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Todays and next weeks lecture based on 

• Lecture notes „Fourier Analysis of Boolean Functions, Winter term 16/17“  
M. Schweighofer
http://www.math.uni-konstanz.de/~schweigh/ 

• Ryan O‘Donnell: Fourier Analyis of Boolean Functions., CUP 2014. 
Free PDF available at 
https://arxiv.org/pdf/2105.10386.pdf

• Talk of Ronald de Wolf: „Fourier analysis of Boolean functions: Some
beautiful examples“ available at
https://nvti.nl/slides/deWolf.pdf
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SOCIAL CHOICE IN FOURIER 
ANAYLYIS
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Motivation

• Social theory can be elegantly treated with Fourier 
Analysis

• The main aim of this lecture is:  
– sketch the basic ideas on Fouries analysis treatment of

social theory

– and as a highlight demonstrate G. Kalai‘s Fourier-
theoretic proof of Arrow‘s theorem (Kalai 02)

• As a side effect (as before) we will see the power of the
probabilistic method. (Nalon/Spencer 04)
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Social Choice

𝑓: 1, −1 & → {1, −1} as voting rule with 2 candidates and 𝑛 voters 

5

Definition
• 𝑚𝑎𝑗& 𝑥 = sgn(𝑥4 + ⋯+ 𝑥&) (Majorityfunction)

(for 𝑛 even 𝑓(0) assigned arbitrarily). 

• 𝑓 𝑥 = sgn(𝑎4𝑥4 + ⋯+ 𝑎9𝑥&) (weightedmajority/ 
forsome𝑎 ∈ 1,−1 & linear threshold) 

• 𝐴𝑁𝐷& 𝑥 = +1unless all 𝑥> = −1 (AND function)

• 𝑂𝑅& 𝑥 = −1unless all 𝑥> = 1 (OR function)

• 𝜒> 𝑥 = 𝑥> (ithdictatorfunction)

• 𝑓 𝑥 = 𝑔(𝑥>C,…,𝑥>E ) (k-junta)
forsome𝑔: 1,−1 F → {1,−1}and 𝑖4,…, 𝑖F ∈ [𝑛]



Social Choice

𝑓: 1, −1 & → {1, −1} as voting rule with 2 candidates and 𝑛 voters 
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Definition
• 𝑚𝑎𝑗&

⊗KL4 𝑥(4), … , 𝑥(&) (depth-d recursive majority)

= 𝑚𝑎𝑖& 𝑚𝑎𝑗&
⊗K(𝑥(4)) , … ,𝑚𝑎𝑗&

⊗K 𝑥(&)

(for 𝑑 ∈ ℕO, 𝑛 odd, and all 𝑥(>) ∈ 1, −1 &P)

• 𝑇𝑟𝑖𝑏𝑒𝑠V,W: 1, −1 VW → 1,−1 (tribes function)
𝑇𝑟𝑖𝑏𝑒𝑠V,W 𝑥(4), … , 𝑥(W) =

𝑂𝑅W 𝐴𝑁𝐷V 𝑥 4 , … , 𝐴𝑁𝐷V 𝑥 W

(for 𝑤, 𝑠 ∈ ℕO, 𝑥(>) ∈ 1, −1 V)

• Depth-2 recursive majority used in presidental elections in USA 



Social Choice

𝑓: 1, −1 & → {1, −1} as voting rule with 2 candidates and 𝑛 voters 

7

Definition
𝑓: 1, −1 & → ℝ is called
• monotone iff f x ≤ 𝑓(𝑦) forall 𝑥,𝑦 ∈ 1, ,−1 & with 𝑥> ≤ 𝑦> forall 

𝑖 ∈ [𝑛]
• odd iff 𝑓 𝑥 = −𝑓 −𝑥 forall 𝑥 ∈ 1,−1 &

• unanimous iff 𝑓 1,…,1 = 1and𝑓 −1,…,−1 = −1
• symmetric iff 𝑓 𝑥d(4),…,𝑥d(&) = 𝑓(𝑥)

forall  𝑥 ∈ 1,−1 & andall permutations𝜎 ∈ 𝑆&
• Transitive-symmetric iff for all i, j ∈ 𝑛 there issome𝜎 ∈ 𝑆&

such that𝜎 𝑖 = 𝑗 and 𝑓 𝑥d(4),…,𝑥d(&) = 𝑓(𝑥)
forall  𝑥 ∈ 1,−1 &



Properties fulfilled by functions
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• For odd 𝑛 𝑚𝑎𝑗& has all properties and is the only monotone odd
symmetric Boolen function on 𝑛 bits

