Intelligent Agents Mechanism Design

Özgür Özcep Universität zu Lübeck Institut für Informationssysteme

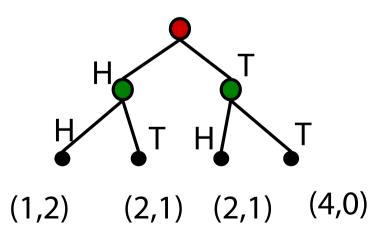
IM FOCUS DAS LEBEN

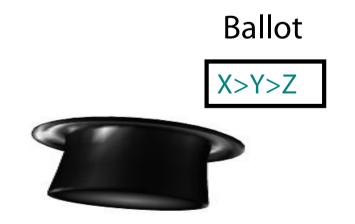
Introduction

So far we have looked at

- Game Theory
 - Given a game we are able to analyze the strategies agents will follow

Given a set of agents'
 preferences we can
 choose some outcome





IM FOCUS DAS LEBEN

Introduction

• Now:

Mechanism Design = Game Theory + Social Choice

- Goal of a mechanism
 - Obtain some outcome (function of agents' preferences)
 - But agents are rational
 - They may lie about their preferences
- Goal of mechanism design
 - Define the rules of a game so that in equilibrium the agents do what we want

Fundamentals

- Set of possible outcomes, O
- Agents $i \in I$, |I| = n, each agent i has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevant to agent's decision making
- Utility $u_i(o, \theta_i)$, over outcome $o \in O$
- Recall: goal is to implement some system-wide solution
 - Captured by a social choice function (SCF)

f: $\mathcal{O}_1 \times \ldots \times \mathcal{O}_n \rightarrow 0$

 $f(\theta_1, \dots, \theta_n) = o$ is a collective choice

Examples of social choice functions

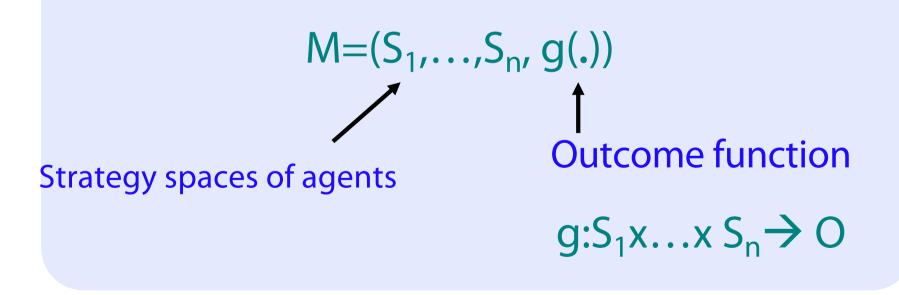
- Voting: choose a candidate among a group
- Public project: decide whether to build a swimming pool whose cost must be funded by the agents themselves
- Allocation: allocate a single, indivisible item to one agent in a group

Mechanisms (From Strategies to Games)

- Recall: We want to implement a social choice function
 - Need to know agents' preferences
 - They may not reveal them to us truthfully
- Example:
 - 1 item to allocate, and want to give it to the agent who values it the most
 - If we just ask agents to tell us their preferences, they may lie

Mechanism Design Problem

- By having agents interact through an institution we might be able to solve the problem
- Mechanism:



A mechanism $M=(S_1,...,S_n,g(.))$ implements social choice function $f(\theta)$ iff there is an equilibrium strategy profile $s^*(.)=(s^*_1(.),...,s^*_n(.))$ of the game induced by M such that $g(s_1^*(\theta_1),...,s_n^*(\theta_n))=f(\theta_1,...,\theta_n)$ for all $(\theta_1,...,\theta_n) \in \Theta_1 x \dots x \Theta_n$

Implementation

- We did not specify the type of equilibrium in the definition
- Dominant

 $u_{i}(s_{i}^{*}(\theta_{i}), \underline{s_{-i}(\theta_{i})}, \theta_{i}) \ge u_{i}(s_{i}^{'}(\theta_{i}), \underline{s_{-i}(\theta_{-i})}, \theta_{i}), \forall i, \forall \theta, \forall s_{i}^{'} \neq \underline{s_{i}^{*}}, \forall s_{-i}^{'}$

