname{sens}_{f}(x)\right.$
- $L f(x)=f(x) \operatorname{sens}_{f}(x)$
- $I(f)=E_{S \sim \hat{f}^{2}}(|S|)$

Proposition (Poincare Lemma)

Let $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$. ThenVar $(f) \leq I(f)$
Proof:

- $\operatorname{Var}(f)=\sum_{\substack{S \subseteq[n] \\ S \neq \emptyset}} \hat{f}(S)^{2} \leq \sum_{S \subseteq[n]}|S| \hat{f}(S)^{2}=I(f)$

NOISE STABILITY AND ARROW'S PROOF OF THEOREM

Noise Stability: Motivation

- $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ as voting rule with 2 candidates and n voters
- Assume impartial culture assumption: votes $x=\left(x_{1}, \ldots, x_{n}\right)$ chosen independently
- Now assume noise in misrecording y_{i} of vote x_{i} with chance $1-\rho, \rho \in[0,1]$
- Want to know whether noise effects outcome, i.e., what is probability of $f(x)=f(y)$?
- Leads to notion of noise stability

Correlated sampling

Definition

- For $\rho \in[0,1]$ and fixed $x \in\{1,-1\}^{n}$ the sample $y \sim N_{\rho}(x)$ is drawn as follows :
- $y_{i}=x_{i}$ with probability ρ
- $y_{i}=$ uniformly random with probability $1-\rho$
- More generally for $\rho \in[-1,1]$ and fixed $x \in\{1,-1\}^{n}$
$y \sim N_{\rho}(x)$ is drawn as follows:
- $y_{i}=x_{i} \quad$ with probability $\frac{1}{2}+\frac{1}{2} \rho$
- $y_{i}=-x_{i}$ with probability $\frac{1}{2}-\frac{1}{2} \rho$

We say that y is ρ-correlated to x

- If $x \sim\{1,-1\}^{n}$ and $y \sim N_{\rho}(x)$ then (x, y) is a ρ-correlated pair. In these slides we abbreviate this with $(x, y) \approx \rho$

This is equivalent to saying $E\left(x_{i}\right)=0, E\left(y_{i}\right)=0$ and $E\left(x_{i}, y_{i}\right)=\rho$ for each i

Noise Stability: Definition

$f:\{1,-1\}^{n} \rightarrow\{1,-1\}$ as voting rule with 2 candidates and n voters

Definition

For $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$ and $\rho \in[-1,1]$ the noise stability of f at ρ is $\operatorname{Stab}_{\rho}(f)=E_{(x, y) \approx \rho}(f(x) f(y))$

Remark

$$
\text { If } f:\{1,-1\}^{n} \rightarrow\{1,-1\} \text { we have }
$$

$$
\begin{aligned}
\operatorname{Stab}_{\rho}(f)=\operatorname{Pr}_{(x, y) \approx \rho}(f(x) & =f(y))-\operatorname{Pr}_{(x, y) \approx \rho}(f(x) \neq f(y)) \\
& =\operatorname{2Pr}_{(x, y) \approx \rho}(f(x)=f(y))-1
\end{aligned}
$$

Example

- The constant functions have noise stability 1 at each $\rho \in[-1,1]$
- For dictators
$\operatorname{Stab}_{\rho}\left(\chi_{i}\right)=\rho$ for all $\rho \in[-1,1]$
- More generally for parities one has

$$
\begin{aligned}
& \operatorname{Stab}_{\rho}\left(\chi_{S}\right)=E_{(x, y) \sim \rho}\left(x^{S} y^{S}\right)=E_{(x, y) \sim \rho}\left(\prod_{i \in S} x_{i} y_{i}\right) \\
= & \prod_{i \in S} E_{x_{i}, y_{i}}\left(x_{i} y_{i}\right)\left(\text { by (independece of }\left(x_{i}, y_{i}\right) \text { accross } i\right) \\
= & \prod_{i \in S} \rho=\rho^{|S|}
\end{aligned}
$$

Noise operator

Definition

Let $\rho \in[-1,1]$. The noise operator T_{ρ} with parameter ρ is the vector space endomorphism of $\mathbb{R}^{\{1,-1\}^{n}}$ defined by

$$
T_{\rho} f(x)=E_{y \sim N_{\rho}(x)}(f(y))
$$

for all $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$ and $x \in\{1,-1\}^{n}$

Theorem

For $\rho \in[-1,1]$ and $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$:

$$
T_{\rho} f=\sum_{S \subseteq[n]} \rho^{|S|} \hat{f}(S) \chi_{S}=\sum_{k=0}^{n} \rho^{k} f_{=k}
$$

Proof

- By linearity it is sufficient to prove $T_{\rho} \chi_{S}=\rho^{|S|} \chi_{S}$, but this follows from
- $T_{\rho} \chi_{S}(x)=E_{y \sim N_{\rho}(x)}\left(y^{S}\right)=\prod_{i \in S} E_{y \sim N_{\rho}(x)}\left(y_{i}\right)=\prod_{i \in S}\left(\rho x_{i}\right)=\rho^{|S|} \chi_{S}$
- Here we used that $E_{y \sim N_{\rho}(x)}\left(y_{i}\right)=\left(\frac{1}{2}+\frac{1}{2} \rho\right) x_{i}+\left(\frac{1}{2}-\frac{1}{2} \rho\right)\left(-x_{i}\right)=\rho x_{i}$