• 𝑚𝑎𝑗& (for odd 𝑛), 𝐴𝑁𝐷&, 𝑂𝑅& , and 𝜒> (for 𝑖 ∈ [𝑛]) are Boolean linear 
threshold functions

• 𝐴𝑁𝐷&, 𝑂𝑅&satisfy all properties except oddness for 𝑛 ≠ 1 and
unanimity for 𝑛 = 0

• Dictator functions satisfy first three porperties but for 𝑛 ≥ 2 they do 
not satisfy the last two. 

Example



Properties fulfilled by functions
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• There are exactly 2𝑛 + 2 1-juntas on 𝑛 bits (namely the 𝑛 dictators, the
𝑛 negated dictators and the two constant functions) 

• For all 𝑑 ∈ ℕO and for odd 𝑛, 𝑚𝑎𝑗&
⊗K satisfies all properties except,  in 

case of 𝑛 ≥ 3 and 𝑑 ≥ 2, symmetry

• For𝑤, 𝑠 ∈ ℕl9, T𝑟𝑖𝑏𝑒𝑠V,W is monotone, not odd, unanimous, not 
symmetric but transitive symmetric. 

Example



INFLUENCES AND DERIVATIVES
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i-th Influence
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Definition
• For 𝑥 ∈ 1, −1 & , 𝑖 ∈ 𝑛 and 𝑏 ∈ 1, −1 let 

• 𝑥⊕> = 𝑥4, … , 𝑥>n4, −𝑥>, 𝑥>L4, … 𝑥&
• 𝑥>↦p = 𝑥4, … , 𝑥>n4, 𝑏, 𝑥>L4, … 𝑥&

• 𝑖 is called pivotal for 𝑓: 1, −1 & → {1, −1} on input 𝑥 iff
𝑓 𝑥 ≠ 𝑓(𝑥⊕>)

• Influenceofcoordinate𝑖 ∈ 𝑛 on 𝑓: 1, −1 & → {1, −1} is the
probability that 𝑖 is pivotal on a random input
𝐼𝑛𝑓> 𝑓 = Pr

t∼ 4,n4 v(𝑓 𝑥 ≠ 𝑓(𝑥⊕>))

• 𝐼𝑛𝑓> 𝑂𝑅& = 𝐼𝑛𝑓> 𝐴𝑁𝐷& = 24n&

• 𝐼𝑛𝑓> 𝑚𝑎𝑗& =
𝑛 − 1
&n4
9

24n& (for odd 𝑛)

Example



Remark

• For Boolean 𝑓, 𝑥 ↦ 𝐷>𝑓 𝑥 9 is an indicator function for whether 𝑖 is
pivotal for 𝑓 on 𝑥.   So 𝐼𝑛𝑓> 𝑓 = E

t∼ 4,n4 v(𝐷>𝑓 𝑥 9)

• This justifies the generalization above. 
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Definition
• The 𝑖-th derivative operator is defined by

𝐷>: ℝ 4,n4 v → ℝ 4,n4 v,	𝑓 ↦ (𝑥 ↦ y tz↦C ny tz↦{C

9
)

• Influenceofcoordinate𝑖 ∈ 𝑛 on𝑓: 1, −1 & → ℝ is defined by

𝐼𝑛𝑓> 𝑓 = E
t∼ 4,n4 v(𝐷>𝑓 𝑥 9) = 𝐷>𝑓 9

9

• 𝑖 is called relevant for 𝑓: 1, −1 & → ℝ iff 𝐼𝑛𝑓> 𝑓 > 0
i.e., 𝑓 𝑥>↦4 ≠ 𝑓 𝑥>↦n4 for at least one 𝑥 ∈ 1, −1 &



Derivative and Influence
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Remark
Let 𝑖 ∈ [𝑛] and 𝑓: 1, −1 & → ℝ . Then
1. 𝐷>𝑓 = ∑�⊆[&]

