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Todays and next weeks lecture based on

Lecture notes ,Fourier Analysis of Boolean Functions, Winter term 16/17"
M. Schweighofer
http://www.math.uni-konstanz.de/~schweigh/

Ryan O’Donnell: Fourier Analyis of Boolean Functions., CUP 2014.
Free PDF available at
https://arxiv.org/pdf/2105.10386.pdf

Talk of Ronald de Wolf: ,Fourier analysis of Boolean functions: Some
beautiful examples” available at
https://nvti.nl/slides/deWolf.pdf
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Motivation

. Social theory can be elegantly treated with Fourier
Analysis
- The main aim of this lecture is:
— sketch the basic ideas on Fouries analysis treatment of
social theory
— and as a highlight demonstrate G. Kalai’s Fourier-
theoretic proof of Arrow’s theorem (Kalai 02)
- As aside effect (as before) we will see the power of the
probabilistic method. (Nalon/Spencer 04)




Social Choice

f:{1,—1}" - {1, —1} as voting rule with 2 candidates and n voters
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maj,(x) = sgn(x; + -+ x,,) (Majority function)
(for n even f(0) assigned arbitrarily).

f(x) =sgn(a;x; + -+ a,x,) (weighted majority/
forsomea € {1,—1}" linear threshold)
AND, (x) = +1 unlessallx; = —1 (AND function)
OR,(x) = —1lunlessallx; =1 (OR function)
xi(x) = x; (ith dictator function)
fx) =g, %) (k-junta)

forsome g:{1,—1}* - {1,—1}and {iy, ..., i} € [1]
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Social Choice

f:{1,—1}"* - {1, —1} as voting rule with 2 candidates and n voters

¢ majl%t? (x@), ..., x™) (depth-d recursive majority)
= mai, (maj,‘?d(x(l)) , ...,maj,?d(x(")))
(ford € Ny, n odd, and all x® € {1,—1}"")

* Tribes, s:{1, -1} - {1,—-1} (tribes function)
Tribes,, s(x@D, ..., x)) =
OR, (AND,,(x®), ..., AND,, (x©))
(for w,s € Ng, x® € {1,-1}¥)

* Depth-2 recursive majority used in presidental elections in USA
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Social Choice

f:{1,—1}"* - {1, —1} as voting rule with 2 candidates and n voters

f:{1,—-1}" - Ris called
* monotoneiff f(x) < f(y)forallx,y € {1,, —1}"* withx; < y, forall
[ € [n]
« odd iff f(x) =—f(—x) forallx € {1,—1}"
* unanimous iff f(1,...,1) =1landf(—1,...,—1) = —1
* symmetric iff f(xg(l), ...,xa(n)) = f(x)
forall x € {1,—1}" andall permutations o € S,,
* Transitive-symmetric iff foralli,j € [n] thereissomeag € S,

suchthata (i) = j and f(xsc1y, s Xom) = F(X)
forall x € {1,—1}"

RSI
GERSIZ,

UUUUUUUUUUUUUUUUUUUUU
EY 2/  INSTITUT FUR INFORMATIONSSYSTEME



Properties fulfilled by functions

* For odd n maj, has all properties and is the only monotone odd
symmetric Boolen function on n bits

* maj, (foroddn), AND,,OR,, and y; (fori € [n]) are Boolean linear
threshold functions

« AND,, OR,satisfy all properties except oddness forn # 1 and
unanimity forn = 0

* Dictator functions satisfy first three porperties but forn > 2 they do
not satisfy the last two.




Properties fulfilled by functions

* There are exactly 2n + 2 1-juntas on n bits (namely the n dictators, the
n negated dictators and the two constant functions)

 Foralld € N, and for odd n, maj,?d satisfies all properties except, in
caseof n = 3 and d = 2, symmetry

* Forw,s € N;,, Tribes,, ; is monotone, not odd, unanimous, not
symmetric but transitive symmetric.

444444

S RULTT = UNIVERSITAT ZU LUBECK
2 =2~  INSTITUT FUR INFORMATIONSSYSTEME



RSI
<<<<<<

INFLUENCES AND DERIVATIVES

& UNIVERSITAT ZU LUBECK
&  INSTITUT FUR INFORMATIONSSYSTEME

10



i-th Influence

e Forxe{l,—1}*,ie€|n]Jandb € {1,—1} let
o X0V = (Xq, e, Xjq) =X Xjyy oo Xpy)
o X0 = (xy, ., Xi—1, b, Xj1 1, e Xp)
* {iscalled pivotal for f: {1,—1}" — {1,—1} oninput x iff
fx) # f(x®h)
* Influence of coordinatei € [n] on f:{1,—1}" — {1,—1}isthe
probability that i is pivotal on a random input

Inf(f)= Pr (f(x) #f(x®))

x~{1,—-1}"