Stability and Noise operator

Theorem

For $\rho \in[-1,1]$ and $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$

$$
\operatorname{Stab}_{\rho}(f)=\left\langle f, T_{\rho} f\right\rangle
$$

Proof

- $\operatorname{Stab}_{\rho}(f)=\mathrm{E}_{(x, y) \approx \rho}(f(x) f(y))=E_{x \sim\{1,-1\}^{n}}\left(f(x) E_{y \sim N_{\rho}(x)}(f(y))\right)$

Corollary

For $\rho \in[-1,1]$ and $f:\{1,-1\}^{n} \rightarrow \mathbb{R}$
$\operatorname{Stab}_{\rho}(f)=\sum_{S \subseteq[n]} \rho^{|S|} \hat{f}(S)^{2}=\sum_{k=0}^{n} \rho^{k}| | f_{=k} \|_{2}^{2}$
In particular
$\operatorname{Stab}_{\rho}(f)=E_{S \sim \hat{f}^{2}}\left(\rho^{|S|}\right)$ for all $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$

Condorcet election

- For two candidates, majority function has all good properties
- For at least 3 candidates problem of social becomes much mor difficult
- Remember Condorcet election:
- Compare each pair of alternatives
- Declare "a" is socially preferred to "b" if more voters strictly prefer a to b
- Condorcet winner: Wins all of the pairwise elections in which he participates (for 3 candidates there are two such pairwise elections in which he participates).

Boolean Encoding of Condorcet

- Encode preference on candidates in a pairwise election by $\{1,-1\}$
- Encode a ranking of an individual voter w.r.t. set of candidates $\{A, B, C\}$ by a 3-tuple of consistent preferences, i.e., by an element of the set 6-element set

$$
\begin{aligned}
& R=\{(\quad A(1) \text { vs. } B(-1) ?, B(1) \text { vs } C(-1) ?, C(1) \text { vs. } A(-1))\}= \\
& =\{(1,1,-1),(1,-1,-1),(-1,1,-1),(-1,1,1),(1,-1,1),(-1,-1,1)\}
\end{aligned}
$$

- E.g. $(1,1,-1)$ encodes ranking: $A<B<C$: A preferred to B, B preferred to C (and, consistently, A preferred to C).

Example

Three voters ($n=3$), three candidates, $f=m a j_{n}$ with existing Condorcet winner a:

	Voter rankings				
	$\# 1$	$\# 2$	$\# 3$		Societal aggregation
A (1) vs. B (-1)	1	1	-1	$=x$	$f(x)=1$
B (1) vs. C (-1)	1	-1	1	$=y$	$f(y)=1$
C (1) vs. A (-1)	-1	-1	1	$=z$	$f(z)=-1$

Example

Three voters ($\mathrm{n}=3$), three candidates , $\mathrm{f}=\mathrm{maj}_{\mathrm{n}}$ without existing Condorcet winner

	Voter rankings				
	$\# 1$	$\# 2$	$\# 3$		Societal aggregation
A (1) vs. B (-1)	1	1	-1	$=x$	$f(x)=1$
B (1) vs. C (-1)	1	-1	1	$=y$	$f(y)=1$
C (1) vs. A (-1)	-1	1	1	$=z$	$f(z)=1$

Societal outcome (1,1,1) not consistent (circular)

Theorem

Consider a 3-candidate Condorcet election using the same voting rule
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ for each pairwise election.
If each of the n voters chooses uniformly and independently one of the $3!=6$ candidate rankings (of R), then the probability of a Condorcet winner is precisely : $\frac{3}{4}-\frac{3}{4} S_{\text {Sab }}^{-\frac{1}{3}} f^{f}$
Proof

- Let $\mathrm{x}, y, z \in\{1,-1\}^{n}$ be the votes for the pairwise elections A vs B, B vs C, A vs. C
- By assumption $\left(x_{i}, y_{i}, z_{i}\right)$ are chosen uniformly and independently out of R
- Functiong: $\{-1,1\}^{3} \rightarrow\{0,1\}, w \mapsto \frac{3}{4}-\frac{1}{4} w_{1} w_{2}-\frac{1}{4} w_{1} w_{3}-\frac{1}{4} w_{2} w_{3}$ is indicator function for R
- Probability of Condorcet winner is

$$
\begin{aligned}
& E[g(f(x), f(y), f(z))] \\
& =\frac{3}{4}-\frac{1}{4} E[f(x) f(y)]-\frac{1}{4} E[f(x) f(z)]-\frac{1}{4} E[f(y) f(z)] .
\end{aligned}
$$

Theorem

Consider a 3-candidate Condorcet election using the same voting rule
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ for each pairwise election.
If each of then voters chooses uniformly and independently one of the $3!=6$ candidate rankings (of R), then the probability of a Condorcet winner is precisely : $\frac{3}{4}-\frac{3}{4} S_{\text {Sab }}^{-\frac{1}{3}} f^{f}$
Proof (continued)