>∈�

�𝑓 𝑆 𝜒�∖{>}

2. 𝐼𝑛𝑓>(𝑓) = ∑�⊆[&]
>∈�

�𝑓 𝑆 9

Wake-Up-Question: Prove the remark



Derivative and Influence
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Remark
Let 𝑖 ∈ [𝑛] and 𝑓: 1, −1 & → ℝ . Then
1. 𝐷>𝑓 = ∑�⊆[&]

>∈�

�𝑓 𝑆 𝜒�∖{>}

2. 𝐼𝑛𝑓>(𝑓) = ∑�⊆[&]
>∈�

�𝑓 𝑆 9

Proof 
1. Fourier-expand 𝑓 in the definition of 𝐷>𝑓
2. Follows from 1. 

Wake-Up-Question: Prove the remark



Derivative and Influence
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Proposition 
Let 𝑖 ∈ [𝑛] and 𝑓: 1, −1 & → {1, −1} . Then
1. If 𝑓 is monotone, then  𝐼𝑛𝑓>(𝑓) = �𝑓({𝑖})
2. If additionally 𝑓 is transitive-symmetric, then 𝐼𝑛𝑓> 𝑓 ≤ 4

&

Proof 
1. 𝐼𝑛𝑓> 𝑓

• = Pr
t∼ 4,n4 v

𝑓 𝑥 ≠ 𝑓 𝑥⊕>

• = Pr
t∼ 4,n4 v

(𝑓 𝑥>↦4 ≠ 𝑓 𝑥>↦n4 )

• = E
t∼ 4,n4 v

(y tz↦C ny tz↦{C

9
) (due to monotony)

• = 𝐸 𝐷>𝑓
• = �𝐷>𝑓 ∅ = �𝑓 𝑖

2. 1 = ∑�⊆[&] �𝑓 𝑆 9

• ≥ ∑>& �𝑓 𝑖 9

• = 𝑛 �𝑓 𝑖 9 (due to transitive symmetry ) 
• = 𝑛 𝐼𝑛𝑓> 𝑓 9 (due to 1.)



ith Expectation and ith Laplacian
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Definition
Let 𝑖 ∈ {−1,1}. The ith Expectation 𝐸> and Laplacian 𝐿> on 
ℝ 4,n4 v

are defined by

• 𝐸>𝑓 𝑥 = 𝐸�∼{4,n4}(𝑓(𝑥4, … , 𝑥>n4, 𝑦, 𝑥>L4, … , 𝑥&))
• 𝐿>𝑓 = 𝑓 − 𝐸>𝑓

Remark
Let 𝑓: 1, −1 & → ℝ and 𝑥 ∈ 1, −1 &

• 𝐸>𝑓 𝑥 = y t Ly t⊕z

9
• 𝑓 𝑥 = 𝐸>𝑓 𝑥 + 𝑥>𝐷>𝑓 𝑥 = 𝐸>𝑓 𝑥 + 𝐿>𝑓 𝑥
• 𝐸>𝑓(𝑥) = ∑�⊆[&]

>∉�

�𝑓(𝑆) 𝑥�

• 𝐿>𝑓 𝑥 = ∑�⊆[&]
>∉�

�𝑓(𝑆) 𝑥�

• 𝐿>𝑓, 𝑓 = 𝐿>𝑓, 𝐿>𝑓 = 𝐼𝑛𝑓>(𝑓)



Sensitivity
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Definition
• The total influence of 𝑓: 1, −1 & → ℝ is 𝐼𝑛𝑓 𝑓 = ∑>�& 𝐼𝑛𝑓>(𝑓)
• The sensitivity 𝑠𝑒𝑛𝑠y(𝑥) of f: 1, −1 & → {1, −1} at 𝑥 is defined to be

the number of pivotal coordinates for 𝑓 on 𝑥

Theorem 
Fix 𝑛 ∈ ℕO. For 𝑓: 1, −1 & → {1, −1}
• 𝐸t(|{𝑖 ∈ 𝑛 ∣ 𝑥> = 𝑓 𝑥 ) = &

9
+ 4

9
∑4�>�& �𝑓( 𝑖 )

• and for odd n this maximized iff 𝑓 = 𝑚𝑎𝑗&, hence among all monotone 
𝑓: 1, −1 & → {1, −1} 𝑚𝑎𝑗&is the one with maximal total influence. 