« Inf;(OR,) = Inf;(AND,)) = 21"
—1
e Inf;(maj,) = (nn_—1 ) 217" (for odd n)

2
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* The i-th derivative operator is defined by

i—1)_ i»—1
D;: RL-1" ]R{l'_l}n,f - (x f(x") zf(x ))

* Influenceof coordinatei € [n]onf:{1,—1}" — R s defined by

Inf(f)= E _(Dif(x)*) = IIDifllz

x~{1,-1)"
o jiscalledrelevantfor f:{1,—1}" - RiffInf;(f) >0
e, f(x™1) = f(x"1) for at least one x € {1, —1}"

Remark
. ForBoolean f, x » D;f(x)? is an indicator function for whether i is
pivotal for fonx. SoInf;(f) = E _(D;f(x)?)

x~{1,—1}"
This justifies the generalization above.
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Derivative and Influence

Leti € [n] and f:{1,—1}" - R. Then
1. Dif = Xscm) f(Oxs\@y

ies
2. Infy(f) = Xscm £ (5)?

IES

Wake-Up-Question: Prove the remark

IM FOCUS DAS LEBEN 13



Derivative and Influence

Leti € [n] and f:{1,—1}" - R. Then
1. Dif = Xscm) f(Oxs\@y

ies
2. Infy(f) = Xscm £ (5)?

IES

Wake-Up-Question: Prove the remark

Proof

1. Fourier-expand f in the definition of D; f
2. Follows from 1.

IM FOCUS DAS LEBEN 14



Derivative and Influence

Proposition

Leti € [n] and f:{1,—1}* - {1,—1}. Then
1. If f is monotone, then Inf;(f) = f({i})
2. If additionally f is transitive-symmetric, then Inf;(f) <

\/__
Proof
1 Infi(f)
T T e {1 Loy (f(x) * f(xeal))
g GRS (Cp
¢ = x~{1’_1}n(f(xm1)_2f(xm 1)) (due to monotony)
* = E(D;f)

* = ﬁi\f(@) = f({i})
2. 1= Yscm f(S)?
+ = X2
- =nf{i}? (due to transitive symmetry )
o =nliInf;(f)? (dueto1.)

2 i
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ith Expectation and ith Laplacian

Leti € {—1,1}. The ith Expectation E; and Laplacian L; on
R{L~1" are defined by

* Elf(x) — Ey~{1,—1}(f(x11 e Xi—1 Y Xit 1) '")xn))
* Lif =f-Ef

Let f:{1,—1}" - Randx € {1,—1}"
®i
Eif(x) = f(x)ﬂ;(x )

f(x) =Eif(x)+ {CiDif(x) = E;f(x) + L;f (x)
Eif(x) = Yscm f(S)x®
igs
o« Lif (x) = Tscpny f(S) x5
igs

* (Llf'f) = (Llf'Llf> = I'I’lfl(f)

2 F -
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Sensitivity

» Thetotal influence of f: {1, —1}" - R isInf(f) = Xi© Inf;(f)

* Thesensitivity senss(x) of f: {1, —1}" — {1, —1} at x is defined to be
the number of pivotal coordinates for f on x

Fixn € Ng.For f:{1,-1}" - {1,-1}
 E (i €nllx=fQ@) =%+ Ticien D)

» and for odd n this maximized iff f = maj,, hence among all monotone
f:{1, =1}"* - {1, —1} mayj, is the one with maximal total influence.

Proof :
1+E, f( ) i 1
t s =Ny S o By Ly e (f ) = Ths
1 .
* 3 Y<isn S i) = Ex(f(x)(xl + -+ xn)) < E, (|xg + -+ x5

where equality holds iff f(x) = sgn(x; + - x,) forall x € {1, —1}" with
(x1+ - x,) # 0.Butif n is odd, then (x;+:--x,) # Oforall x € {1, —1}"

S )
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Getting famous with Fourier analysis research...

- A complexity measure related to sensitivity plays a
prominent role in a recent breakthrough result
described in a short paper (Huang 19)

- Concerns the sensitivity conjecture (Nisan/Szegedy 92)

— Roughly: Most complexity measures on boolean
functions could be shown to be polynomially reducible
to each other

— For a sensitivity based complexity this could not be
proved - until Huang’s insight
- There are many nice explanations on various theory-
related blogs (see here for the links) and even a short
twitter explanation by O'Donnell.
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https://arxiv.org/abs/1907.00847
https://www.researchgate.net/publication/2508255_On_the_Degree_of_Boolean_Functions_as_Real_Polynomials
https://rjlipton.wpcomstaging.com/2019/07/12/tools-and-sensitivity/?utm_source=pocket_reader
https://twitter.com/BooleanAnalysis/status/1145837576487612416

Discrete gradient and Laplacian

» Thediscrete gradient operator is defined by

le(x)>

v: R&-U" (R s | x o (
D, f (x)