• Nash

 $u_{i}(s_{i}^{*}(\theta_{i}), \underline{s_{-i}^{*}(\theta_{-i})}, \theta_{i}) \ge u_{i}(s_{i}^{\prime}(\theta_{i}), \underline{s_{-i}^{*}(\theta_{-i})}, \theta_{i}), \forall i, \forall \theta, \forall s_{i}^{\prime} \neq s_{i}^{*}$

• Bayes-Nash

 $\frac{\mathsf{E}}{\mathsf{E}}[\mathsf{u}_{i}(\mathsf{s}_{i}^{*}(\boldsymbol{\theta}_{i}), \mathbf{s}_{-i}^{*}(\boldsymbol{\theta}_{-i}), \boldsymbol{\theta}_{i})] \geq \frac{\mathsf{E}}{\mathsf{E}}[\mathsf{u}_{i}(\mathsf{s}_{i}^{'}(\boldsymbol{\theta}_{i}), \mathbf{s}_{-i}^{*}(\boldsymbol{\theta}_{-i}), \boldsymbol{\theta}_{i})], \forall i, \forall \boldsymbol{\theta}, \forall \mathsf{s}_{i}^{'} \neq \mathsf{s}_{i}^{*}$

Direct Mechanisms

- Recall that a mechanism specifies the strategy sets of the agents
 - These sets can contain complex strategies
- Direct mechanisms:
 - Mechanism in which $S_i = \Theta_i$ for all i, and $g(\theta) = f(\theta)$ for all $\theta \in \Theta_1 x \dots x \Theta_n$
- Incentive-compatible:
 - A direct mechanism is incentive-compatible if it has an equilibrium s^* where $s^*_i(\theta_i)=\theta_i$ for all $\theta_i\in\Theta_i$ and all i
 - (truth telling by all agents is an equilibrium)
 - Called strategy-proof if truth telling by all agents leads to dominant-strategy equilibrium

Dominant Strategy Implementation

- Is a certain social choice function implementable in dominant strategies?
 - In principle we would need to consider all possible mechanisms
- Revelation Principle (for Dom Strategies)
 - Suppose there exists a mechanism M=(S₁,...,S_n,g(.)) that implements social choice function f() in dominant strategies. Then there is a direct strategy-proof mechanism, M', which also implements f().

Revelation Principle

- "The computations that go on within the mind of any bidder in the nondirect mechanism are shifted to become part of the mechanism in the direct mechanism" [McAfee&McMillian 87]
- Consider the incentive-compatible directrevelation implementation of an English auction (open-bid)

Revelation Principle: Proof

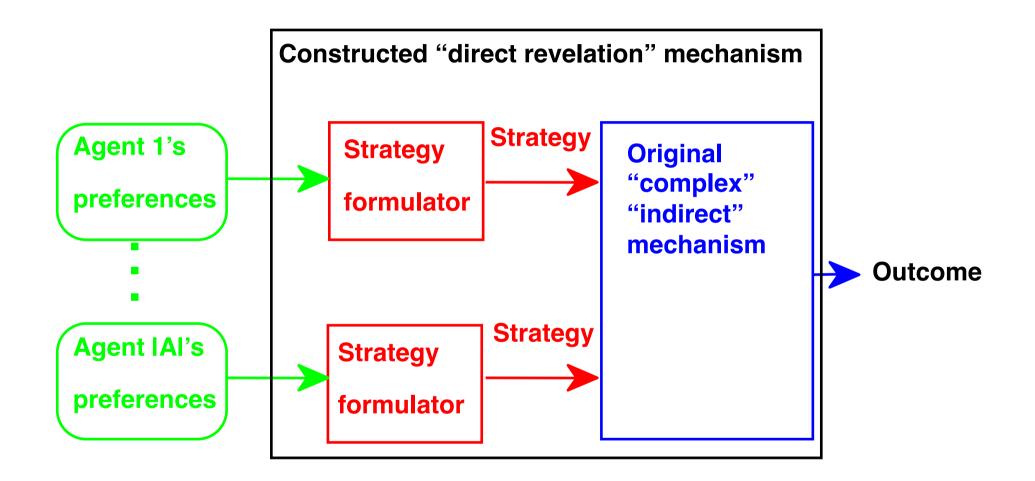
- $M=(S_1,...,S_n,g())$ implements SCF f() in dom str.
 - Construct direct mechanism M'=(Θⁿ,f(θ)) (see also the following figure)
 - By contradiction, assume
 - $\exists \theta_i \neq \theta_i \text{ s.t. } u_i(f(\theta_i, \theta_{-i}), \theta_i) > u_i(f(\theta_i, \theta_{-i}), \theta_i)$