Proof :

• lhs = ∑4�>�&
4L��(y t tz)

9
= &

9
+ 4

9
∑4�>�& ⟨𝑓, 𝜒{>}⟩ = rhs

• 4
9
∑4�>�& �𝑓( 𝑖 ) = 𝐸t 𝑓 𝑥 𝑥4 + ⋯+ 𝑥& ≤ 𝐸t(|𝑥4 + ⋯+ 𝑥&|)

where equality holds iff 𝑓(𝑥) = sgn(𝑥4 + ⋯𝑥&) for all 𝑥 ∈ 1, −1 & with
(𝑥4+⋯𝑥&) ≠ 0. But if 𝑛 is odd, then (𝑥4+⋯𝑥&) ≠ 0 for all 𝑥 ∈ 1, −1 &



Getting famous with Fourier analysis research...

• A complexity measure related to sensitivity plays a 
prominent role in a recent breakthrough result
described in a short paper (Huang 19) 

• Concerns the sensitivity conjecture (Nisan/Szegedy 92)
– Roughly: Most complexity measures on boolean

functions could be shown to be polynomially reducible
to each other

– For a sensitivity based complexity this could not be
proved - until Huang‘s insight

• There are many nice explanations on various theory-
related blogs (see here for the links) and even a short 
twitter explanation by O‘Donnell. 
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https://arxiv.org/abs/1907.00847
https://www.researchgate.net/publication/2508255_On_the_Degree_of_Boolean_Functions_as_Real_Polynomials
https://rjlipton.wpcomstaging.com/2019/07/12/tools-and-sensitivity/?utm_source=pocket_reader
https://twitter.com/BooleanAnalysis/status/1145837576487612416


Discrete gradient and Laplacian
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Definition
• The discrete gradient operator is defined by

∇: ℝ 4,n4 v → (ℝ&) 4,n4 v
, 𝑓 ↦ 𝑥 ↦

𝐷4𝑓 𝑥
…

𝐷9𝑓 𝑥
• The Laplacian is 𝐿 = ∑>& 𝐿>

Remark
Let 𝑓: 1, −1 & → ℝ
• 𝐿𝑓 = ∑�⊆[&] |𝑆| �𝑓(𝑆) 𝜒�
• 𝐿𝑓, 𝑓 = 𝐼 𝑓
• 𝐼 𝑓 = ∑�⊆ & 𝑆 �𝑓 𝑆 9 = ∑F�O& 𝑘 𝑓�F 9

9



Discrete gradient and Laplacian
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Remark
If  𝑓: 1, −1 & → {1, −1} and 𝑥 ∈ 1, −1 &

• ∇𝑓 𝑥 9
9
= 𝑠𝑒𝑛𝑠y 𝑥

• 𝐿𝑓 𝑥 = 𝑓 𝑥 𝑠𝑒𝑛𝑠y 𝑥
• 𝐼 𝑓 = 𝐸�∼ �y� (|𝑆|)

Proposition (Poincare Lemma)
Let 𝑓: 1, −1 & → ℝ. Then 𝑉𝑎𝑟 𝑓 ≤ 𝐼(𝑓)

Proof :
• 𝑉𝑎𝑟 𝑓 = ∑�⊆[&]

��∅

�𝑓 𝑆 9 ≤ ∑�⊆ & 𝑆 �𝑓 𝑆 9 = 𝐼(𝑓)



NOISE STABILITY AND ARROW‘S 
PROOF OF THEOREM
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Noise Stability: Motivation

• 𝑓: 1, −1 & → {1, −1} as voting rule with 2 candidates
and 𝑛 voters

• Assume impartial culture assumption:
votes 𝑥 = (𝑥4, … , 𝑥&) chosen independently

• Now assume noise in misrecording 𝑦> of vote 𝑥>with
chance 1 − 𝜌, 𝜌 ∈ [0,1]

• Want to know whether noise effects outcome, i.e., what
is probability of 𝑓 𝑥 = 𝑓(𝑦)? 