« Thelaplacianis L = }I'L;

Let f:{1,—1}" - R

* Lf = Tscim ISIF(S) xs

o (Lf.fY=1(f)

¢ 1) = TocmISIF )2 = Tiookllfull;

IM FOCUS DAS LEBEN 19




Discrete gradient and Laplacian

Iff{1,-1}" - {1,-1}andx € {1,—-1}"
. ||Vf(x)||§ = senss(x)

+ L) = f(x)sensy (x)

* I(f)=Es 2 (ISD

Proposition (Poincare Lemma)
Let f:{1,—1}" - R. ThenVar(f) < I(f)

Proof :

e Var(f) = ng[n]f(s)z < ng[n]|5|f(5)2 = I(f)

S+#0

2 F -
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NOISE STABILITY AND ARROW'S
PROOF OF THEOREM
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Noise Stability: Motivation

e f:{1,—1}" — {1,—1} as voting rule with 2 candidates
and n voters

- Assume impartial culture assumption:
votes x = (x4, ..., X,) chosen independently

- Now assume noise in misrecording y; of vote x;with
chancel —p,p € [0,1]

« Want to know whether noise effects outcome, i.e., what
is probability of f(x) = f(y)?
- Leads to notion of noise stability

22




Correlated sampling

« Forp € [0,1] and fixed x € {1, —1}" the sampley ~ N, (x) is
drawn as follows :
* y; = x; with probability p
* y;=uniformly random with probability 1 — p
* Moregenerallyforp € [—1,1] and fixed x € {1, —1}"
y ~ N, (x) is drawn as follows :

* y; =x; Wwith probability% + gp
* y;=—x; with probability% — %p
Wesaythaty is p-correlated to x

« Ifx ~{1,-1}"andy ~ N,(x) then (x, y) is a p-correlated
pair. In these slides we abbreviate this with (x,y) = p

... Thisis equivalent to saying E(x;) = 0, E(y;) = 0and E(x;,y;) = p foreach i
g*%é UNIVERSITAT ZU LUBECK

=~ INSTITUT FUR INFORMATIONSSYSTEME
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Noise Stability: Definition

f:{1,—1}"* - {1, —1} as voting rule with 2 candidates and n voters

For f:{1,—1}" — Rand p € [—1,1] the noise stability of f at p is
Stabp (f) — E(x,y)zp(f(x)f(y))

Remark
If f:{1,—1}"* - {1,—1} we have
Staby(f) =  Pr_(f() =fO))- Pr (fC) # f))

= 2Pr (f(x)=f()—-1

(x,y)=p

24



The constant functions have noise stability 1 ateach p € [—1,1]
For dictators

Stab,(x;) = pforallp € [-1,1]

More generally for parities one has

Staby(xs) = Eey)=p(X°y”) = Exyyxp (1—[ xiyi)
i€S

= |lies Ex;y;(xiy:) (by (independece of (x;,y;) accross i)
= [lies p = pls!

25



Noise operator

Let p € [—1,1]. The noise operator T, with parameter p is the
vector space endomorphism of R1:~1" defined by

Tof (x) = Ey v,y (F (V)
forall f:{1,—1}" - Randx € {1,—-1}"

Forp € [-1,1] andf:{1,—1}" - R
n
f= ) pPFSs =) pHfer
Scn] k=0

Proof
» By linearity it is sufficient to prove T, xs = p'®lys, but this follows from

* Toxs(X) = Ey oy, 0®) = ies Eyon, 0 @) = Iies(px) = pBlys
11 1 1
* Hereweused that £y .y () (y;) = (E + E'D) xX; + (E -3 p) (—x;) = px;

IM FOCUS DAS LEBEN 26




Stability and Noise operator

Forp € [—-1,1] andf:{1,—1}" - R
Stab,(f) = {f, Tpf)

Proof

* Stabp(f) — E(x,y)zp(f(x)f(y)) = Ex~{1,—1}n(f(x)Ey~Np(x)(f(y)))

Corolla

Forp € [-1,1] andf:{1,-1}" - R
R 2
Stabp(f) — ZSQ[n],OlSlf(S)Z = 1I:=Opk||f=k||2

In particular
Stab,(f) = Eg._f2 (p¥*)) forallf:{1,-1}" - {1,-1}

IM FOCUS DAS LEBEN 27




Condorcet election

For two candidates, majority function has all good
properties

For at least 3 candidates problem of social becomes
much mor difficult

Remember Condorcet election:

— Compare each pair of alternatives
— Declare “a" is socially preferred to “b” if more voters
strictly preferatob

Condorcet winner: Wins all of the pairwise elections in
which he participates (for 3 candidates there are two
such pairwise elections in which he participates).