for some $\theta_i \neq \theta_i$, some θ_{-i} .

- But, because $f(\theta) = g(s^*(\theta))$, this entails $u_i(g(s_i^*(\theta_i'), s_{-i}^*(\theta_{-i})), \theta_i) > u_i(g(s^*(\theta_i), s^*(\theta_{-i})), \theta_i)$

Which contradicts the fact that s^{*} is a dominant-strategy equilibrium in M

Revelation Principle: Intuition



Questions and Discussion

- Q: What is the problem with the algorithm for reducing arbitary mechanisms to direct mechanisms according to the revelation principle?
- A:
 - One has to unveil owns preferences to mechanism (institution)
 - Burden on communication channel

Theoretical Implications

Literal interpretation: Need only study direct mechanisms

- This is a smaller space of mechanisms
- Negative results: If no direct mechanism can implement SCF f() then no mechanism can do it
- Analysis tool:
 - Best direct mechanism gives us an upper bound on what we can achieve with an indirect mechanism
 - Analyze all direct mechanisms and choose the best one

Practical Implications

- Incentive-compatibility is "free" from an implementation perspective
- BUT!!!
 - A lot of mechanisms used in practice are not direct and incentive-compatible
 - Maybe there are some issues that are being ignored here

Quick review

- We now know
 - What a mechanism is
 - What it means for a SCF to be dominant strategy implementable
 - If a SCF is implementable in dominant strategies then it can be implemented by a direct incentivecompatible mechanism
- We do not know
 - What types of SCF are dominant strategy implementable

Gibbard-Satterthwaite (G-S) Thm

Thm (Gibbard 73), (Satterthwaite 75)) Assume

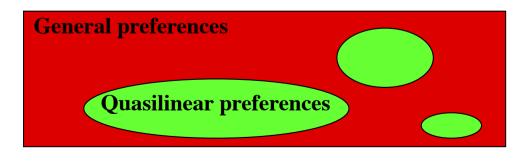
- **O** is finite and $|O| \ge 3$
- Each o∈O can be achieved by social choice function
 f() for some θ ("citizen sovereignty")

Then:

f() is truthfully implementable in dominant strategies (i.e., strategy-proof) if and only if
 f() is dictatorial

Circumventing G-S

- Use a weaker equilibrium concept
 - Nash, Bayes-Nash
- Design mechanisms where computing a beneficial manipulation is hard
 - Many voting mechanisms are NP-hard to manipulate (or can be made NP-hard with small "tweaks")
 (Bartholdi, Tovey, Trick 89) (Conitzer, Sandholm 03)
- Randomization
- Agents' preferences have special structure



Quasi-Linear Preferences

- Outcome $o = (x, t_1, \dots, t_n)$
 - x is a "project choice" and $t_i \in \mathbb{R}$ are transfers (money)
- Utility function of agent i
 - $u_i(o,\theta_i) = u_i((x,t_1,\ldots,t_n),\theta_i) = v_i(x,\theta_i) t_i$
- Quasi-linear mechanism: $M = (S_1, ..., S_n, g(.))$ where $g(.) = (x(.), t_1(.), ..., t_n(.))$

Example:

- x="joint pool built" or "not",
- m_i = \$= mechanism addendum
 - E.g., equal sharing of construction cost: -c / |A|,
 - $v_i(x) = w_i(x) c / |A|$
 - $u_i = v_i(x) + m_i$