• Leads to notion of noise stability

22



Correlated sampling
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Definition
• For 𝜌 ∈ 0,1 and fixed 𝑥 ∈ 1, −1 & the sample 𝑦 ∼ 𝑁�(𝑥) is 

drawn as follows : 

• 𝑦> = 𝑥> with probability 𝜌
• 𝑦>=	uniformly random with probability 1 − 𝜌

• More generallyfor𝜌 ∈ −1,1 and fixed 𝑥 ∈ 1, −1 &

𝑦 ∼ 𝑁�(𝑥) is drawn as follows : 

• 𝑦> = 𝑥> with probability
4
9
+ 4

9
𝜌

• 𝑦>=	−𝑥> with probability
4
9
− 4

9
𝜌

Wesaythat𝑦 is 𝜌-correlated to 𝑥
• If 𝑥 ∼ 1,−1 & and 𝑦 ∼ 𝑁�(𝑥) then (𝑥, 𝑦) is a 𝜌-correlated

pair. In these slides we abbreviate this with (𝑥, 𝑦) ≈ 𝜌

This is equivalent to saying 𝐸 𝑥> = 0, 𝐸 𝑦> = 0 and 𝐸 𝑥>, 𝑦> = 𝜌 for each 𝑖



Noise Stability: Definition

𝑓: 1, −1 & → {1, −1} as voting rule with 2 candidates and 𝑛 voters 
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Definition
For 𝑓: 1, −1 & → ℝ and 𝜌 ∈ −1,1 the noise stability of 𝑓 at 𝜌 is 

𝑆𝑡𝑎𝑏� 𝑓 = 𝐸 t,� ≈�(𝑓 𝑥 𝑓(𝑦))

Remark
If 𝑓: 1, −1 & → {1, −1} we have
𝑆𝑡𝑎𝑏� 𝑓 = Pr

t,� ≈�
(𝑓 𝑥 = 𝑓(𝑦)) - Pr

t,� ≈�
(𝑓 𝑥 ≠ 𝑓(𝑦))

= 2Pr
t,� ≈�

𝑓 𝑥 = 𝑓 𝑦 − 1
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• The constant functions have noise stability 1 at each 𝜌 ∈ [−1,1]
• For dictators

𝑆𝑡𝑎𝑏� 𝜒> = 𝜌 for all 𝜌 ∈ [−1,1]
• More generally for parities one has

𝑆𝑡𝑎𝑏� 𝜒� = 𝐸 t,� ≈� 𝑥�𝑦� = 𝐸 t,� ≈� �
>∈�

𝑥>𝑦>

= ∏>∈� 𝐸tz,�z(𝑥>𝑦>) (by (independece of (𝑥>, 𝑦>) accross 𝑖)
= ∏>∈� 𝜌 = 𝜌|�|

Example



Noise operator

26

Definition
Let 𝜌 ∈ [−1,1]. The noise operator 𝑇� with parameter 𝜌 is the
vector space endomorphism of ℝ 4,n4 v

defined by
𝑇�𝑓(𝑥) = 𝐸�∼��(t) (𝑓(𝑦))

for all 𝑓: 1, −1 & → ℝ and 𝑥 ∈ 1, −1 &

Theorem
For 𝜌 ∈ −1,1 and 𝑓: 1, −1 & → ℝ : 

𝑇�𝑓 =  
�⊆[&]

𝜌 � �𝑓 𝑆 𝜒� =  
F�O

&

𝜌F𝑓�F

Proof 
• By linearity it is sufficient to prove 𝑇�𝜒� = 𝜌|�|𝜒�, but this follows from
• 𝑇�𝜒�(𝑥) = 𝐸�∼�� t 𝑦� = ∏>∈� 𝐸�∼��(t) 𝑦> = ∏>∈�(𝜌𝑥>) = 𝜌|�|𝜒�
• Here we used that 𝐸�∼��(t) 𝑦> = 4

9
+ 4

9
𝜌 𝑥> +

4
9
− 4

9
𝜌 −𝑥> = 𝜌𝑥>



Stability and Noise operator
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Corollary
For 𝜌 ∈ −1,1 and 𝑓: 1, −1 & → ℝ
𝑆𝑡𝑎𝑏� 𝑓 = ∑�⊆[&] 𝜌 � �𝑓 𝑆 9 = ∑F�O& 𝜌F 𝑓�F 9