- Probability of Condorcet winner is

$$
\begin{aligned}
& E[g(f(x), f(y), f(z))] \\
& =\frac{3}{4}-\frac{1}{4} E[f(x) f(y)]-\frac{1}{4} E[f(x) f(z)]-\frac{1}{4} E[f(y) f(z)] .
\end{aligned}
$$

- Now $E\left[x_{i}\right]=0=E\left[y_{i}\right]$ and $E\left[x_{i} y_{i}\right]=\frac{2}{6}-\frac{4}{6}=-\frac{1}{3}$ for each i
- So x, y are $-\frac{1}{3}$ correlated, so $E(f(x) f(y))=$ Stab $_{-\frac{1}{3}}(f)$.
- Similarly $E(f(x) f(z))=E(f(y) f(z))=\operatorname{Stab}_{-\frac{1}{3}}(f)$.

Theorem

In a 3 -candidate Condorcet election using $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, the probability of a Condorcet winner is at most: $\frac{7}{9}+\frac{2}{9}| | f_{=1} \|_{2}^{2}$

Proof

- $\frac{3}{4}-\frac{3}{4} S t a b_{-\frac{1}{3}} f$

$$
=\frac{3}{4}-\frac{3}{4}\left(| | f_{=0}| |_{2}^{2}-\frac{1}{3}\left(| | f _ { = 1 } \left\|_{2}^{2}+\frac{1}{9}| | f_{=2}\left|\left\|\left._{2}^{2}-\frac{1}{27}| | f_{=3} \right\rvert\,\right\|_{2}^{2}+\cdots\right)\right.\right.\right.
$$

- $\leq \frac{3}{4}\left(1+\frac{1}{3}\left(| | f_{=1}\left|\left\|_{2}^{2}+\frac{1}{27}\right\| f_{=3}\right|\left\|\left._{2}^{2}+\frac{1}{243}| | f_{=5} \right\rvert\,\right\|_{2}^{2}+\cdots\right)\right.$
- $\leq \frac{3}{4}\left(1+\frac{1}{3}\left(\left\|f_{=1}\right\|_{2}^{2}+\frac{1}{27}\left(\left\|f_{=3}\right\|_{2}^{2}+\left\|f_{=5}\right\|_{2}^{2}+\cdots\right)\right)\right.$
- $\leq \frac{3}{4}\left(1+\frac{1}{3}\left(| | f_{=1}\left|\left\|_{2}^{2}+\frac{1}{27}\left(1-\left|\left|f_{=1}\right| \|_{2}^{2}\right)=\frac{7}{9}+\frac{2}{9}| | f_{=1} \|_{2}^{2}\right.\right.\right.\right.\right.$

Theorem (Arrows' theorem)

Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is a unanimous voting rule used in a 3 -candidate Condorcet election. If there is always a Condorcet winner, then f must be a dictatorship.

Proof

- If there is always a Condorcet winner, then

$$
1 \leq \frac{7}{9}+\frac{2}{9}| | f_{=1}\left\|_{2}^{2} \leq \frac{7}{9}+\frac{2}{9}\right\| f \|_{2}^{2}=\frac{7}{9}+\frac{2}{9}=1
$$

- Hence $\left\|f_{=1}\right\|_{2}^{2}=1=| | f \|_{2}^{2}$
- Hence $f=f_{=1}$
- But this can hold only if f is either a dictator or a negated dictator. (*)
- As f is unanimous, f is a dictator.

Wake-up Question

- Show (*): If $f=f_{=1}$ then f is either a dictator or a negated dictator.

Answer to Wake-up Question

- Show (*): If $f=f_{=1}$ then f is either a dictator or a negated dictator.
- Proof:
- $f=\sum_{i \in[n]} \hat{f}(\{i\}) x_{i}$
- Feach $x \in\{1,-1\}^{n}$ and $i \in[n]$
- Either $f(x)=f\left(x^{\oplus i}\right)$.
- $\operatorname{Or} f(x) \neq f\left(x^{\oplus i}\right)$
- In the first case $|\hat{f}(\{i\})|=0$
- In the second case $|\hat{f}(\{i\})|=1$
- As $\left|\left|f_{=1}\right|\right|_{2}^{2}=1$, exactly for one $i \in[n]:|\hat{f}(\{i\})|=1$
- So $f=\chi_{i}$ or $f=-\chi_{i}$ for some i

APPENDIX

References

- (Kalai 02)
G. Kalai. A fourier-theoretic perspective on the condorcet paradox and arrow's theorem. Advances in Applied Mathematics, 29(3):412-426, 2002.
- (Nalon/Spencer 04)
N. Alon and J. Spencer. The Probabilistic Method. Wiley-Interscience series in discrete mathematics and optimization. Wiley, 2004.
- (Huang 19)
H. Huang. Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture. arXiv e-prints, page arXiv:1907.00847, July 2019.
- (Nisan/Szegedy 92)
N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC '92, pages 462-467, New York, NY, USA, 1992. Association for Computing Machinery.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