Social choice functions and quasi-linear settings

- SCF is efficient if for all types $\theta = (\theta_1, \dots, \theta_n)$
 - $\sum_{i=1}^{n} v_i(x(\theta), \theta_i) \ge \sum_{i=1}^{n} v_i(x'(\theta), \theta_i) \forall x'(\theta)$
 - Aka social welfare maximizing
- SCF is budget-balanced (BB) if
 - $\sum_{i=1}^{n} t_i(\theta) = 0$
 - Weakly budget-balanced if $\sum_{i=1}^{n} t_i(\theta) \ge 0$

Questions and Discussion

- Q: Explain in natural language the (qualitative) assumptions underlying quasi-linearity (Utility function of agent i: u_i(o,θ_i)=u_i((x,t₁,...,t_n),θ_i)=v_i(x,θ_i)-t_i)
- A:
 - Degree of preference for some outcome (project choice x) is independent of amount t_i one has to pay to or receives from mechanism
 - No counterspeculation about payments/received money by other agents.

Groves Mechanisms (Groves 1973)

A Groves mechanism,

 $M=(S_1,...,S_n, (x,t_1,...,t_n))$ is defined by

- <u>Choice rule</u> $x^*(\theta') = \operatorname{argmax}_x \sum_i v_i(x, \theta_i')$
- Transfer rules
 - $t_i(\theta') = h_i(\theta_{-i}) \sum_{j \neq i} v_j(x^*(\theta'), \theta'_j)$

where $h_i(.)$ is an (arbitrary) function that does not depend on the reported type $\theta_i^{'}$ of agent i

Groves Mechanisms

 Thm: Groves mechanisms are strategy-proof and efficient (We have gotten around Gibbard-Satterthwaite!)
 Proof: Agent i's utility for strategy θ_i', given θ_{-i}' from agents j≠i is u_i(θ_i')=v_i(x*(θ'),θ_i)-t_i(θ') =v_i(x*(θ'),θ_i)+∑_{j≠i}v_j(x*(θ'),θ'_j)-h_i(θ'_{-i})

Ignore $h_i(\theta_{-i})$. Notice that

 $\mathbf{x}^{*}(\boldsymbol{\theta}') = \operatorname{argmax} \sum_{i} \mathbf{v}_{i}(\mathbf{x}, \boldsymbol{\theta}'_{i})$

i.e., it maximizes the sum of reported values.

Therefore, agent i should announce $\theta_i = \theta_i$ to maximize its own payoff

• Thm: Groves mechanisms are unique (up to $h_i(\theta_{-i})$)

VCG (Vickrey, Clarke, Groves) Mechanism (aka Clarke tax mechanism, aka Pivotal mechanism)

• Def: Implement efficient outcome,

 $x^* = \operatorname{argmax}_{x} \sum_{i} v_i(x, \theta_i)$

Compute transfers

$$t_{i}(\theta') = \sum_{j \neq i} v_{j}(x^{-i}, \theta'_{j}) - \sum_{j \neq i} v_{j}(x^{*}, \theta_{i}')$$

/here $x^{-i} = \operatorname{argmax}_{x} \sum_{j \neq i} v_{j}(x, \theta_{j}')$

Agent's equilibrium utility is:

$$u_{i}(\mathbf{x}^{*}, \mathbf{t}_{i}, \theta_{i}) = v_{i}(\mathbf{x}^{*}, \theta_{i}) - [\sum_{j \neq i} v_{j}(\mathbf{x}^{-i}, \theta_{j}) - \sum_{j \neq i} v_{j}(\mathbf{x}^{*}, \theta_{j})]$$
$$= \sum_{j} v_{j}(\mathbf{x}^{*}, \theta_{j}) - \sum_{j \neq i} v_{j}(\mathbf{x}^{-i}, \theta_{j})$$

= marginal contribution to the welfare of the system

V

Remember: Vickrey Auction

- Highest bidder gets item, and pays second highest amount
- Also a VCG mechanism
 - Allocation rule: Get item if $b_i = max_i[b_j]$
 - Payment rule: Every agent pays