9

In particular
𝑆𝑡𝑎𝑏� 𝑓 = 𝐸�∼ �y� (𝜌|�|) for all 𝑓: 1, −1 & → {1, −1}

Proof 
• 𝑆𝑡𝑎𝑏� 𝑓 = E t,� ≈� 𝑓 𝑥 𝑓 𝑦 = 𝐸t∼ 4,n4 v(𝑓 𝑥 𝐸�∼�� t (𝑓(𝑦)))

Theorem
For 𝜌 ∈ −1,1 and 𝑓: 1, −1 & → ℝ

𝑆𝑡𝑎𝑏� 𝑓 = ⟨𝑓, 𝑇�𝑓⟩



Condorcet election

• For two candidates, majority function has all good
properties

• For at least 3 candidates problem of social becomes
much mor difficult

• Remember Condorcet election: 
– Compare each pair of alternatives 

– Declare “a” is socially preferred to “b” if more voters
strictly prefer a to b

• Condorcet winner: Wins all of the pairwise elections in 
which he participates (for 3 candidates there are two
such pairwise elections in which he participates). 

28



Boolean Encoding of Condorcet

• Encode preference on candidates in a pairwise election 
by {1, −1}

• Encode a ranking of an individual voter w.r.t. set of
candidates 𝐴, 𝐵, 𝐶 by a 3-tuple of consistent
preferences, i.e., by an element of the set 6-element set

𝑅 = 𝐴 1 𝑣𝑠. 𝐵 −1 ? , 𝐵 1 𝑣𝑠 𝐶 −1 ? , 𝐶 1 𝑣𝑠. 𝐴 −1 =
= { 1,1, −1 , 1, −1, −1 , −1,1, −1 , −1,1,1 , 1, −1,1 , (−1, −1,1)}

• E.g. 1,1, −1 encodes ranking: 𝐴 < 𝐵 < 𝐶:  
A preferred to B, B preferred to C (and, consistently, A 
preferred to C). 

29



Example

Three voters (n= 3), three candidates, f = majn with
existing Condorcet winner a: 

30

Voter rankings

#1 #2 #3 Societal aggregation

A (1) vs. B (-1) 1 1 -1 = x f(x) = 1

B (1) vs. C (-1) 1 -1 1 = y f(y) = 1

C (1) vs. A (-1) -1 -1 1 = z f(z) = -1



Example

Three voters (n= 3), three candidates , f = majn without
existing Condorcet winner

Societal outcome (1,1,1) not consistent (circular)
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Voter rankings

#1 #2 #3 Societal aggregation

A (1) vs. B (-1) 1 1 -1 = x f(x) = 1

B (1) vs. C (-1) 1 -1 1 = y f(y) = 1

C (1) vs. A (-1) -1 1 1 = z f(z) =  1
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Theorem
Consider a 3-candidate Condorcet election using the same voting rule
𝑓 ∶ −1, 1 & → {−1, 1} for each pairwise election. 

If each of the 𝑛 voters chooses uniformly and independently
one of the 3! = 6 candidate rankings (of R), then the probability of a Condorcet 
winner is precisely :  §

¨
− §

¨
𝑆𝑡𝑎𝑏nC©

𝑓

Proof
• Let x, 𝑦, 𝑧 ∈ 1, −1 & be the votes for the pairwise elections A vs B, B vs C, A 

vs. C
• By assumption (𝑥>, 𝑦>, 𝑧>) are chosen uniformly and independently out of 𝑅
• Function𝑔: −1,1 § → 0,1 , 𝑤 ↦ §

¨
− 4

¨
𝑤4𝑤9 −

4
¨
𝑤4𝑤§ −

4
¨
𝑤9𝑤§

is indicator function for 𝑅
• Probability of Condorcet winner is

𝐸[𝑔(𝑓(𝑥), 𝑓(𝑦), 𝑓(𝑧))]

=
3
4
−
1
4
𝐸[𝑓(𝑥)𝑓(𝑦)] −

1
4
𝐸[𝑓(𝑥)𝑓(𝑧)] −

1
4
𝐸[𝑓(𝑦)𝑓(𝑧)].
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Theorem
Consider a 3-candidate Condorcet election using the same voting rule
𝑓 ∶ −1, 1 & → {−1, 1} for each pairwise election. 