28



Boolean Encoding of Condorcet

- Encode preference on candidates in a pairwise election
- Encode aranking of an individual voter w.r.t. set of

candidates {A, B, C} by a 3-tuple of consistent
preferences, i.e., by an element of the set 6-element set

R={( A1) vs.B(-1)?2,B(D)vs C(-1)?,C (D) vs.A(-1) )} =
={(1,1,-1),(1,-1,-1),(-1,1,-1),(-1,1,1),(1,-1,1), (-1, —1,1)}

- E.g.(1,1,—1) encodes ranking: A < B < C:
A preferred to B, B preferred to C (and, consistently, A
preferred to C).

29



Example

Three voters (n= 3), three candidates, f = maj, with
existing Condorcet winner a:

Societal aggregation
A (1) vs.B(-1) 1 1 -1 = X f(x) =1
B(1)vs.C(-1) 1 -1 1 =y fly)=1
C(1)vs.A(-1) -1 -1 1 =z f(z) = -1

30



Example

Three voters (n= 3), three candidates , f = maj,, without
existing Condorcet winner

Societal aggregation
A (1) vs.B(-1) 1 1 -1 = X f(x) =1
B(1)vs.C(-1) 1 -1 1 =y fly)=1
C(1)vs.A(-1) -1 1 1 =z f(z) = 1

Societal outcome (1,1,1) not consistent (circular)

31




Consider a 3-candidate Condorcet election using the same voting rule

f: {—1,1}* - {—1,1} foreach pairwise election.

If each of then voters chooses uniformly and independently

one of the 3! = 6 candidate rankings (of R), then the probability of a Condorcet

winner is precisely : Z — Z Stab 1 f

3

Proof

* Letx,y,z € {1,—1}" be the votes for the pairwise elections Avs B,Bvs C, A
vs. C

* By assumption (x;, y;, z;) are chosen uniformly and independently out of R

. 3 1 1 1
e Functiong: {-1,1}® - {0,1}, w D = TWiWy — T WiWs — S WoWs

is indicator function for R
* Probability of Condorcet winner is

Elg(f (), f(¥), f(2))]

3 1 1 1
=27 2 EUGFODI =2 EFf (2] =2 EF O0)f (2)]

IM FOCUS DAS LEBEN
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Consider a 3-candidate Condorcet election using the same voting rule

f: {—1,1}* - {—1,1} foreach pairwise election.

If each of then voters chooses uniformly and independently

one of the 3! = 6 candidate rankings (of R), then the probability of a Condorcet

winner is precisely : Z — Z Stab 1 f
3

Proof (continued)

* Probability of Condorcet winner is

E[g(f(if);f(}’)»f(z))] !

=27 2 EUGf O] =2 E/ () (2)]
* NowE[x;] = 0 = Ely;] and E[x;y;] =§ —g
e Sox,yare % correlated, so E(f(x)f(y)) = Stab_g(f).

« Similarly E(f(x)f(2)) = E(f())f(2)) = Stab_é(f).

1
- L EFOIf ()

1 .
= =3 foreach i
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In a 3-candidate Condorcet election using f : {— 1,1} - {—1, 1}, the probability

: . 7 2 2
of a Condorcet winner /s at most: 515 ||f=1 | |2

Proof
. %— S Stab 1f

% " (||f 0|| —g (||f 1|| 9 ||f 2||2_i ||f 3||2 +)
. g% (1+ 5 (|1f=1] 2 ; ||f=3||2 243 ||f 5||
s <2 Ll Sl + Ilf=sllz+"°>>
c2a Al S (- ll) =242 Il
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Theorem (Arrows’ theorem)

Suppose f : {—1,1}" - {—1, 1} is a unanimous voting rule used in a 3-candidate
Condorcet election. If there is always a Condorcet winner, then f must be a
dictatorship.

Proof

 If there is always a Condorcet winner, then
7

2 2 7 2 2 7 2
1< 55 fall,<g+5 11l =5+5=1
+ Hence [If4][. = 1= IfI|;
* Hencef =f_;
« But this can hold only if f is either a dictator or a negated dictator. (*)
* As fisunanimous, f is a dictator.

= "\ £ SITA UBEC
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Wake-up Question

- Show (*):If f = f_; then f is either a dictator or a
negated dictator.

EEEEEEEEEEEEEEEEEEEEEE
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Answer to Wake-up Question

- Show (*):If f = f_; then f is either a dictator or a
negated dictator.

 Proof:
- f = Zie[n]f({i})xi
- Feachx € {1,—1}"and i € [n]
. Either f(x) = f(x®Y).
- Or f(x) # f(x®Y)
~ In the first case|f ({{})| = 0
~ In the second case |f ({i})| = 1

- As||f- 1|| =1, exactly foronei € [n]: |f({iD]| =1
s —Sof =yxorf=—x;torsomei
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Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly light
orange frame

« Comments and notes
. Algorithms
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