Example: Building a pool

- The cost of building the pool is \$300
- If together all agents think the pool's value is more than \$300, then it will be built
- Clarke Mechanism:
 - Each agent announces their value, v_i
 - If $\sum v_i \ge 300$ then it is built
 - Payments $t_i(\theta_i') = \sum_{j \neq i} v_j(x^{-i}, \theta'_j) \sum_{j \neq i} v_j(x^*, \theta_i')$ if built, 0 otherwise

v1=50, v2=50, v3=250

Pool should be built

 $t_1 = (250+50)-(250+50)=0$ $t_2 = (250+50)-(250+50)=0$ $t_3 = (0)-(100)=-100$

Not budget balanced

Web Mining Agents

- Task: Mine a certain number of books
- Agent pays for opportunity to do that if, for good results, agent gets high reward (maybe from sb else)
- Idea: Run an auction for bundles of books/reports/articles/papers to analyze

Implementation in Bayes-Nash equilibrium

- Goal is to design the rules of the game (aka mechanism) so that in **Bayes-Nash** equilibrium $(s_1, ..., s_n)$, the outcome of the game is $f(\theta_1, ..., \theta_n)$
- Weaker requirement than dominant strategy implementation
 - An agent's best response strategy may depend on others' strategies
 - Agents may benefit from counterspeculating
 - Can accomplish more than under dominant strategy implementation
 - E.g., budget balance & Pareto efficiency (social welfare maximization) under quasilinear preferences ...
- There is also a mechanism for this setting:
 - D'AGVA mechanism
 - (d'Aspremont & Gerard-Varet 79)

Participation Constraints

- Agents cannot be forced to participate in a mechanism
 - It must be in their own best interest
- A mechanism is individually rational (IR) if an agent's (expected) utility from participating is (weakly) better than what it could get by not participating

Participation Constraints

- Let $u_i^*(\theta_i)$ be an agent's utility if it does not participate and has type θ_i
- Ex ante IR: An agent must decide to participate before it knows its own type
 - $E_{\theta \in \Theta} [u_i(f(\theta), \theta_i)] \ge E_{\theta_i \in \Theta_i} [u_i^*(\theta_i)]$
- Interim IR: An agent decides whether to participate once it knows its own type, but no other agent's type
 - $E_{\theta_{-i} \in \Theta_{-i}}[u_i(f(\theta_i, \theta_{-i}), \theta_i)] \ge u_i^*(\theta_i)$
- Ex post IR: An agent decides whether to participate after it knows everyone's types (after the mechanism has completed)
 - $u_i(f(\theta), \theta_i) \ge u_i^{*}(\theta_i)$

Quick Review

- Gibbard-Satterthwaite
 - Impossible to get non-dictatorial mechanisms if using dominant strategy implementation and general preferences
- Groves
 - Possible to get dominant strategy implementation with quasi-linear utilities
 - Efficient
- Clarke (or VCG)
 - Possible to get dominant strategy implementation with quasi-linear utilities
 - Efficient, interim IR
- D'AGVA
 - Possible to get Bayesian-Nash implementation with quasi-linear utilities
 - Efficient, budget balanced, ex ante IR

Other mechanisms

- We know what to do with
 - Voting
 - Auctions
 - Public projects
- Are there any other "markets" that are interesting?

Bilateral Trade (e.g., B2B)

- Heart of any exchange
- 2 agents (one buyer, one seller), quasi-linear utilities
- Each agent knows its own value, but not the other's
- Probability distributions are common knowledge
- Want a mechanism that is
 - Ex post budget balanced
 - Ex post Pareto efficient: exchange to occur if $v_b > v_s$
 - (Interim) IR: Higher expected utility from participating than by not participating

- Thm: In the bilateral trading problem, no mechanism can implement an ex-post BB, ex post efficient, and interim IR social choice function (even in Bayes-Nash equilibrium).
- You often here "The market will take care of "it", if allowed to."
- Myerson-Satterthwaite shows that under reasonable assumptions, the market will NOT take care of efficient allocation

Paper: Automated Mechanism Design (Sundholm 2003)

By Tuomas Sandholm

Presented by Dimitri Mostinski November 17, 2004

Sandholm T. Automated Mechanism Design: A New Application Area for Search Algorithms. In: Rossi F. (eds) Principles and Practice of Constraint Programming – CP 2003. LNCS, vol 2833. **2003**.