If each of the 𝑛 voters chooses uniformly and independently
one of the 3! = 6 candidate rankings (of R), then the probability of a Condorcet 
winner is precisely :  §

¨
− §

¨
𝑆𝑡𝑎𝑏nC©

𝑓

Proof (continued)
• Probability of Condorcet winner is

𝐸[𝑔(𝑓(𝑥), 𝑓(𝑦), 𝑓(𝑧))]

=
3
4
−
1
4
𝐸[𝑓(𝑥)𝑓(𝑦)] −

1
4
𝐸[𝑓(𝑥)𝑓(𝑧)] −

1
4
𝐸[𝑓(𝑦)𝑓(𝑧)].

• Now 𝐸[𝑥>] = 0 = 𝐸 𝑦> and 𝐸 𝑥>𝑦> = 9
¬
− ¨

¬
= − 4

§
for each 𝑖

• So 𝑥, 𝑦 are -
4
§

correlated,  so 𝐸 𝑓 𝑥 𝑓 𝑦 = 𝑆𝑡𝑎𝑏nC©
(𝑓).

• Similarly 𝐸 𝑓 𝑥 𝑓 𝑧 = 𝐸 𝑓 𝑦 𝑓 𝑧 = 𝑆𝑡𝑎𝑏nC©
(𝑓).
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Theorem
In a 3-candidate Condorcet election using 𝑓 ∶ − 1, 1 & → {−1, 1}, the probability

of a Condorcet winner is at most:  ­
®
+ 9

®
𝑓�4 9

9

Proof

• §
¨
− §

¨
𝑆𝑡𝑎𝑏nC©

𝑓

= 
§
¨
− §

¨
( 𝑓�O 9

9 − 4
§
( 𝑓�4 9

9 + 4
®

𝑓�9 9
9 − 4

9­
𝑓�§ 9

9 + ⋯)

• ≤ §
¨
(1 + 4

§
( 𝑓�4 9

9
+ 4

9­
𝑓�§ 9

9
+ 4

9¨§
𝑓�¯ 9

9
+ ⋯)

• ≤ §
¨
(1 + 4

§
( 𝑓�4 9

9
+ 4

9­
( 𝑓�§ 9

9
+ 𝑓�¯ 9

9
+ ⋯))

• ≤ §
¨
(1 + 4

§
( 𝑓�4 9

9 + 4
9­

1 − 𝑓�4 9
9 = ­

®
+ 9

®
𝑓�4 9

9
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Theorem (Arrows‘ theorem)
Suppose 𝑓 ∶ − 1, 1 & → {−1, 1} is a unanimous voting rule used in a 3-candidate 
Condorcet election. If there is always a Condorcet winner, then 𝑓must be a 
dictatorship. 

Proof
• If there is always a Condorcet winner, then

1 ≤
7
9
+
2
9

𝑓�4 9
9
≤
7
9
+
2
9

𝑓 9
9
=
7
9
+
2
9
= 1

• Hence 𝑓�4 9
9
= 1 = 𝑓 9

9

• Hence 𝑓 = 𝑓�4
• But this can hold only if 𝑓 is either a dictator or a negated dictator. (*)
• As 𝑓 is unanimous, 𝑓 is a dictator. 



Wake-up Question

• Show (*): If 𝑓 = 𝑓�4 then  𝑓 is either a dictator or a 
negated dictator. 
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Answer to Wake-up Question

• Show (*): If 𝑓 = 𝑓�4 then  𝑓 is either a dictator or a 
negated dictator. 

• Proof:  

– 𝑓 = ∑>∈[&] �𝑓 𝑖 𝑥>
– Feach 𝑥 ∈ 1, −1 & and 𝑖 ∈ [𝑛]

• Either 𝑓 𝑥 = 𝑓(𝑥⊕>). 
• Or 𝑓 𝑥 ≠ 𝑓 𝑥⊕>

– In the first case �𝑓 𝑖 = 0

– In the second case �𝑓 𝑖 = 1

– As 𝑓�4 9
9

= 1, exactly for one 𝑖 ∈ [𝑛]: �𝑓 𝑖 = 1

– So 𝑓 = 𝜒> or 𝑓 = −𝜒> for some 𝑖
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APPENDIX
Uhhh, a lecture with a hopefully useful
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Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as 
emphasizing some aspects 

• Examples are given with standard orange with possibly light 
orange frame 

• Comments and notes

• Algorithms
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