Problems with Manual MD

- The most famous and most broadly applicable general mechanisms, VCG and dAGVA, only maximize social welfare
- The most common mechanisms assume that the agents have quasilinear preferences $u_i(o; t_1, ..., t_N) = v_i(o) - t_i$

Impossibility results:

- "No mechanism works across a class of settings" for different definitions of "works" and different classes of settings
 - E.g., Gibbard-Satterthwaite theorem

Automatic Mechanism Design (AMD)

- Mechanism is computationally created for the specific problem instance at hand
 - Too costly in most settings w/o automation
- Circumvent impossibility results

AMD formalism

- An automatic mechanism design setting is
 - A finite set of outcomes O
 - A finite set of N agents
 - For each agent i
 - A finite set of types Θ_i
 - A probability distribution γ_i over Θ_i
 - A utility function $u_i : \Theta_i \times O \rightarrow R$
 - An objective function whose expectation the designer wishes to maximize g(o; t₁, ..., t_N)

More AMD formalism

- A mechanism consists of
 - An outcome selection function $o: \Theta_1 x ... x \Theta_N \rightarrow O$ if it is deterministic
 - A distribution selection function $p: \Theta_1 x ... x \Theta_N \rightarrow P(O)$ if it is randomized
 - For each agent i a payment selection function $\pi_i : \Theta_1 x ... x \Theta_N \rightarrow R$ if it involves payments

Individual Rationality

• In an AMD setting with an IR constraint there exists a fallback outcome o_0 such that for every agent i $u_i(\theta_i, o_0) = 0$

Incentive Compatibility

- The agents should never have an incentive to misreport their type
- Two most common *solution concepts* are
 - implementation in dominant strategies
 - Truth telling is the optimal strategy even if all other agents' types are known
 - implementation in Bayesian Nash equilibrium
 - Truth telling is the optimal strategy if other agents' types are not yet known, but they are assumed to be truthful

Formally the AMD problem

- Given
 - Automated mechanism design setting
 - An IR notion (ex interim, ex post, or none)
 - A solution concept (dominant strategies or Bayesian Nash equilibrium)
 - Possibility of payments and randomization
 - A target value G
- Determine
 - If there exists a mechanism of the specified type that satisfies both the IR notion and the solution concept, and gives an expected value of at least G for the objective.

Complexity results

- AMD (for non-randomized mechanisms) is NP-hard (by reduction to MINSAT) if
 - Payments are not allowed
 - Payments are allowed but the designer is looking for something other than social welfare maximization
- AMD for randomized mechanisms can be solved in (expected) polynomial time using linear programming LP

Conclusion: Some results of AMD

- It reinvented the Myerson auction which maximizes the seller's expected revenue in a 1-object auction
- It created expected revenue maximizing combinatorial auctions
- It created optimal mechanisms for a public good problem (deciding whether or not to build a bridge)
- ... also for multiple goods

Uhhh, a lecture with a hopefully useful

APPENDIX

IM FOCUS DAS LEBEN 49

References

- (Gibbard 73)
 A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):587–601, 1973.
- (Satterthwaite 75)

M. A. Satterthwaite. Strategy-proofness and arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10(2):187–217, 1975.

- (Bartholdi, Tovey, Trick 89)
 J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of manipulating an election. Social Choice and Welfare, 6(3):227–241, 1989.
- (Conitzer/Sandholm 03): Complexity results about nash equilibria. Talk given at IJCAI 2003. Text available as Arxiv version paper: https://arxiv.org/abs/cs/0205074
- (Groves 1973)
 T. Groves. Incentives in teams. Econometrica, 41(4):617–31, 1973.
- (d'Aspremeont Gerard-Varet79)
 [1] C. d'Aspremont and L.-A. Gerard-Varet. Incentives and incomplete information. Journal of Public economics, 11(1):25–45, 1979.
- (Sandholm 03)

Sandholm T. Automated Mechanism Design: A New Application Area for Search Algorithms. In: Rossi F. (eds) Principles and Practice of Constraint Programming – CP 2003. LNCS, vol 2833. **2003**.

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

